A Graphene-Based Microfluidic Platform for Electrocrystallization and In Situ X-ray Diffraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Graphene Film Preparation
2.2. Device Architecture
2.3. Electrode Characterization
2.4. Redox Chemistry Testing
2.5. Protein Crystallization and X-ray Diffraction
3. Results and Discussion
4. Summary
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Al-Haq, M.I.; Lebrasseur, E.; Tsuchiya, H.; Torii, T. Protein crystallization under an electric field. Crystallogr. Rev. 2007, 13, 29–64. [Google Scholar] [CrossRef]
- Mirkin, N.; Moreno, A. Advances in crystal growth techniques of biological macromolecules. J. Mex. Chem. Soc. 2005, 49, 39–52. [Google Scholar]
- Frontana-Uribe, B.A.; Moreno, A. On electrochemically assisted protein crystallization and related methods. Cryst. Growth Des. 2008, 8, 4194–4199. [Google Scholar] [CrossRef]
- Hammadi, Z.; Veesler, S. New approaches on crystallization under electric fields. Prog. Biophys. Mol. Biol. 2010, 101, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Taleb, M.; Didierjean, C.; Jelsch, C.; Mangeot, J.P.; Capelle, B.; Aubry, A. Crystallization of proteins under an external electric field. J. Cryst. Growth 1999, 200, 575–582. [Google Scholar] [CrossRef]
- Pérez, Y.; Eid, D.; Acosta, F.; Marín-García, L.; Jakoncic, J.; Stojanoff, V.; Frontana-Uribe, B.A.; Moreno, A. Electrochemically assisted protein crystallization of commercial cytochrome c without previous purification. Cryst. Growth Des. 2008, 8, 2493–2496. [Google Scholar] [CrossRef]
- Gil-Alvaradejo, G.; Ruiz-Arellano, R.R.; Owen, C.; Rodríguez-Romero, A.; Rudiño-Piñera, E.; Antwi, M.K.; Stojanoff, V.; Moreno, A. Novel protein crystal growth electrochemical cell for applications in X-ray diffraction and atomic force microscopy. Cryst. Growth Des. 2011, 11, 3917–3922. [Google Scholar] [CrossRef]
- Koizumi, H.; Fujiwara, K.; Uda, S. Role of the electric double layer in controlling the nucleation rate for tetragonal hen egg white lysozyme crystals by application of an external electric field. Cryst. Growth Des. 2010, 10, 2591–2595. [Google Scholar] [CrossRef]
- Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. Control of effect on the nucleation rate for hen egg white lysozyme crystals under application of an external ac electric field. Langmuir 2011, 27, 8333–8338. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Xu, H.; Zhang, R.; Xu, J.; Tsukamoto, K.; Han, J.; Li, A. The influence of low frequency of external electric field on nucleation enhancement of hen egg-white lysozyme (HEWL). J. Cryst. Growth 2015, 428, 35–39. [Google Scholar] [CrossRef]
- Li, F.; Lakerveld, R. Influence of alternating electric fields on protein crystallization in microfluidic devices with patterned electrodes in a parallel-plate configuration. Cryst. Growth Des. 2017, 17, 3062–3070. [Google Scholar] [CrossRef]
- Hou, D.; Chang, H.-C. AC field enhanced protein crystallization. Appl. Phys. Lett. 2008, 92, 223902. [Google Scholar] [CrossRef]
- Flores-Hernandez, E.; Stojanoff, V.; Arreguin-Espinosa, R.; Moreno, A.; Sanchez-Puig, N. An electrically assisted device for protein crystallization in a vapor diffusion setup. J. Appl. Cryst. 2013, 46, 832–834. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Caballero, S.; Cuéllar-Cruz, M.; Demitri, N.; Polentarutti, M.; Rodríguez-Romero, A.; Moreno, A. Glucose isomerase polymorphs obtained using an ad hoc protein crystallization temperature device and a growth cell applying an electric field. Cryst. Growth Des. 2016, 16, 1679–1686. [Google Scholar] [CrossRef]
- Taleb, M.; Didierjean, C.; Jelsch, C.; Mangeot, J.P.; Aubry, A. Equilibrium kinetics of lysozyme crystallization under an external electric field. J. Cryst. Growth 2001, 232, 250–255. [Google Scholar] [CrossRef]
- Pareja-Rivera, C.; Cuéllar-Cruz, M.; Esturau-Escofet, N.; Demitri, N.; Polentarutti, M.; Stojanoff, V.; Moreno, A. Recent advances in the understanding of the influence of electric and magnetic fields on protein crystal growth. Cryst. Growth Des. 2017, 17, 135–145. [Google Scholar] [CrossRef]
- Al-Haq, M.I.; Lebrasseur, E.; Choi, W.-K.; Tsuchiya, H.; Torii, T.; Yamazaki, H.; Shinohara, E. An apparatus for electric-field-induced protein crystallization. J. Appl. Cryst. 2007, 40, 199–201. [Google Scholar] [CrossRef]
- Koizumi, H.; Uda, S.; Fujiwara, K.; Tachibana, M.; Kojima, K.; Nozawa, J. Crystallization of high-quality protein crystals using an external electric field. J. Appl. Cryst. 2015, 48, 1507–1513. [Google Scholar] [CrossRef]
- Espinoza-Montero, P.J.; Moreno-Narváez, M.E.; Frontana-Uribe, B.A.; Stojanoff, V.; Moreno, A. Investigations on the use of graphite electrodes using a hull-type growth cell for electrochemically assisted protein crystallization. Cryst. Growth Des. 2013, 13, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Sazaki, G.; Moreno, A.; Nakajima, K. Novel coupling effects of the magnetic and electric fields on protein crystallization. J. Cryst. Growth 2004, 262, 499–502. [Google Scholar] [CrossRef]
- Mirkin, N.; Frontana-Uribe, B.A.; Rodriguez-Romero, A.; Hernandez-Santoyo, A.; Moreno, A. The influence of an internal electric field upon protein crystallization using the gel-acupuncture method. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003, 59, 1533–1538. [Google Scholar] [CrossRef]
- Nieto-Mendoza, E.; Frontana-Uribe, B.A.; Sazaki, G.; Moreno, A. Investigations on electromigration phenomena for protein crystallization using crystal growth cells with multiple electrodes: Effect of the potential control. J. Cryst. Growth 2005, 275, e1437–e1446. [Google Scholar] [CrossRef]
- Nanev, C.N.; Penkova, A. Nucleation of lysozyme crystals under external electric and ultrasonic fields. J. Cryst. Growth 2001, 232, 285–293. [Google Scholar] [CrossRef]
- Sui, S.; Perry, S.L. Microfluidics: From crystallization to serial time-resolved crystallography. Struct. Dyn. 2017, 4, 032202. [Google Scholar] [CrossRef]
- Ghazal, A.; Lafleur, J.P.; Mortensen, K.; Kutter, J.P.; Arleth, L.; Jensen, G.V. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences. Lab Chip 2016, 16, 4263–4295. [Google Scholar] [CrossRef] [PubMed]
- Sauter, C.; Dhouib, K.; Lorber, B. from macrofluidics to microfluidics for the crystallization of biological macromolecules. Cryst. Growth Des. 2007, 7, 2247–2250. [Google Scholar] [CrossRef]
- Chavas, L.M.G.; Gumprecht, L.; Chapman, H.N. Possibilities for serial femtosecond crystallography sample delivery at future light sources. Struct. Dyn. 2015, 2, 041709. [Google Scholar] [CrossRef] [PubMed]
- Weierstall, U. Liquid sample delivery techniques for serial femtosecond crystallography. Philos. Trans. R. Soc. B 2014, 369, 20130337. [Google Scholar] [CrossRef] [PubMed]
- Guha, S.; Perry, S.L.; Pawate, A.S.; Kenis, P.J.A. Fabrication of X-ray compatible microfluidic platforms for protein crystallization. Sens. Actuators B 2012, 174, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.L.; Guha, S.; Pawate, A.S.; Bhaskarla, A.; Agarwal, V.; Nair, S.K.; Kenis, P.J.A. A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. Lab Chip 2013, 13, 3183–3187. [Google Scholar] [CrossRef] [PubMed]
- Heymann, M.; Opthalage, A.; Wierman, J.L.; Akella, S.; Szebenyi, D.M.; Gruner, S.M.; Fraden, S. Room-Temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. IUCrJ 2014, 1, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Kisselman, G.; Qiu, W.; Romanov, V.; Thompson, C.M.; Lam, R.; Battaile, K.P.; Pai, E.F.; Chirgadze, N.Y. X-CHIP: An integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Chirgadze, N.Y.; Kisselman, G.; Qiu, W.; Romanov, V.; Thompson, C.M.; Lam, R.; Battaile, K.P.; Pai, E.F. X-CHIP: An integrated platform for high-throughput protein crystallography. In Recent Advances in Crystallography; Benedict, J.B., Ed.; InTech: Vienna, Austria, 2012; pp. 87–96. [Google Scholar]
- Hunter, M.S.; Segelke, B.; Messerschmidt, M.; Williams, G.J.; Zatsepin, N.A.; Barty, A.; Benner, W.H.; Carlson, D.B.; Coleman, M.; Graf, A.; et al. Fixed-Target protein serial microcrystallography with an X-ray free electron laser. Sci. Rep. 2014, 4, 6026. [Google Scholar] [CrossRef] [PubMed]
- Feld, G.K.; Heymann, M.; Benner, W.H.; Pardini, T.; Tsai, C.-J.; Boutet, S.; Coleman, M.A.; Hunter, M.S.; Li, X.; Messerschmidt, M.; et al. Low-Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography. J. Appl. Cryst. 2015, 48, 1072–1079. [Google Scholar] [CrossRef]
- Baxter, E.L.; Aguila, L.; Alonso-Mori, R.; Barnes, C.O.; Bonagura, C.A.; Brehmer, W.; Brunger, A.T.; Calero, G.; Caradoc-Davies, T.T.; Chatterjee, R.; et al. High-Density grids for efficient data collection from multiple crystals. Acta Crystallogr. Sect. D Biol. Crystallogr. 2016, 72, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Lyubimov, A.Y.; Murray, T.D.; Koehl, A.; Araci, I.E.; Uervirojnangkoorn, M.; Zeldin, O.B.; Cohen, A.E.; Soltis, S.M.; Baxter, E.L.; Brewster, A.S.; et al. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 928–940. [Google Scholar] [CrossRef] [PubMed]
- Roedig, P.; Vartiainen, I.; Duman, R.; Panneerselvam, S.; Stübe, N.; Lorbeer, O.; Warmer, M.; Sutton, G.; Stuart, D.I.; Weckert, E.; et al. A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci. Rep. 2015, 5, 10451. [Google Scholar] [CrossRef] [PubMed]
- Dhouib, K.; Malek, C.K.; Pfleging, W.; Gauthier-Manuel, B.; Duffait, R.; Thuillier, G.; Ferrigno, R.; Jacquamet, L.; Ohana, J.; Ferrer, J.-L.; et al. Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab Chip 2009, 9, 1412–1421. [Google Scholar] [CrossRef] [PubMed]
- Pinker, F.; Brun, M.; Morin, P.; Deman, A.-L.; Chateaux, J.-F.; Olieric, V.; Stirnimann, C.; Lorber, B.; Terrier, N.; Ferrigno, R.; et al. ChipX: A novel microfluidic chip for counter-diffusion crystallization of biomolecules and in situ crystal analysis at room temperature. Cryst. Growth Des. 2013, 13, 3333–3340. [Google Scholar] [CrossRef]
- Emamzadah, S.; Petty, T.J.; De Almeida, V.; Nishimura, T.; Joly, J.; Ferrer, J.-L.; Halazonetis, T.D. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-Y.; Olieric, V.; Ma, P.; Howe, N.; Vogeley, L.; Liu, X.; Warshamanage, R.; Weinert, T.; Panepucci, E.; Kobilka, B.; et al. In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallogr. Sect. D Biol. Crystallogr. 2016, 72, 93–112. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-Y.; Olieric, V.; Ma, P.; Panepucci, E.; Diederichs, K.; Wang, M.; Caffrey, M. In meso in situ serial X-ray crystallography of soluble and membrane proteins. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 1238–1256. [Google Scholar] [CrossRef] [PubMed]
- Axford, D.; Aller, P.; Sanchez-Weatherby, J.; Sandy, J. Applications of thin-film sandwich crystallization platforms. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2016, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Sui, S.; Wang, Y.; Kolewe, K.W.; Srajer, V.; Henning, R.; Schiffman, J.D.; Dimitrakopoulos, C.; Perry, S.L. Graphene-Based microfluidics for serial crystallography. Lab Chip 2016, 16, 3082–3096. [Google Scholar] [CrossRef] [PubMed]
- Avouris, P. Graphene: Electronic and photonic properties and devices. Nano Lett. 2010, 10, 4285–4294. [Google Scholar] [CrossRef] [PubMed]
- Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and applications. Mater. Today 2012, 15, 86–97. [Google Scholar] [CrossRef]
- Wirtz, C.; Berner, N.C.; Duesberg, G.S. Large-Scale diffusion barriers from CVD grown graphene. Adv. Mater. Interfaces 2015, 2, 1500082. [Google Scholar] [CrossRef]
- Kim, H.W.; Yoon, H.W.; Yoon, S.-M.; Yoo, B.M.; Ahn, B.K.; Cho, Y.H.; Shin, H.J.; Yang, H.; Paik, U.; Kwon, S.; et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 2013, 342, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R.D.; Colombo, L.; Ruoff, R.S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363. [Google Scholar] [CrossRef] [PubMed]
- Bird, C.L.; Kuhn, A.T. Electrochemistry of the viologens. Chem. Soc. Rev. 1981, 10, 49–82. [Google Scholar] [CrossRef]
- Aristov, N.; Habekost, A. Electrochromism of methylviologen (paraquat). World J. Chem. Educ. 2015, 3, 82–86. [Google Scholar] [CrossRef]
- Heyrovský, M. The electroreduction of methyl viologen. J. Chem. Soc. Chem. Commun. 1987, 1856–1857. [Google Scholar] [CrossRef]
- Chayen, N.E.; Shaw Stewart, P.D.; Blow, D.M. Microbatch crystallization under oil—A new technique allowing many small-volume crystallization trials. J. Cryst. Growth 1992, 122, 176–180. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
Parameter | 0 V | 1.2 V | 1.8 V |
---|---|---|---|
Data Collection | |||
Total # Frames | 50 | 55 | 90 |
Resolution (Å) | 50–1.95 (1.98–1.95) | 50–1.95 (1.98–1.95) | 50–1.95 (1.98–1.95) |
Space Group | P43212 | P43212 | P43212 |
Unit Cell (Å) | a = b = 79.35, c = 37.99 | a = b = 79.23, c = 38.09 | a = b = 78.92, c = 38.19 |
Single Reflections | |||
Total Obs. | 31,372 | 34,440 | 55,551 |
Unique Obs. | 7086 | 8817 | 9053 |
Redundancy | 4.4 (3.4) | 3.9 (3.2) | 6.1 (5.1) |
Rmeas a | 0.069 (0.399) | 0.052 (0.202) | 0.076 (0.255) |
Rpim b | 0.031 (0.206) | 0.025 (0.105) | 0.031 (0.112) |
CC1/2 c | 0.971 (0.883) | 0.990 (0.961) | 0.951 (0.890) |
<I/σ(I)> | 22.69 (3.39) | 33.24 (7.89) | 36.98 (9.21) |
Completeness (%) | 76.0 (82.4) | 94.6 (95.4) | 97.5 (97.1) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, S.; Wang, Y.; Dimitrakopoulos, C.; Perry, S.L. A Graphene-Based Microfluidic Platform for Electrocrystallization and In Situ X-ray Diffraction. Crystals 2018, 8, 76. https://doi.org/10.3390/cryst8020076
Sui S, Wang Y, Dimitrakopoulos C, Perry SL. A Graphene-Based Microfluidic Platform for Electrocrystallization and In Situ X-ray Diffraction. Crystals. 2018; 8(2):76. https://doi.org/10.3390/cryst8020076
Chicago/Turabian StyleSui, Shuo, Yuxi Wang, Christos Dimitrakopoulos, and Sarah L. Perry. 2018. "A Graphene-Based Microfluidic Platform for Electrocrystallization and In Situ X-ray Diffraction" Crystals 8, no. 2: 76. https://doi.org/10.3390/cryst8020076
APA StyleSui, S., Wang, Y., Dimitrakopoulos, C., & Perry, S. L. (2018). A Graphene-Based Microfluidic Platform for Electrocrystallization and In Situ X-ray Diffraction. Crystals, 8(2), 76. https://doi.org/10.3390/cryst8020076