The Importance of CH···X (X = O, π) Interaction of a New Mixed Ligand Cu(II) Coordination Polymer: Structure, Hirshfeld Surface and Theoretical Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Measurements
2.2. Synthesis
2.3. X-ray Crystallography Study
2.4. Hirshfeld Surface Analysis
2.5. Theoretical Methods
3. Results and Discussion
3.1. Structural Description
3.2. Hirshfeld Surface
3.3. Theoretical Calculations
4. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Long, J.R.; Yaghi, O.M. Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Ohrstrom, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Coordination polymers, metal–organic frameworks and the need for terminology guidelines. CrystEngComm 2012, 14, 3001–3004. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Thallapally, P.K.; McGrail, B.P.; Brown, D.R.; Liu, J. Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem. Soc. Rev. 2012, 41, 2308–2322. [Google Scholar] [CrossRef]
- He, H.; Song, Y.; Sun, F.; Bian, Z.; Gao, L.; Zhu, G. A porous metal–organic framework formed by a V-shaped ligand and Zn(II) ion with highly selective sensing for nitroaromatic explosives. J. Mater. Chem. A 2015, 3, 16598–16603. [Google Scholar] [CrossRef]
- Carlucci, L.; Ciani, G.; Proserpio, D.M.; Mitina, T.G.; Blatov, V.A. Entangled two-dimensional coordination networks: A general survey. Chem. Rev. 2014, 114, 7557–7580. [Google Scholar] [CrossRef]
- Nagarkar, S.S.; Joarder, B.; Chaudhari, A.K.; Mukherjee, S.; Ghosh, S.K. Highly Selective Detection of Nitro Explosives by a Luminescent Metal–Organic Framework. Angew. Chem. Int. Ed. 2013, 52, 2881–2885. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Z.-H.; Yang, J.; Liu, B.; Liu, Y.-Y.; Ma, J.-F. A series of coordination polymers based on reduced Schiff base multidentate anions and bis(imidazole) ligands: Syntheses, structures and photoluminescence. CrystEngComm 2011, 13, 3811–3821. [Google Scholar] [CrossRef]
- Du, M.; Li, C.P.; Liu, C.S.; Fang, S.M. Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coord. Chem. Rev. 2013, 257, 1282–1305. [Google Scholar] [CrossRef]
- Li, M.-X.; Zhang, Y.-F.; He, X.; Shi, X.-M.; Wang, Y.-P.; Shao, M.; Wang, Z.-X. Diverse Structures and Ferro-/Ferri-/Antiferromagnetic Interactions of Pyridyltetrazole Coordination Polymers with Polycarboxylate Auxiliary Ligands. Cryst. Growth Des. 2016, 16, 2912–2922. [Google Scholar] [CrossRef]
- Li, Y.-L.; Zhao, D.; Zhao, Y.; Wang, P.; Wang, H.-W.; Sun, W.-Y. Synthesis, structure, and magnetic and catalytic properties of metal frameworks with 2,2′-dinitro-4,4′-biphenyldicarboxylate and imidazole-containing tripodal ligands. Dalton Trans. 2016, 45, 8816–8823. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-C.; Kitagawa, S. Metal–Organic Frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar] [CrossRef]
- Amayuelas, E.; Fidalgo-Marijuan, A.; Barandika, G.; Bazán, B.; Urtiaga, M.K.; Arriortua, M.I. Mother structures related to the hexagonal and cubic close packing in Cu24 clusters: Solvent-influenced derivatives. CrystEngComm 2015, 17, 3297–3304. [Google Scholar] [CrossRef]
- Du, M.; Li, C.-P.; Liu, C.-S.; Fang, S.-M. Design and construction of coordination polymers with mixed-ligand synthetic strategy. Chem. Rev. 2013, 257, 1282–1305. [Google Scholar]
- Farrusseng, D. Metal-Organic Frameworks: Applications from Catalysis to Gas Storage, 1st ed.; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Tranchemontagne, D.J.; Mendoza-Cortés, J.L.; O’Keeffe, M.; Yaghi, O.M. Secondary Building Units, Nets and Bonding in the Chemistry of Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1257–1283. [Google Scholar] [CrossRef] [PubMed]
- Erer, H.; Yesilel, O.Z.; Arıcı, M. A Series of Zinc(II) 3D → 3D Interpenetrated Coordination Polymers Based On Thiophene-2,5-dicarboxylate and Bis(Imidazole) Derivative Linkers. Cryst. Growth Des. 2015, 15, 3201–3211. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, C.; Zheng, X.; Tian, Z.; Wen, L.; Qu, H.; Li, D. New metal–organic frameworks based on 2,5-thiophenedicarboxylate and pyridine- or imidazole-based spacers: Syntheses, topological structures, and properties. Dalton Trans. 2013, 42, 16375–16386. [Google Scholar] [CrossRef]
- Yaghi, O.M.; O’keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef]
- Mitra, M.; Manna, P.; Das, A.; Seth, S.K.; Helliwell, M.; Bauzá, A.; Choudhury, S.R.; Frontera, A.; Mukhopadhyay, S. On the Importance of Unprecedented Lone Pair–Salt Bridge Interactions in Cu(II)–Malonate–2-Amino-5-Chloropyridine–Perchlorate Ternary System. J. Phys. Chem. A 2013, 117, 5802–5811. [Google Scholar] [CrossRef]
- Mitra, M.; Manna, P.; Seth, S.K.; Das, A.; Meredith, J.; Helliwell, M.; Bauzá, A.; Choudhury, S.R.; Frontera, A.; Mukhopadhyay, S. Salt-bridge–π (sb–π) interactions at work: Associative interactions of sb–π, π–π and anion–π in Cu(II)-malonate–2-aminopyridine–hexafluoridophosphate ternary system. CrystEngComm 2013, 15, 686–696. [Google Scholar] [CrossRef]
- He, Y.C.; Yang, J.; Kan, W.Q.; Zhang, H.M.; Liu, Y.Y.; Ma, J.F. A New Microporous Anionic Metal-Organic Framework as a Platform for Highly Selective Adsorption and Separation of Organic Dyes. J. Mater. Chem. A 2015, 3, 1675–1681. [Google Scholar] [CrossRef]
- Yan, W.; Han, L.J.; Jia, H.L.; Shen, K.; Wang, T.; Zheng, H.G. Three Highly Stable Cobalt MOFs Based on ″Y″-Shaped Carboxylic Acid: Synthesis and Absorption of Anionic Dyes. Inorg. Chem. 2016, 55, 8816–8821. [Google Scholar] [CrossRef]
- Seth, P.; Bauzá, A.; Frontera, A.; Massera, C.; Gamez, P.; Ghosh, A. Analysis of the contribution of the π-acidity of the s-tetrazine ring in the crystal packing of coordination polymers. CrystEngComm 2013, 15, 3031–3039. [Google Scholar] [CrossRef]
- Seth, S.K. Exploration of supramolecular layer and bi-layer architecture in M(II)–PPP complexes: Structural elucidation and Hirshfeld surface analysis [PPP = 4-(3-Phenylpropyl)pyridine, M = Cu(II), Ni(II)]. J. Mol. Struct. 2014, 1070, 65–74. [Google Scholar] [CrossRef]
- Maity, T.; Mandal, H.; Bauza, A.; Samanta, B.C.; Frontera, A.; Seth, S.K. Quantifying conventional C–H···π(aryl) and unconventional C–H···π(chelate) interactions in dinuclear Cu(II) complexes: Experimental observations, Hirshfeld surface and theoretical DFT study. New J. Chem. 2018, 42, 10202–10213. [Google Scholar] [CrossRef]
- Bloom, J.W.G.; Wheeler, S.E. Taking the Aromaticity out of Aromatic Interactions. Angew. Chem. Int. Ed. 2011, 50, 7847–7849. [Google Scholar] [CrossRef]
- Seth, S.K.; Sarkar, D.; Kar, T. Use of π–π forces to steer the assembly of chromone derivatives into hydrogen bonded supramolecular layers: Crystal structures and Hirshfeld surface analyses. CrystEngComm 2011, 13, 4528–4535. [Google Scholar] [CrossRef]
- Seth, S.K.; Manna, P.; Singh, N.J.; Mitra, M.; Jana, A.D.; Das, A.D.; Choudhury, S.R.; Kar, T.; Mukhopadhyay, S.; Kim, K.S. Molecular architecture using novel types of noncovalent π-interactions involving aromatic neutrals, aromatic cations and π-anions. CrystEngComm 2013, 15, 1285–1288. [Google Scholar] [CrossRef]
- Manna, P.; Seth, S.K.; Mitra, M.; Das, A.; Singh, N.J.; Choudhury, S.R.; Kar, T.; Mukhopadhyay, S. A successive layer-by-layer assembly of supramolecular frameworks driven by a novel type of face-to-face π+–π+ interactions. CrystEngComm 2013, 15, 7879–7886. [Google Scholar] [CrossRef]
- Frontera, A.; Gamez, P.; Mascal, M.; Mooibroek, T.J.; Reedijk, J. Putting Anion–π Interactions into Perspective. Angew. Chem. Int. Ed. 2011, 50, 9564–9583. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.; Seth, S.K.; Mitra, M.; Choudhury, S.R.; Bauzá, A.; Frontera, A.; Mukhopadhyay, S. Experimental and Computational Study of Counterintuitive ClO4−···ClO4− Interactions and the Interplay between π+···π and Anion···π+ Interactions. Cryst. Growth Des. 2014, 14, 5812–5821. [Google Scholar] [CrossRef]
- Manna, P.; Seth, S.K.; Bauzá, A.; Mitra, M.; Choudhury, S.R.; Frontera, A.; Mukhopadhyay, S. pH Dependent Formation of Unprecedented Water–Bromide Cluster in the Bromide Salts of PTP Assisted by Anion···π Interactions: Synthesis, Structure, and DFT Study. Cryst. Growth Des. 2014, 14, 747–755. [Google Scholar] [CrossRef]
- Mitra, M.; Manna, P.; Bauzá, A.; Ballester, P.; Seth, S.K.; Choudhury, S.R.; Frontera, A.; Mukhopadhyay, S. 3-Picoline Mediated Self-Assembly of M(II)–Malonate Complexes (M = Ni/Co/Mn/Mg/Zn/Cu) Assisted by VariousWeak Forces Involving Lone Pair···π, π–π, and Anion···π–Hole Interactions. J. Phys. Chem. B 2014, 118, 14713–14726. [Google Scholar] [CrossRef] [PubMed]
- Seth, S.K.; Saha, I.; Estarellas, C.; Frontera, A.; Kar, T.; Mukhopadhyay, S. Supramolecular Self-Assembly of M-IDA Complexes Involving Lone-Pair···π Interactions: Crystal Structures, Hirshfeld Surface Analysis, and DFT Calculations [H2IDA = iminodiacetic acid, M = Cu(II), Ni(II)]. Cryst. Growth Des. 2011, 11, 3250–3265. [Google Scholar] [CrossRef]
- Manna, P.; Seth, S.K.; Das, A.; Hemming, J.; Prendergast, R.; Helliwell, M.; Choudhury, S.R.; Frontera, A.; Mukhopadhyay, S. Anion Induced Formation of Supramolecular Associations Involving Lone pair···π and Anion···π Interactions in Co(II) Malonate Complexes: Experimental Observations, Hirshfeld Surface Analyses and DFT Studies. Inorg. Chem. 2012, 51, 3557–3571. [Google Scholar] [CrossRef]
- Steed, J.W.; Turner, D.R.; Wallace, K.J. Core Concepts in Supramolecular Chemistry and Nanochemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2007; pp. 194–228. [Google Scholar]
- Bruker. SAINT, Version 6.36a; Bruker-AXS Inc.: Madison, WI, USA, 2002. [Google Scholar]
- Bruker. SMART, Version 5.625 and SADABS, Version 2.03a; Bruker AXS Inc.: Madison, WI, USA, 2001. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX suit for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838. [Google Scholar] [CrossRef]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 37, 3814–3816. [Google Scholar] [CrossRef]
- Seth, S.K.; Bauzá, A.; Frontera, A. Screening polymorphism in a NiIJII) metal–organic framework: Experimental observations, Hirshfeld surface analyses and DFT studies. CrystEngComm 2018, 20, 746–754. [Google Scholar] [CrossRef]
- Seth, S.K. Structural characterization and Hirshfeld surface analysis of a CoII complex with imidazo[1,2-a]-pyridine. Acta Crystallogr. E 2018, 74, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Seth, S.K.; Bauzá, A.; Mahmoudi, G.; Stilinović, V.; López-Torres, E.; Zaragoza, G.; Keramidas, A.D.; Frontera, A. On the importance of Pb⋯X (X = O, N, S, Br) tetrel bonding interactions in a series of tetra- and hexa-coordinated Pb(II) compounds. CrystEngComm 2018, 20, 5033–5044. [Google Scholar] [CrossRef]
- Spackman, M.A.; Byrom, P.G. A novel definition of a molecule in a crystal. Chem. Phys. Lett. 1997, 267, 215–220. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Mitchell, A.S.; Spackman, M.A. Hirshfeld Surfaces: A New Tool for Visualising and Exploring Molecular Crystals. Chem. Eur. J. 1998, 4, 2136–2141. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. B 2004, 60, 627–668. [Google Scholar] [CrossRef]
- Rohl, A.L.; Moret, M.; Kaminsky, W.; Claborn, K.; Mckinnon, J.J.; Kahr, B. Hirshfeld Surfaces Identify Inadequacies in Computations of Intermolecular Interactions in Crystals: Pentamorphic 1,8-Dihydroxyanthraquinone. Cryst. Growth Des. 2008, 8, 4517–4525. [Google Scholar] [CrossRef]
- Seth, S.K.; Sarkar, D.; Roy, A.; Kar, T. Insight into supramolecular self-assembly directed by weak interactions in acetophenone derivatives: Crystal structures and Hirshfeld surface analyses. CrystEngComm 2011, 13, 6728–6741. [Google Scholar] [CrossRef]
- Seth, S.K.; Sarkar, D.; Jana, A.D.; Kar, T. On the Possibility of Tuning Molecular Edges To Direct Supramolecular Self-Assembly in Coumarin Derivatives through Cooperative Weak Forces: Crystallographic and Hirshfeld Surface Analyses. Cryst. Growth Des. 2011, 11, 4837–4849. [Google Scholar] [CrossRef]
- Seth, S.K. Structural elucidation and contribution of intermolecular interactions in O-hydroxy acyl aromatics: Insights from X-ray and Hirshfeld surface analysis. J. Mol. Struct. 2014, 1064, 70–75. [Google Scholar] [CrossRef]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 3.1; University of Western Australia: Perth, Australia, 2007. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Nisa, R.U.; Ayub, K. Mechanism of Zn(OTf)2 catalyzed hydroamination–hydrogenation of alkynes with amines: Insight from theory. New J. Chem. 2017, 41, 5082–5090. [Google Scholar] [CrossRef]
- Mahmood, T.; Kosar, N.; Ayub, K. DFT study of acceleration of electrocyclization in photochromes under radical cationic conditions: Comparison with recent experimental data. Tetrahedron 2017, 73, 3521–3528. [Google Scholar] [CrossRef]
- Bibi, S.; Ullah, H.; Ahmad, S.M.; Ali Shah, A.-U.-H.; Bilal, S.; Tahir, A.A.; Ayub, K. Molecular and electronic structure elucidation of polypyrrole gas sensors. Phys. Chem. C 2015, 119, 15994–16003. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Keith, T.A. AIMAll, Version 13.05.06; TK Gristmill Software: Overland Park, KS, USA, 2013. [Google Scholar]
- Bader, R.F.W. Atoms in Molecules, a Quantum Theory; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hathaway, B.J.; Wilkinson, G.; Gillard, R.D.; McCleverty, J.A. (Eds.) Comprehensive Coordination Chemistry; Pergamon Press: Oxford, UK, 1987; Volume 5, Chapter 53; p. 612. [Google Scholar]
- Castiñeiras Campos, A.; Busnot, A.; Abarca García, M.E.; Sicilia Zafra, A.G.; González Pérez, J.M.; Niclós Gutiérrez, J. Mixed-ligand copper(II) complexes with iminodiacetato and 2- or 4-methylimidazole: Molecular and crystal structure of the ‘remote’ isomer iminodiacetato(5-methylimidazole)copper(II) monohydrate, [Cu(IDA)(5MeImH)]·H2O. Inorg. Chim. Acta 1994, 215, 73–78. [Google Scholar] [CrossRef]
- Castiñeiras Campos, A.; Sicilia Zafra, A.G.; González Pérez, J.M.; Niclós Gutiérrez, J.; Chinea, E.; Mederos, A. Mixed-ligand copper(II) complexes with N-methyl derivatives of iminodiacetato or imidazole: Crystal structures of (N-methyliminodiacetato) (imidazole) copper(II), [Cu(MIDA) (ImH)] and diaqua (iminodiacetato) (N-methyl-imidazole) copper(II) monohydrate, [Cu(IDA) (1MelmH) (H2O)2]·H2O. Inorg. Chim. Acta 1996, 241, 39–45. [Google Scholar]
- Castiñeiras, A.; Tercero, J.M.; Matilla, A.; González, J.M.; Sicilia, A.G.; Niclós, J. Structures and properties of copper(II) complexes with iminodiacetato and imidazole or related ligands. I. crystal structure of aqua(imidazole)(iminodiaceato)copper(II) monohydrate and (imidazole)(N-carboxymethyl-d,l-Threoninato)copper(II). J. Coord. Chem. 1995, 35, 61–72. [Google Scholar] [CrossRef]
- Dung, N.H.; Viossat, B.; Busnot, A.; González Pérez, J.M.; Niclós Gutiérrez, J.; Gardette, F. Additional contribution to the study of iminodiacetate (IDA) and imidazole (ImH) mixed-ligand copper(II) complexes; crystal structure of [Cu(IDA)(ImH)(CH3OH)]·0.37H2O. Inorg. Chim. Acta 1990, 174, 145–148. [Google Scholar]
Empirical formula | (C11H11CuN3O4)n |
Formula weight | 312.77 |
Temperature | 293(2) K |
Wavelength | 0.71073 Å |
Crystal system, space group | Monoclinic, P21 |
Unit cell dimensions | a = 8.178(3) Å; α = 90° b = 7.155(2) Å; β = 102.324(3)° c = 10.118(3) Å; γ = 90° |
Volume | 578.5(3) Å3 |
Z, Calculated density | 2, 1.796 Mg/m3 |
Absorption coefficient | 1.902 mm−1 |
F(000) | 318 |
Crystal size | 0.12 × 0.07 × 0.04 mm |
θ range for data collection | 2.060 to 24.998° |
Limiting indices | −9 ≤ h ≤ 9, −8 ≤ k ≤ 8, −11 ≤ l ≤ 12 |
Reflections collected/unique | 5093/1883 [R(int) = 0.0244] |
Completeness to θ | 100.0% |
Absorption correction | Semi-empirical from equivalents |
Max. and min. transmission | 0.93 and 0.85 |
Refinement method | Full-matrix least-squares on |F|2 |
Data/parameters | 1883/174 |
Goodness-of-fit on F2 | 1.092 |
Flack parameter | 0.051(18) |
Absolute structure parameter | 0.051(18) |
Extinction coefficient | 0.012(2) |
Final R indices [I > 2σ(I)] | R1 = 0.0186, wR2 = 0.0489 |
R indices (all data) | R1 = 0.0191, wR2 = 0.0496 |
Largest diff. peak and hole | 0.192 and −0.181 e·Å−3 |
D–H···A | D–H | H···A | D···A | D–H···A | Symmetry |
---|---|---|---|---|---|
N(1)–H(1)···O(1) | 0.98 | 2.05 | 2.910(4) | 146 | 2 − x, 1/2 + y, 1 − z |
C(2)–H(2B)···O(3) | 0.97 | 2.57 | 3.057(5) | 111 | 1 − x, 1/2 + y, 1 − z |
C(6)–H(6)···O(2) | 0.93 | 2.41 | 3.175(4) | 139 | x, y, 1 + z |
C(8)–H(8)···O(1) | 0.93 | 2.49 | 3.089(4) | 122 | --- |
C(8)–H(8)∙∙∙O(3) | 0.93 | 2.59 | 3.405(5) | 146 | 1 + x, y, z |
C(6)–H(6)∙∙∙Cg(4) | 0.93 | 2.94 | 3.424(4) | 114 | 2 − x, 1/2 + y, 2 − z |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seth, S.K. The Importance of CH···X (X = O, π) Interaction of a New Mixed Ligand Cu(II) Coordination Polymer: Structure, Hirshfeld Surface and Theoretical Studies. Crystals 2018, 8, 455. https://doi.org/10.3390/cryst8120455
Seth SK. The Importance of CH···X (X = O, π) Interaction of a New Mixed Ligand Cu(II) Coordination Polymer: Structure, Hirshfeld Surface and Theoretical Studies. Crystals. 2018; 8(12):455. https://doi.org/10.3390/cryst8120455
Chicago/Turabian StyleSeth, Saikat Kumar. 2018. "The Importance of CH···X (X = O, π) Interaction of a New Mixed Ligand Cu(II) Coordination Polymer: Structure, Hirshfeld Surface and Theoretical Studies" Crystals 8, no. 12: 455. https://doi.org/10.3390/cryst8120455
APA StyleSeth, S. K. (2018). The Importance of CH···X (X = O, π) Interaction of a New Mixed Ligand Cu(II) Coordination Polymer: Structure, Hirshfeld Surface and Theoretical Studies. Crystals, 8(12), 455. https://doi.org/10.3390/cryst8120455