A New Family of Heterometallic LnIII[12-MCFeIIIN(shi)-4] Complexes: Syntheses, Structures and Magnetic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical Methods
2.3. Syntheses
2.3.1. (C5H6N)[EuFe4(shi)4(C6H5COO)4(Py)4]·3.5Py (1)
2.3.2. (C5H6N)[GdFe4(shi)4(C6H5COO)4(Py)4]·3.5Py (2)
2.3.3. (C5H6N)[TbFe4(shi)4(C6H5COO)4(Py)4]·3.5Py (3)
2.3.4. (C5H6N)[DyFe4(shi)4(C6H5COO)4(Py)4]·3.5Py (4)
2.4. X-ray Crystallography
3. Results and Dissucion
3.1. Description of Crystal Structures
3.2. Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2016, 113, 5110–5148. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Shi, W.; Cheng, P. Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d–4f discrete complexes. Coord. Chem. Rev. 2015, 289–290, 74–122. [Google Scholar] [CrossRef]
- Feltham, H.L.C.; Brooker, S. Review of purely 4f and mixed-metal nd-4f single-molecule magnets containing only one lanthanide ion. Coord. Chem. Rev. 2014, 276, 1–33. [Google Scholar] [CrossRef]
- Gatteschi, D.; Sessoli, R. Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials. Angew. Chem. Int. Ed. 2003, 42, 268–297. [Google Scholar] [CrossRef] [PubMed]
- Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M.A. Magnetic bistability in a metal-ion cluster. Nature 1993, 365, 141–143. [Google Scholar] [CrossRef]
- Guo, Y.N.; Xu, G.F.; Guo, Y.; Tang, J. Relaxation dynamics of dysprosium(III) single molecule magnets. Dalton Trans 2011, 40, 9953–9963. [Google Scholar] [CrossRef] [PubMed]
- Blagg, R.J.; Tuna, F.; McInnes, E.J.L.; Winpenny, R.E.P. Pentametallic lanthanide-alkoxide square-based pyramids: High energy barrier for thermal relaxation in a holmium single molecule magnet. Chem. Commun. 2011, 47, 10587–10589. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.F.; Langley, S.K.; Moubaraki, B.; Soncini, A.; Batten, S.R.; Murray, K.S. Single molecule magnetism in a family of mononuclear β-diketonate lanthanide(III) complexes: Rationalization of magnetic anisotropy in complexes of low symmetry. Chem. Sci. 2013, 4, 1719–1730. [Google Scholar] [CrossRef]
- Zheng, Y.Z.; Zhou, G.J.; Zheng, Z.; Winpenny, R.E.P. Molecule-based magnetic coolers. Chem. Soc. Rev. 2014, 43, 1462–1475. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.F.; Guo, Y.N.; Zhao, L.; Zhang, H.X.; Tang, J.K. Molecular Magnetic Investigation of a Family of Octanuclear [Cu6Ln2] Nanoclusters. Inorg. Chem. 2014, 53, 8165–8171. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.F.; Li, X.L.; Guo, M.; Zhao, L.; Zhang, Y.Q.; Tang, J.K. Realization of toroidal magnetic moments in heterometallic 3d–4f metallocycles. Chem. Commun. 2018, 54, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, L.; Zhang, P.; Wang, C.; Yuan, S.W.; Tang, J.K. Nanoscale {LnIII24ZnII6} Triangular Metalloring with Magnetic Refrigerant, Slow Magnetic Relaxation, and Fluorescent Properties. Inorg. Chem. 2015, 54, 11535–11541. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.F.; Zhao, L.; Zhang, L.; Li, X.L.; Guo, M.; Tang, J.K. Metallosupramolecular Coordination Complexes: The Design of Heterometallic 3d–4f Gridlike Structures. Inorg. Chem. 2016, 55, 5514–5519. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.F.; Zhao, L.; Guo, Y.N.; Yu, G.M.; Guo, Y.; Tang, J.K.; Li, Y.H. A dodecanuclear heterometallic dysprosium–cobalt wheel exhibiting single-molecule magnet behavior. Chem. Commun. 2011, 47, 8659–8661. [Google Scholar] [CrossRef]
- Baniodeh, A.; Lan, Y.; Novitchi, G.; Mereacre, V.; Sukhanov, A.; Ferbinteanu, M.; Voronkova, V.; Anson, C.E.; Powell, A.K. Magnetic anisotropy and exchange coupling in a family of isostructural FeIII2LnIII2 complexes. Dalton Trans. 2013, 42, 8926–8938. [Google Scholar] [CrossRef] [PubMed]
- Bartolomé, J.; Filoti, G.; Kuncser, V.; Schinteie, G.; Mereacre, V.; Anson, C.E.; Powell, A.K.; Prodius, D.; Turta, C. Magnetostructural correlations in the tetranuclear series of {Fe3LnO2} butterfly core clusters: Magnetic and Mössbauer spectroscopic study. Phys. Rev. B: Condens. Matter. 2009, 80, 1–16. [Google Scholar] [CrossRef]
- Singh, N.; Gupta, S.D.; Butcher, R.J.; Christou, G. Synthesis and magnetochemistry of heterometallic triangular FeIII2LnIII (Ln = La, Gd, Tb, Dy, and Ho) and FeIII2YIII complexes. Dalton Trans. 2017, 46, 7897–7903. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Mereacre, V.; Anson, C.E.; Powell, A.K. A single molecule magnet to single molecule magnet transformation via a solvothermal process: Fe4Dy2 → Fe6Dy3. Dalton Trans. 2016, 45, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Baniodeh, A.; Anson, C.E.; Powell, A.K. Ringing the changes in FeIII/YbIII cyclic coordination clusters. Chem. Sci. 2013, 4, 4354–4361. [Google Scholar] [CrossRef]
- Schmidt, S.; Prodius, D.; Novitchi, G.; Mereacre, V.; Kostakis, G.E.; Powell, A.K. Ferromagnetic heteronuclear {Fe4(Er,Lu)2} cyclic coordination clusters based on ferric wheels. Chem. Commun. 2012, 48, 9825–9827. [Google Scholar] [CrossRef] [PubMed]
- Mezei, G.; Zaleski, C.M.; Pecoraro, V.L. Structural and Functional Evolution of Metallacrowns. Chem. Rev. 2007, 107, 4933–5003. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska, M.; Fritsky, I.O.; Gumienna-Kontecka, E.; Pavlishchuk, A.V. Metallacrown-based compounds: Applications in catalysis, luminescence, molecular magnetism, and adsorption. Coord. Chem. Rev. 2016, 327, 304–332. [Google Scholar] [CrossRef]
- Pecoraro, V.L. Structural characterization of [VO(salicylhydroximate)(CH3OH)]3: Applications to the biological chemistry of vanadium(V). Inorg. Chim. Acta. 1989, 155, 171–173. [Google Scholar] [CrossRef]
- Chow, C.Y.; Guillot, R.; Rivière, E.; Kampf, J.W.; Mallah, T.; Pecoraro, V.L. Synthesis and Magnetic Characterization of Fe(III)-Based 9-Metallacrown-3 Complexes Which Exhibit Magnetorefrigerant Properties. Inorg. Chem. 2016, 55, 10238–10247. [Google Scholar] [CrossRef] [PubMed]
- Flamourakis, A.G.; Kalofolias, D.A.; Siczek, M.; Lis, T.; Brechin, E.K.; Milios, C.J. New members of the [Mn6/oxime] family and analogues with converging [Mn3] planes. J. Coord. Chem. 2016, 69, 826–840. [Google Scholar] [CrossRef]
- Kessissoglou, D.P.; Bodwi, J.J.; Kampf, J.; Samara, C.D.; Pecoraro, V.L. Pseudohalide complexation by manganese 12-metallacrowns-4 complexes. Inorg. Chim. Acta 2002, 331, 73–80. [Google Scholar] [CrossRef]
- Seda, S.H.; Janczak, J.; Lisowski, J.I. Synthesis and reactivity of copper(II) metallacrowns with (S)-phenylalanine and 2-picolinehydroxamic acids. Inorg. Chim. Acta 2006, 359, 1055–1063. [Google Scholar] [CrossRef]
- Samara, C.D.; Alevizopoulou, L.; Iordanidis, L.; Samaras, E.; Kessissoglou, D.P. 15-MC-5 manganese metallacrowns hosting herbicide complexes. Structure and bioactivity. J. Inorg. Biochem. 2002, 89, 89–96. [Google Scholar] [CrossRef]
- Kremlev, K.V.; Samsonov, M.A.; Zabrodina, G.S.; Arapova, A.V.; Yunin, P.A.; Tatarsky, D.A.; Plyusnin, P.E.; Katkova, M.A.; Ketkov, S.Y. Copper(II)–cerium(III) 15-metallacrown-5 based on glycinehydroxamic acid as a new precursor for heterobimetallic composite materials on carbon nanotubes. Polyhedron 2016, 114, 96–100. [Google Scholar] [CrossRef]
- Meng, Y.X.; Yang, H.; Li, D.C.; Zeng, S.Y.; Chen, G.F.; Li, S.L.; Dou, J.M. Synthesis, crystal structure, DNA-binding and magnetism of copper 15-metallacrown-5 complexes based on glycinehydroxamic acid ligand. RSC Adv. 2016, 6, 47196–47202. [Google Scholar] [CrossRef]
- Jankolovits, J.; Kampf, J.W.; Pecoraro, V.L. Solvent Dependent Assembly of Lanthanide Metallacrowns Using Building Blocks with Incompatible Symmetry Preferences. Inorg. Chem. 2014, 53, 7534–7546. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.Z.; Wu, S.X.; Jin, L.F.; Wu, L.M.; Zhang, J. Esterification of the ligand: Synthesis, characterization and crystal structure of a iron(III) 18-metallacrown-6 complex with methyl 4-(5′-chlorosalicylhydrazinocarbonyl) butyrate. Inorg. Chim. Acta 2012, 383, 20–25. [Google Scholar] [CrossRef]
- Shu, T.P.; Wen, J.L.; Feng, H.M.; Lei, K.W.; Liang, H.Z. Synthesis, structural characterization and magnetic properties of a novel metallacrown [Fe6(amshz)6(C3H7NO)6]·6CH3OH. Solid State Sci. 2009, 11, 2180–2183. [Google Scholar] [CrossRef]
- Yang, W.; Yang, H.; Zeng, S.Y.; Li, D.C.; Dou, J.M. Unprecedented family of heterometallic LnIII[18-metallacrown-6] complexes: Syntheses, structures, and magnetic properties. Dalton Trans. 2017, 46, 13027–13034. [Google Scholar] [CrossRef] [PubMed]
- Phonsri, W.; Martinez, V.; Davies, C.G.; Jameson, G.N.L.; Moubaraki, B.; Murray, K.S. Ligand effects in a heteroleptic bis-tridentate iron(III) spin crossover complex showing a very high T1/2 value. Chem. Commun. 2016, 52, 1443–1446. [Google Scholar] [CrossRef] [PubMed]
- Zadrozny, J.M.; Graham, M.J.; Krzyaniak, M.D.; Wasielewski, M.R.; Freedman, D.E. Unexpected suppression of spin–lattice relaxationvia high magnetic field in a high-spin iron(III) complex. Chem. Commun. 2016, 52, 10175–10178. [Google Scholar] [CrossRef] [PubMed]
- Phonsri, W.; Harding, P.; Liu, L.; Telfer, S.G.; Murray, K.S.; Moubaraki, B.; Ross, T.M.; Jameson, G.N.L.; Harding, D.J. Solvent modified spin crossover in an iron(III) complex: Phase changes and an exceptionally wide hysteresis. Chem. Sci. 2017, 8, 3949–3959. [Google Scholar] [CrossRef] [PubMed]
- Thorarinsdottir, A.E.; Gaudette, A.I.; Harris, T.D. Spin-crossover and high-spin iron(II) complexes as chemical shift 19F magnetic resonance thermometers. Chem. Sci. 2017, 8, 2448–2456. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Fundam. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Hayes, P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Noureddine, M.; Salem, S.; Slim, E.; Tadeusz, L.; Houcine, N. Experimental and DFT characterization of the organic–inorganic monohydrated Co(II) complex with 2,6-diaminopyridine ligand, (C5H8N3)2[CoBr4]·H2O. J. Mol. Struct. 2016, 1105, 16–24. [Google Scholar] [CrossRef]
- Jin, Z.M.; Pan, Y.J.; Xu, D.J.; Xu, Y.Z. The 1:1 complex of 4-nitrophenol and 4-methylpyridine. Acta Cryst. 2000, 56, 69–70. [Google Scholar] [CrossRef]
- Haddad, S.F.; Al-Far, R.H. 2,6-Diaminopyridinium bromide monohydrate. Acta Cryst. 2003, 59, 1444–1446. [Google Scholar] [CrossRef]
- Chow, C.Y.; Eliseeva, S.V.; Trivedi, E.R.; Nguyen, T.N.; Kampf, J.W.; Petoud, S.; Pecoraro, V.L. Ga3+/Ln3+ Metallacrowns: A Promising Family of Highly Luminescent Lanthanide Complexes That Covers Visible and Near-Infrared Domains. J. Am. Chem. Soc. 2016, 138, 5100–5109. [Google Scholar] [CrossRef] [PubMed]
- Azar, M.R.; Boron, T.T.; Lutter, J.C.; Daly, C.I.; Zegalia, K.A.; Nimthong, R.; Ferrence, G.M.; Zeller, M.; Kampf, J.W.; Pecoraro, V.L.; et al. Controllable Formation of Heterotrimetallic Coordination Compounds: Systematically Incorporating Lanthanide and Alkali Metal Ions into the Manganese 12-Metallacrown-4 Framework. Inorg. Chem. 2014, 53, 1729–1742. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.H.; Zhang, L.P.; Jin, L.P.; Gao, S.; Lu, S.Z. High-Dimensional Architectures from the Self-Assembly of Lanthanide Ions with Benzenedicarboxylates and 1,10-Phenanthroline. Inorg. Chem. 2003, 42, 4985–4994. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Xu, G.F.; Zhao, L.; Guo, Y.N.; Guo, Y.; Tang, J. Observation of slow magnetic relaxation intriple-stranded lanthanide helicates. Dalton Trans. 2011, 40, 8213–8217. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | 4 | |
---|---|---|---|---|
Empirical formula | C98.5H79.5Fe4 N12.5O20Eu | C98.5H79.5Fe4 N12.5O20Gd | C98.5H79.5Fe4 N12.5O20Tb | C98.5H79.5Fe4 N12.5O20Dy |
Formula weight | 2133.60 | 2138.89 | 2140.57 | 2144.15 |
T(K) | 298(2) | 298(2) | 298(2) | 298(2) |
Crystal system | Monoclinic | Monoclinic | Monoclinic | Monoclinic |
Space group | P2(1)/n | P2(1)/n | P2(1)/n | P2(1)/n |
a(Å) | 14.3022(13) | 14.2222(13) | 14.2903(13) | 14.3011(13) |
b(Å) | 34.152(3) | 33.248(3) | 34.258(3) | 34.231(3) |
c(Å) | 19.4743(17) | 19.3213(17) | 19.4615(16) | 19.5141(17) |
α(°) | 90 | 90 | 90 | 90 |
β(°) | 106.772(2) | 105.913(3) | 106.756(3) | 106.873(3) |
γ(°) | 90 | 90 | 90 | 90 |
V(Å3) | 9107.6(14) | 8786.0(13) | 9123.1(14) | 9141.7(14) |
Z | 4 | 4 | 4 | 4 |
Dc (Mg·m−3) | 1.556 | 1.617 | 1.558 | 1.558 |
μ (mm−1) | 1.381 | 1.472 | 1.466 | 1.507 |
Data/parameters | 16,024/10,074 | 15,469/10,476 | 16,064/10,256 | 16,090/10,256 |
Rint | 0.0647 | 0.0664 | 0.0675 | 0.0724 |
GOOF (F2) | 1.020 | 1.082 | 1.067 | 1.047 |
R1 [I > 2σ(I)] | 0.0594 | 0.0681 | 0.0677 | 0.0706 |
wR2 (all data) | 0.1046 | 0.1514 | 0.1513 | 0.1846 |
Compound | LnIII-OoxMP distance (Å) | LnIII-FeMP distance (Å) |
---|---|---|
Fe4Eu (1) | 1.3943 (3) | 1.7826 (3) |
Fe4Gd (2) | 1.3875 (4) | 1.7728 (4) |
Fe4Tb (3) | 1.3867 (4) | 1.7589 (4) |
Fe4Dy (4) | 1.3864 (4) | 1.7505 (4) |
Compound | Expected | Measured | Measured |
---|---|---|---|
spin only | value | value | |
value | at 300 K | at 1.8 K | |
(cm3 mol−1 K) | (cm3 mol−1 K) | (cm3 mol−1 K) | |
Fe4Eu (1) | 19 | 16.2 | 0.18 |
Fe4Gd (2) | 25.21 | 21.27 | 7.9 |
Fe4Tb (3) | 29.15 | 26.01 | 8.62 |
Fe4Dy (4) | 31.5 | 29.22 | 11.01 |
Complex 4 | ||
---|---|---|
Frequency | ∆Eeff/kB | τ0 |
(Hz) | (k) | (s) |
100 | 4.54 | 17.4 × 10−6 |
320 | 4.49 | 9.10 × 10−6 |
770 | 4.55 | 4.64 × 10−6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, T.; Yang, H.; Zeng, S.; Li, D.; Dou, J. A New Family of Heterometallic LnIII[12-MCFeIIIN(shi)-4] Complexes: Syntheses, Structures and Magnetic Properties. Crystals 2018, 8, 229. https://doi.org/10.3390/cryst8050229
Lou T, Yang H, Zeng S, Li D, Dou J. A New Family of Heterometallic LnIII[12-MCFeIIIN(shi)-4] Complexes: Syntheses, Structures and Magnetic Properties. Crystals. 2018; 8(5):229. https://doi.org/10.3390/cryst8050229
Chicago/Turabian StyleLou, Tingting, Hua Yang, Suyuan Zeng, Dacheng Li, and Jianmin Dou. 2018. "A New Family of Heterometallic LnIII[12-MCFeIIIN(shi)-4] Complexes: Syntheses, Structures and Magnetic Properties" Crystals 8, no. 5: 229. https://doi.org/10.3390/cryst8050229
APA StyleLou, T., Yang, H., Zeng, S., Li, D., & Dou, J. (2018). A New Family of Heterometallic LnIII[12-MCFeIIIN(shi)-4] Complexes: Syntheses, Structures and Magnetic Properties. Crystals, 8(5), 229. https://doi.org/10.3390/cryst8050229