Study on Dislocation-Dopant Ions Interaction in Ionic Crystals by the Strain-Rate Cycling Test during the Blaha Effect
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Preparation of Specimens
2.2. Strain-Rate Cycling Test during the Blaha Effect
3. Results and Discussion
3.1. Relations between ∆τ and Strain-Rate Sensitivity (λ) for KCl:Sr2+ and KCl
3.2. Discussion for the ∆τ vs. λ Curve
3.3. Influence of the State of Sr2+ Ions on ∆τ vs. λ Curve by Heat Treatment
3.4. Activation Energy for the Break-Away of a Dislocation from the Dopant Ion
3.5. Strain-Rate Sensitivity at the Second Plateau Place on the ∆τ vs. λ Curve
4. Summary
Conflicts of Interest
References
- Chin, G.Y.; Van Uitert, L.G.; Green, M.L.; Zydzik, G.J.; Kometani, T.Y. Strengthening of Alkali Halides by Divalent-ion Additions. J. Am. Ceram. Soc. 1973, 56, 369–372. [Google Scholar] [CrossRef]
- Suszyńska, M. Effect of Impurity Concentration and Plastic Deformation on Dislocation Density of KCl Crystals. Kristall. Technik. 1974, 9, 1199–1207. [Google Scholar] [CrossRef]
- Kataoka, T.; Yamada, T. Yield Strength and Dislocation Mobility of KCl-KBr Solid Solution Single Crystals. Jpn. J. Appl. Phys. 1977, 16, 1119–1126. [Google Scholar] [CrossRef]
- Boyarskaya, Y.S.; Zhitaru, R.P.; Palistrant, N.A. The anomalous behaviour of the doped NaCl crystals compressed at low temperatures. Cryst. Res. Technol. 1990, 25, 1469–1473. [Google Scholar] [CrossRef]
- Boyarskaya, Y.S.; Zhitaru, R.P.; Palistrant, N.A. Influence of the state of the impurity on the deformation-rate dependence of the yield stress of NaCl:Ca single crystals. Sov. Phys. Solid State 1990, 32, 1989–1990. [Google Scholar]
- Okazaki, K. Solid-solution hardening and softening in binary iron alloys. J. Mater. Sci. 1996, 31, 1087–1099. [Google Scholar] [CrossRef]
- Tabachnikova, E.D.; Podolskiy, A.V.; Smirnov, S.N.; Psaruk, I.A.; Liao, P.K. Temperature dependent mechanical properties and thermal activation plasticity of nanocrystalline and coarse grained Ni-18.75 at.% Fe alloy. IOP Conf. Ser. Mater. Sci. Eng. 2014, 63, 012105. [Google Scholar] [CrossRef]
- Pratt, P.L.; Harrison, R.P.; Newey, C.W.A. Dislocation mobility in ionic crystals. Disc. Faraday Soc. 1964, 38, 211–217. [Google Scholar] [CrossRef]
- Newey, C.W.A.; Harrison, R.P.; Pratt, P.L. Precipitation Hardening and Dislocation Locking in Doped NaCl. Proc. Brit. Ceram. Soc. 1966, 6, 305–316. [Google Scholar]
- Chin, G.Y.; Van Uitert, L.G.; Green, M.L.; Zydzik, G. Hardness, Yield Strength and Young’s Modulus in Halide Crystals. Scripta Metall. 1972, 6, 475–480. [Google Scholar] [CrossRef]
- Green, M.L.; Zydzik, G. Effect of heat treatment on the microhardness of some mixed and doped alkali halides. Scripta Metall. 1972, 6, 991–994. [Google Scholar] [CrossRef]
- Andreev, G.A.; Klimov, V.A. Influence of the State of an Impurity on the Microhardness of NaCl:Sr Single Crystals. Sov. Phys. Solid State 1980, 22, 2042–2043. [Google Scholar]
- Buravleva, M.G.; Rozenberg, G.K.; Soifer, L.M.; Chaikovskii, E.F. Changes in the flow stress of LiF:Mg2+ and LiF:Co2+ crystals during precipitation of solid solutions. Sov. Phys. Solid State 1980, 22, 150–152. [Google Scholar]
- Narasimha Reddy, K.; Subba Rao, U.V. Influence of Gadolonium Impurity on Microhardness of Host Alkali Halide Crystal. Cryst. Res. Technol. 1984, 19, K73–K76. [Google Scholar] [CrossRef]
- Strunk, H. Investigation of Cross-slip Events in NaCl Crystals by Transmission Electron Microscopy. Phys. Status Solidi (a) 1975, 28, 119–126. [Google Scholar] [CrossRef]
- Appel, F.; Messerschmidt, U. The interaction between dislocations and point obstacles: A comparison of the interaction parameter distributions obtained from computer simulation and from in situ high voltage electron microscopy straining experiments. Mater. Sci. Eng. 1982, 52, 69–74. [Google Scholar] [CrossRef]
- Messerschmidt, U.; Appel, F.; Schmid, H. The radius of curvature of dislocation segments in MgO crystals stressed in the high-voltage electron microscope. Philos. Mag. A 1985, 51, 781–796. [Google Scholar] [CrossRef]
- Kataoka, T.; Ohji, H.; Morishita, H.; Kishida, K.; Azuma, K.; Yamada, T. In-situ observation of moving dislocations in KCl crystal by laser-light topography. Jpn. J. Appl. Phys. 1989, 28, L697–L700. [Google Scholar] [CrossRef]
- Kataoka, T.; Ohji, H.; Kishida, K.; Azuma, K.; Yamada, T. Direct observation of glide dislocations in a KCl crystal by the light scattering method. Appl. Phys. Lett. 1990, 56, 1317–1319. [Google Scholar] [CrossRef]
- Kataoka, T. The light scattering topography method: Direct observation of moving dislocations. Butsuri 1992, 47, 713–716. (In Japanese) [Google Scholar]
- Messerschmidt, U. Dislocation Dynamics during Plastic Deformation; Springer: Berlin, Heidelberg, 2010. [Google Scholar]
- Indenbom, V.L.; Chernov, V.M. Determination of characteristics for the interaction between point defects and dislocations from internal friction experiments. Phys. Status Solidi (a) 1972, 14, 347–354. [Google Scholar] [CrossRef]
- Schwarz, R.B.; Granato, A.V. Measurement of the force-distance profile for the interaction between a dislocation and a point defect. Phys. Rev. Lett. 1975, 34, 1174–1177. [Google Scholar] [CrossRef]
- Ivanov, V.I.; Lebedev, A.B.; Kardashev, B.K.; Nikanorov, S.P. Interaction of dislocations with pinning centers in magnesium at temperatures 295-4.2K. Sov. Phys. Solid State 1986, 28, 867–868. [Google Scholar]
- Kosugi, T.; Kino, T. Experimental Determination of the Force-Distance Relation for the Interaction between a Dislocation and a Solute Atom. J. Phys. Soc. Jpn. 1987, 56, 999–1009. [Google Scholar] [CrossRef]
- Kosugi, T. Temperature Dependence of Amplitude-dependent Internal Friction due to Simultaneous Breakaway of a Dislocation from Several Pinning Points. Mater. Sci. Eng. A 2001, 309–310, 203–206. [Google Scholar] [CrossRef]
- Gremaud, G. Dislocation-Point Defect Interactions. Mater. Sci. Forum 2001, 366–368, 178–246. [Google Scholar] [CrossRef]
- Dotsenko, V.I. Stress Relaxation in Crystals. Phys. Status Solidi (b) 1979, 93, 11–43. [Google Scholar] [CrossRef]
- Urusovskaya, A.A.; Petchenko, A.M.; Mozgovoi, V.I. The influence of strain rate on stress relaxation. Phys. Status Solidi (a) 1991, 125, 155–160. [Google Scholar] [CrossRef]
- Johnston, W.G.; Gilman, J.J. Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. J. Appl. Phys. 1959, 30, 129–144. [Google Scholar] [CrossRef]
- Granato, A.V.; Lücke, K. Theory of mechanical damping due to dislocations. J. Appl. Phys. 1956, 27, 583–593. [Google Scholar] [CrossRef]
- Blaha, F.; Langenecker, B. Dehnung von Zink-Kristallen unter Ultraschalleinwirkung. Naturwiss. 1955, 42, 556. [Google Scholar] [CrossRef]
- Nevill, G.E.; Brotzen, F.R. The effect of vibrations on the static yield strength of low-carbon steel. Proc. ASTM 1957, 57, 751–758. [Google Scholar]
- Langenecker, B. Effects of ultrasound on deformation characteristics of metals. IEEE Trans. Sonic Ultrasonic 1966, 13, 1–8. [Google Scholar] [CrossRef]
- Izumi, O.; Oyama, K.; Suzuki, Y. Effects of superimposed ultrasonic vibration on compressive deformation of metals. Trans. JIM 1966, 7, 162–167. [Google Scholar] [CrossRef]
- Evans, A.E.; Smith, A.W.; Waterhouse, W.J.; Sansome, D.H. Review of the application of ultrasonic vibrations to deforming metals. Ultrasonics 1975, 13, 162–170. [Google Scholar]
- Jimma, T.; Kasuga, Y.; Iwaki, N.; Miyazawa, O.; Mori, E.; Ito, K.; Hatano, H. An application of ultrasonic vibration to the deep drawing process. J. Mater. Process. Technol. 1998, 80–81, 406–412. [Google Scholar] [CrossRef]
- Susan, M.; Bujoreanu, L.G. The metal-tool contact friction at the ultrasonic vibration drawing of ball-bearing steel wires. Rev. Metal. Madrid 1999, 35, 379–383. [Google Scholar] [CrossRef]
- Murakawa, M.; Jin, M. The utility of radially and ultrasonically vibrated dies in the wire drawing process. J. Mater. Process. Technol. 2001, 113, 81–86. [Google Scholar] [CrossRef]
- Susan, M.; Bujoreanu, L.G.; Găluşcă, D.G.; Munteanu, C.; Mantu, M. On the drawing in ultrasonic field of metallic wires with high mechanical resistance. J. Optoelectron. Adv. Mater. 2005, 7, 637–645. [Google Scholar]
- Lucas, M.; Gachagan, A.; Cardoni, A. Research applications and opportunities in power ultrasonics. Proc. IMechE Part C J. Mech. Eng. Sci. 2009, 223, 2949–2965. [Google Scholar] [CrossRef]
- Siddiq, A.; El Sayed, T. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations. Ultrasonics 2012, 52, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Makhdum, F.; Phadnis, V.A.; Roy, A.; Silberschmidt, V.V. Effect of ultrasonically-assisted drilling on carbon-fibre-reinforced plastics. J. Sound Vib. 2014, 333, 5939–5952. [Google Scholar] [CrossRef] [Green Version]
- Graff, K.F. Ultrasonic Metal Forming: Processing. In Power Ultrasonics: Applications of High-intensity Ultrasound; Gallego-Juarez, J.A., Graff, K.F., Eds.; Elsevier: Cambridge, UK, 2015; pp. 377–438. [Google Scholar]
- Puškár, A. Effect of grain size, cold work, loading frequency and temperature on fatigue limit of mild steel. Metallurg. Trans. 1976, 7A, 1529–1533. [Google Scholar] [CrossRef]
- Jon, M.C.; Mason, W.P.; Beshers, D.N. Internal friction during ultrasonic deformation of alpha-brass. J. Appl. Phys. 1976, 47, 2337–2349. [Google Scholar] [CrossRef]
- Shetty, D.K.; Meshii, M. Plastic deformation of aluminum under repeated loading. Metallurg. Trans. 1975, 6A, 349–366. [Google Scholar] [CrossRef]
- Bradley, W.L.; Nam, S.W.; Matlock, D.K. Fatigue perturbed creep of pure aluminum at ambient temperatures. Metallurg. Trans. 1976, 7A, 425–430. [Google Scholar] [CrossRef]
- Lebedev, A.B.; Kustov, S.B.; Kardashev, B.K. Amplitude-dependent ultrasound absorption and acoustoplastic effect during active deformation of sodium chloride crystals. Sov. Phys. Solid State 1982, 24, 1798–1799. [Google Scholar]
- Baker, G.S.; Carpenter, S.H. Dislocation mobility and motion under combined stresses. J. Appl. Phys. 1967, 38, 1586–1591. [Google Scholar] [CrossRef]
- Kaiser, G.; Pechhold, W. Dynamic-mechanical investigations for the study of dislocation motion during plastic flow. Acta Metall. 1967, 17, 527–537. [Google Scholar] [CrossRef]
- Suzuki, T. Effects of vibrational stress on static flow stress (I). Seisan-Kenkyu 1970, 22, 194–197. (In Japanese) [Google Scholar]
- Suzuki, T. Effects of vibrational stress on static flow stress (II). Seisan-Kenkyu 1970, 22, 344–347. (In Japanese) [Google Scholar]
- Endo, T.; Suzuki, K.; Ishikawa, M. Effects of superimposed ultrasonic oscillatory stress on the deformation of Fe and Fe-3%Si alloy. Trans. Japan Inst. Metals 1979, 20, 706–712. [Google Scholar] [CrossRef]
- Endo, T.; Tasaki, M.; Kubo, M.; Shimada, T. High temperature deformation of an Al-5at%Mg alloy under combined high frequency stresses. J. Japan Inst. Met. Mater. 1982, 46, 773–779. (In Japanese) [Google Scholar] [CrossRef]
- Lebedev, A.B.; Kustov, S.B.; Kardashev, B.K. Investigation of the amplitude-dependent internal friction during plastic deformation of sodium chloride single crystals. Sov. Phys. Solid State 1983, 25, 511–512. [Google Scholar]
- Ohgaku, T.; Takeuchi, N. The relation of the Blaha effect with internal friction for alkali halide crystals. Phys. Status Solidi (a) 1988, 105, 153–159. [Google Scholar] [CrossRef]
- Hikata, A.; Johnson, R.A.; Elbaum, C. Interaction of dislocations with electrons and with phonons. Phys. Rev. 1970, B 2, 4856–4863. [Google Scholar] [CrossRef]
- Ohgaku, T.; Takeuchi, N. The Blaha effect of alkali halide crystals. Phys. Status Solidi (a) 1987, 102, 293–299. [Google Scholar] [CrossRef]
- Hesse, J.; Hobbs, L.W. Dislocation density in highly deformed NaCl single crystals. Phys. Status Solidi (a) 1972, 14, 599–604. [Google Scholar] [CrossRef]
- Frank, W. Theorie der Verfestigung von Alkalihalogenid-Einkristallen I. Qualitative betrachtungen. Mater. Sci. Eng. 1970, 6, 121–131. [Google Scholar] [CrossRef]
- Frank, W. Theorie der Verfestigung von Alkalihalogenid-Einkristallen II. Quantitative formulierung. Mater. Sci. Eng. 1970, 6, 132–148. [Google Scholar] [CrossRef]
- Ohgaku, T.; Takeuchi, N. Relation between plastic deformation and the Blaha effect for alkali halide crystals. Phys. Status Solidi (a) 1989, 111, 165–172. [Google Scholar] [CrossRef]
- Li, J.C.M. Kinetics and Dynamics in Dislocation Plasticity. In Dislocation Dynamics; Rosenfield, A.R., Hahn, G.T., Bemont, A.L., Jaffee, R.I., Eds.; Mc Graw-Hill Publ. Co.: New York, NY, USA, 1968; pp. 87–116. [Google Scholar]
- Ohgaku, T.; Takeuchi, N. Interaction between a dislocation and monovalent impurities in KCl single crystals. Phys. Status Solidi (a) 1992, 134, 397–404. [Google Scholar] [CrossRef]
- Ohgaku, T.; Teraji, H. Investigation of interaction between a dislocation and a Br− ion in NaCl:Br− single crystals. Phys. Status Solidi (a) 2001, 187, 407–413. [Google Scholar] [CrossRef]
- Argon, A.S.; Nigam, A.K.; Padawer, G.E. Plastic deformation and strain hardening in pure NaCl at low temperatures. Philos. Mag. 1972, 25, 1095–1118. [Google Scholar] [CrossRef]
- Young Jr, F.W. Etch pits at dislocations in copper. J. Appl. Phys. 1961, 32, 192–201. [Google Scholar] [CrossRef]
- Takeuchi, S. Solid-Solution strengthening in single crystals of iron alloys. J. Phys. Soc. Jap. 1969, 27, 929–940. [Google Scholar] [CrossRef]
- Sprackling, M.T. The Plastic Deformation of Simple Ionic Crystals; Alper, A.M., Margrave, J.L., Nowick, A.S., Eds.; Academic Press: London, UK, 1976. [Google Scholar]
- Zakrevskii, V.A.; Shul’diner, A.V. Dislocation interaction with radiation defects in alkali-halide crystals. Phys. Sol. Stat. 2000, 42, 270–273. [Google Scholar] [CrossRef]
- Katoh, S. Influence of impurity concentration on the Blaha effect. Bachelor’s Thesis, Kanazawa University, Kanazawa, Japan, 1987; pp. 16–21. [Google Scholar]
- Pick, H.; Weber, H. Dichteänderung von KCl-Kristallen durch Einbau zweiwertiger Ionen. Z. Phys. 1950, 128, 409–413. [Google Scholar] [CrossRef]
- Fleischer, R.L. Rapid solution hardening, dislocation mobility, and the flow stress of crystals. J. Appl. Phys. 1962, 33, 3504–3508. [Google Scholar] [CrossRef]
- Dryden, J.S.; Morimoto, S.; Cook, J.S. The hardness of alkali halide crystals containing divalent ion impurities. Philos. Mag. 1965, 12, 379–391. [Google Scholar] [CrossRef]
- Orozco, M.E.; Mendoza, A.A.; Soullard, J.; Rubio, O.J. Changes in yield stress of NaCl:Pb2+ crystals during dissolution and precipitation of solid solutions. Jpn. J. Appl. Phys. 1982, 21, 249–254. [Google Scholar] [CrossRef]
- Zaldo, C.; Solé, J.G.; Agulló-López, F. Mechanical strengthening and impurity precipitation behaviour for divalent cation-doped alkali halides. J. Mater. Sci. 1982, 17, 1465–1473. [Google Scholar] [CrossRef]
- Reddy, B.K. Annealing and ageing studies in quenched KBr:Ba2+ single crystals. Phys. Status Solidi (a) 1987, 99, K7–K10. [Google Scholar] [CrossRef]
- Sirdeshmukh, D.B.; Sirdeshmukh, L.; Subhadra, K.G. Alkali Halides; Hull, R., Osgood, R.M., Jr., Sakaki, H., Zunger, A., Eds.; Springer-Verlag: Berlin, Germany, 2001; p. 41. [Google Scholar]
- Friedel, J. Dislocations; Pergamon Press: Oxford, UK, 1964; p. 224. [Google Scholar]
- Stoloff, N.S.; Lezius, D.K.; Johnston, T.L. Effect of temperature on the deformation of KCl-KBr alloys. J. Appl. Phys. 1963, 34, 3315–3322. [Google Scholar] [CrossRef]
- Kohzuki, Y.; Ohgaku, T.; Takeuchi, N. Interaction between a dislocation and impurities in KCl single crystals. J. Mater. Sci. 1993, 28, 3612–3616. [Google Scholar] [CrossRef]
- Kohzuki, Y.; Ohgaku, T.; Takeuchi, N. Interaction between a dislocation and various divalent impurities in KCl single crystals. J. Mater. Sci. 1995, 30, 101–104. [Google Scholar] [CrossRef]
- Ohgaku, T.; Takeuchi, N. Study on dislocation-impurity interaction by the Blaha effect. Phys. Status Solidi (a) 1990, 118, 153–159. [Google Scholar] [CrossRef]
- Cook, J.S.; Dryden, J.S. An investigation of the aggregation of divalent cationic impurities in alkali halides by dielectric absorption. Proc. Phys. Soc. 1962, 80, 479–488. [Google Scholar] [CrossRef]
- Lidiard, A.B. Ionic Conductivity. In Handbuch der Physik; Springer: Berlin, Germany, 1957; Volume 20, pp. 246–349. [Google Scholar]
- Kohzuki, Y.; Ohgaku, T.; Takeuchi, N. Influence of a state of impurities on the interaction between a dislocation and impurities in KCl single crystals. J. Mater. Sci. 1993, 28, 6329–6332. [Google Scholar] [CrossRef]
- Johnston, W.G. Effect of impurities on the flow stress of LiF crystals. J. Appl. Phys. 1962, 33, 2050–2058. [Google Scholar] [CrossRef]
- Gaiduchenya, V.F.; Blistanov, A.A.; Shaskol’skaya, M.P. Thermally activated slip in LiF crystals. Sov. Phys. Solid State 1970, 12, 27–31. [Google Scholar]
- Kohzuki, Y. Study on the interaction between a dislocation and impurities in KCl:Sr2+ single crystals by the Blaha effect part I Interaction between a dislocation and an impurity for the Fleischer’s model taking account of the Friedel relation. J. Mater. Sci. 2000, 35, 3397–3401. [Google Scholar] [CrossRef]
- Kohzuki, Y.; Ohgaku, T. Study on the interaction between a dislocation and impurities in KCl:Sr2+ single crystals by the Blaha effect Part II Interaction between a dislocation and aggregates for various force-distance relations between a dislocation and an impurity. J. Mater. Sci. 2001, 36, 923–928. [Google Scholar] [CrossRef]
- Sprackling, M.T. Three-stage Hardening. In The Plastic Deformation of Simple Ionic Crystals; Alper, A.M., Margrave, J.L., Nowick, A.S., Eds.; Academic Press: London, UK, 1976; pp. 203–206. [Google Scholar]
- Alden, T.H. Latent hardening and the role of oblique slip in the strain hardening of rock-salt structure crystals. Trans. Met. Soc. AIME 1964, 230, 649–656. [Google Scholar]
- Davis, L.A.; Gordon, R.B. Plastic deformation of alkali halide crystals at high pressure: Work-hardening effects. J. Appl. Phys. 1969, 40, 4507–4513. [Google Scholar] [CrossRef]
- Evans, A.G.; Pratt, P.L. Work hardening in ionic crystals. Philos. Mag. 1970, 21, 951–970. [Google Scholar] [CrossRef]
- Michalak, J.T. The influence of temperature on the development of long-range internal stress during the plastic deformation of high-purity iron. Acta Metall. 1965, 13, 213–222. [Google Scholar] [CrossRef]
- Kohzuki, Y. Study on the interaction between a dislocation and impurities in KCl:Sr2+ single crystals by the blaha effect Part IV influence of heat treatment on dislocation density. J. Mater. Sci. 2009, 44, 379–384. [Google Scholar] [CrossRef]
Specimen | G0 (eV) |
---|---|
Quenched specimen | 0.39 |
Annealed specimen | 0.26 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohzuki, Y. Study on Dislocation-Dopant Ions Interaction in Ionic Crystals by the Strain-Rate Cycling Test during the Blaha Effect. Crystals 2018, 8, 31. https://doi.org/10.3390/cryst8010031
Kohzuki Y. Study on Dislocation-Dopant Ions Interaction in Ionic Crystals by the Strain-Rate Cycling Test during the Blaha Effect. Crystals. 2018; 8(1):31. https://doi.org/10.3390/cryst8010031
Chicago/Turabian StyleKohzuki, Yohichi. 2018. "Study on Dislocation-Dopant Ions Interaction in Ionic Crystals by the Strain-Rate Cycling Test during the Blaha Effect" Crystals 8, no. 1: 31. https://doi.org/10.3390/cryst8010031
APA StyleKohzuki, Y. (2018). Study on Dislocation-Dopant Ions Interaction in Ionic Crystals by the Strain-Rate Cycling Test during the Blaha Effect. Crystals, 8(1), 31. https://doi.org/10.3390/cryst8010031