Lanthanide Coordination Polymers as Luminescent Sensors for the Selective and Recyclable Detection of Acetone
Abstract
:1. Introduction
2. Results
2.1. Crystal Structures
2.1.1. Descriptions of the Crystal Structures of {[La(L)2·2H2O]·Cl·4H2O} (1)
2.1.2. PXRD Analysis
2.2. Solid-State Luminescence of 1–3
2.3. Organic Small Molecule Sensing
3. Experimental Section
3.1. Material and Methods
3.2. Synthetic Procedures
3.2.1. Synthesis of 4-Carboxy-1-(4-Carboxybenzyl)Pyridinium Chloride (H2LCl)
3.2.2. Synthesis of {[La(L)2·2H2O]·Cl·4H2O} (LaL 1)
3.2.3. Synthesis of {[Tb(L)2·2H2O]·Cl·4H2O} (TbL 2)
3.2.4. Synthesis of {[Eu(L)2·2H2O]·Cl·4H2O} (EuL 3)
3.3. Crystallography
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jin, J.-C.; Wu, J.; Yang, G.-P.; Wu, Y.-L.; Wang, Y.-Y. A microporous anionic metal–organic framework for a highly selective and sensitive electrochemical sensor of Cu2+ ions. Chem. Commun. 2016, 52, 8475–8478. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.-S.; Hu, H.-C.; Xu, H.; Qiao, W.-Z.; Zhao, B. Two solvent-stable MOFs as a recyclable luminescent probe for detecting dichromate or chromate anions. CrystEngComm 2016, 18, 4445–4451. [Google Scholar] [CrossRef]
- Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E.B. A Luminescent Microporous Metal−Organic Framework for the Recognition and Sensing of Anions. J. Am. Chem. Soc. 2008, 130, 6718–6719. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Zhang, Y.; Xu, D.; Song, C.; Jin, X.; Liu, D.; Xie, L.; Huang, W. π-System based coordination polymer hollow nanospheres for the selective sensing of aromatic nitro explosive compounds. New J. Chem. 2015, 39, 9275–9280. [Google Scholar] [CrossRef]
- Barea, E.; Montoro, C.; Navarro, J.A.R. Toxic gas removal—metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 2014, 43, 5419–5430. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Lin, L.-X.; Fang, Z.-P.; Yang, S.-P.; Qiu, G.-H.; Chen, J.-X.; Chen, W.-H. A water-stable metal–organic framework of a zwitterionic carboxylate with dysprosium: A sensing platform for Ebolavirus RNA sequences. Chem. Commun. 2016, 52, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Yan, B. Polymer hybrid thin films based on rare earth ion-functionalized MOF: Photoluminescence tuning and sensing as a thermometer. Dalton Trans. 2015, 44, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- Du, P.-Y.; Gu, W.; Liu, X. Highly selective luminescence sensing of nitrite and benzaldehyde based on 3d–4f heterometallic metal–organic frameworks. Dalton Trans. 2016, 45, 8700–8704. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-X.; Ma, Y.-L.; Zhang, L.-S.; Zhang, J. A couple of Co(II) enantiomers constructed from semirigid lactic acid derivatives. Inorg. Chem. Commum. 2016, 73, 115–118. [Google Scholar] [CrossRef]
- Xu, Z.-X.; Ma, Y.-L.; Lv, G.-L. Homochiral coordination polymers with helixes and metal clusters based on lactate derivatives. J. Solid State Chem. 2017, 249, 210–214. [Google Scholar] [CrossRef]
- Suckert, S.; Germann, L.S.; Dinnebier, R.E.; Werner, J.; Näther, C. Synthesis, Structures and Properties of Cobalt Thiocyanate Coordination Compounds with 4-(hydroxymethyl)pyridine as Co-ligand. Crystals 2016, 6, 38. [Google Scholar] [CrossRef]
- Semitut, E.; Komarov, V.; Sukhikh, T.; Filatov, E.; Potapov, A. Synthesis, Crystal Structure and Thermal Stability of 1D Linear Silver(I) Coordination Polymers with 1,1,2,2-Tetra(pyrazol-1-yl)ethane. Crystals 2016, 6, 138. [Google Scholar] [CrossRef]
- Nakanishi, T.; Sato, O. Synthesis, Structure, and Magnetic Properties of New Spin Crossover Fe(II) Complexes Forming Short Hydrogen Bonds with Substituted Dicarboxylic Acids. Crystals 2016, 6, 131. [Google Scholar] [CrossRef]
- Wang, K.-M.; Du, L.; Ma, Y.-L.; Zhao, J.-S.; Wang, Q.; Yan, T.; Zhao, Q.-H. Multifunctional chemical sensors and luminescent thermometers based on lanthanide metal–organic framework materials. CrystEngComm 2016, 18, 2690–2700. [Google Scholar] [CrossRef]
- Ma, Y.; Du, L.; Wang, K.; Zhao, Q. Synthesis, Crystal Structure, Luminescence and Magnetism of Three Novel Coordination Polymers Based on Flexible Multicarboxylate Zwitterionic Ligand. Crystals 2017, 7, 32. [Google Scholar] [CrossRef]
- Pan, M.; Du, B.-B.; Zhu, Y.-X.; Yue, M.-Q.; Wei, Z.-W.; Su, C.-Y. Highly Efficient Visible-to-NIR Luminescence of Lanthanide (III) Complexes with Zwitterionic Ligands Bearing Charge-Transfer Character: Beyond Triplet Sensitization. Chem. Eur. J. 2016, 22, 2440–2451. [Google Scholar] [CrossRef] [PubMed]
- Wen, R.-M.; Han, S.-D.; Ren, G.-J.; Chang, Z.; Li, Y.-W.; Bu, X.-H. A flexible zwitterion ligand based lanthanide metal–organic framework for luminescence sensing of metal ions and small molecules. Dalton Trans. 2015, 44, 10914–10917. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Song, H.; Chen, Q.; Liu, K.; Zhao, F.-Y.; Ruan, W.-J.; Chang, Z. Two coordination polymers with enhanced ligand-centered luminescence and assembly imparted sensing ability for acetone. J. Mater. Chem. A 2014, 2, 9469–9473. [Google Scholar] [CrossRef]
- Shi, Y.-X.; Hu, F.-L.; Zhang, W.-H.; Lang, J.-P. A unique Zn (II)-based MOF fluorescent probe for the dual detection of nitroaromatics and ketones in water. CrystEngComm 2015, 17, 9404–9412. [Google Scholar] [CrossRef]
- Hua, J.-A.; Zhao, Y.; Kang, Y.-S.; Lu, Y.; Sun, W.-Y. Solvent-dependent zinc (II) coordination polymers with mixed ligands: selective sorption and fluorescence sensing. Dalton Trans. 2015, 44, 11524–11532. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Chen, H.; Han, D.; Wang, Z. Metal–organic framework derived Au@ ZnO yolk–shell nanostructures and their highly sensitive detection of acetone. RSC Adv. 2016, 6, 29727–29733. [Google Scholar] [CrossRef]
- Liu, X.-J.; Zhang, Y.-H.; Chang, Z.; Li, A.-L.; Tian, D.; Yao, Z.-Q.; Jia, Y.-Y.; Bu, X.-H. A Water-Stable Metal–Organic Framework with a Double-Helical Structure for Fluorescent Sensing. Inorg. Chem. 2016, 55, 7326–7328. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.-N.; Yan, B. Ln3+ post-functionalized metal–organic frameworks for color tunable emission and highly sensitive sensing of toxic anions and small molecules. New J. Chem. 2016, 40, 4654–4661. [Google Scholar] [CrossRef]
- Barry, D.E.; Caffrey, D.F.; Gunnlaugsson, T. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands. Chem. Soc. Rev. 2016, 45, 3244–3274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Y.; Wang, K.; Li, X.-B.; Gao, E.-Q. Magnetic coupling and slow relaxation of magnetization in chain-based MnII, CoII, and NiII coordination frameworks. Inorg. Chem. 2014, 53, 9306–9314. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXS-97, Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
Compound | 1 |
---|---|
Chemical formula | C28H32N2O14ClLa |
Formula mass | 794.92 |
Crystal system | Triclinic |
a/Å | 11.3001(7) |
b/Å | 11.7346(7) |
c/Å | 14.6280(9) |
α/° | 100.2340(10) |
β/° | 93.7830(10) |
γ/° | 109.1450(10) |
Unit cell volume/Å3 | 1787.09(19) |
Space group | Pī |
Z | 2 |
DX/Mg m−3 | 1.343 |
μ/mm−1 | 1.318 |
Reflections with I > 2σ(I) | 7215 |
Independent reflections | 8114 |
F(000) | 720 |
Rint | 0.0245 |
GOF on F2 | 1.094 |
R1, wR2 [I > 2σ(I)] | 0.0327, 0.0955 |
R1, wR2 [all data] | 0.0375, 0.1000 |
Residuals/e Å−3 | 0.793, −0.638 |
CCDC number | 1498357 |
Bond lengths (Å) for 1 | |||
La(1)-O(5) | 2.448(3) | O(2)-C(6) | 1.254(4) |
La(1)-O(8)A | 2.490(3) | O(3)-C(14) | 1.246(4) |
La(1)-O(1) | 2.504(3) | O(4)-C(14) | 1.260(4) |
La(1)-O(2)B | 2.508(3) | O(5)-C(20) | 1.237(5) |
La(1)-O(4)C | 2.512(2) | O(6)-C(20) | 1.252(6) |
La(1)-O(3)D | 2.562(2) | O(7)-C(28) | 1.247(5) |
La(1)-O(10) | 2.569(3) | O(8)-C(28) | 1.269(5) |
La(1)-O(9) | 2.605(3) | N(1)-C(4) | 1.356(5) |
La(1)-O(4)D | 2.959(2) | N(1)-C(3) | 1.380(5) |
O(1)-C(6) | 1.244(4) | N(1)-C(7) | 1.502(4) |
Bond angles (°) for 1 | |||
O(5)-La(1)-O(8)A | 91.37(11) | O(3)D-La(1)-O(10) | 68.16(9) |
O(5)-La(1)-O(1) | 145.38(9) | O(5)-La(1)-O(9) | 71.04(10) |
O(8)A-La(1)-O(1) | 79.47(10) | O(8)A-La(1)-O(9) | 69.88(10) |
O(5)-La(1)-O(2)B | 79.90(9) | O(1)-La(1)-O(9) | 133.44(9) |
O(8)A-La(1)-O(2)B | 139.19(10) | O(2)B-La(1)-O(9) | 69.58(10) |
O(1)-La(1)-O(2)B | 127.76(9) | O(4)C-La(1)-O(9) | 75.85(9) |
O(5)-La(1)-O(4)C | 144.80(9) | O(3)D-La(1)-O(9) | 138.14(10) |
O(8)A-La(1)-O(4)C | 88.20(9) | O(10)-La(1)-O(9) | 127.61(10) |
O(1)-La(1)-O(4)C | 68.85(8) | O(5)-La(1)-O(4)D | 119.81(9) |
O(2)B-La(1)-O(4)C | 77.69(9) | O(8)A-La(1)-O(4)D | 146.12(9) |
O(5)-La(1)-O(3)D | 79.70(9) | O(1)-La(1)-O(4)D | 67.36(8) |
O(8)A-La(1)-O(3)D | 141.40(9) | O(2)B-La(1)-O(4)D | 65.49(8) |
O(1)-La(1)-O(3)D | 86.90(9) | O(4)C-La(1)-O(4)D | 73.97(8) |
O(2)B-La(1)-O(3)D | 76.46(9) | O(3)D-La(1)-O(4)D | 46.25(7) |
O(4)C-La(1)-O(3)D | 120.19(8) | O(10)-La(1)-O(4)D | 101.20(8) |
O(5)-La(1)-O(10) | 74.02(10) | O(9)-La(1)-O(4)D | 129.85(9) |
O(8)A-La(1)-O(10) | 73.27(9) | C(6)-O(1)-La(1) | 139.4(2) |
O(1)-La(1)-O(10) | 71.36(9) | C(6)-O(2)-La(1)B | 136.0(2) |
O(2)B-La(1)-O(10) | 138.94(10) | C(4)-N(1)-C(3) | 120.5(3) |
O(4)C-La(1)-O(10) | 138.48(9) | C(4)-N(1)-C(7) | 119.4(3) |
O(3)D-La(1)-O(10) | 68.16(9) | C(3)-N(1)-C(7) | 120.1(3) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Ma, Y.; Tang, H. Lanthanide Coordination Polymers as Luminescent Sensors for the Selective and Recyclable Detection of Acetone. Crystals 2017, 7, 199. https://doi.org/10.3390/cryst7070199
Wang K, Ma Y, Tang H. Lanthanide Coordination Polymers as Luminescent Sensors for the Selective and Recyclable Detection of Acetone. Crystals. 2017; 7(7):199. https://doi.org/10.3390/cryst7070199
Chicago/Turabian StyleWang, Kaimin, Yulu Ma, and Huaijun Tang. 2017. "Lanthanide Coordination Polymers as Luminescent Sensors for the Selective and Recyclable Detection of Acetone" Crystals 7, no. 7: 199. https://doi.org/10.3390/cryst7070199
APA StyleWang, K., Ma, Y., & Tang, H. (2017). Lanthanide Coordination Polymers as Luminescent Sensors for the Selective and Recyclable Detection of Acetone. Crystals, 7(7), 199. https://doi.org/10.3390/cryst7070199