Modulating and Orienting an Anisotropic Zn-Based Metal Organic Framework for Selective CH4/CO2 Gas Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of [Zn2(NDC)2(DABCO)]n MOFs
2.3. Characterization
2.4. CO2 and CH4 Kinetic and Equilibrium Experiments
2.5. Solution Shearing of [Zn2(NDC)2(DABCO)]n Particles
3. Results and Discussion
3.1. Characterization of Modulated [Zn2(NDC)2(DABCO)]n
3.2. Adsorption Isotherms
3.3. Surface Pore Aperture and CO2/CH4 Kinetic Selectivity
3.4. Orientation of [Zn2(NDC)2(DABCO)]n Particle Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kertik, A.; Wee, L.H.; Pfannmöller, M.; Bals, S.; Martens, J.A.; Vankelecom, I.F.J. Highly selective gas separation membrane using in situ amorphised metal-organic frameworks. Energy Environ. Sci. 2017, 10, 2342–2351. [Google Scholar] [CrossRef]
- Suleman, M.S.; Lau, K.K.; Yeong, Y.F. Plasticization and Swelling in Polymeric Membranes in CO2 Removal from Natural Gas. Chem. Eng. Technol. 2016, 39, 1604–1616. [Google Scholar] [CrossRef]
- Rangnekar, N.; Mittal, N.; Elyassi, B.; Caro, J.; Tsapatsis, M. Zeolite membranes—A review and comparison with MOFs. Chem. Soc. Rev. 2015, 44, 7128–7154. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Kuppler, R.J.; Zhou, H.C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; et al. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2018, 30, 1704303. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, Q.-L.; Zou, R.; Xu, Q. Metal-Organic Frameworks for Energy Applications. Chem 2017, 2, 52–80. [Google Scholar] [CrossRef]
- Al Haydar, M.; Abid, H.R.; Sunderland, B.; Wang, S. Metal organic frameworks as a drug delivery system for flurbiprofen. Drug Des. Dev. Ther. 2017, 11, 2685–2695. [Google Scholar] [CrossRef] [Green Version]
- Worrall, S.D.; Bissett, M.A.; Hirunpinyopas, W.; Attfield, M.P.; Dryfe, R.A.W. Facile fabrication of metal–organic framework HKUST-1-based rewritable data storage devices. J. Mater. Chem. C 2016, 4, 8687–8695. [Google Scholar] [CrossRef] [Green Version]
- Farha, O.K.; Eryazici, I.; Jeong, N.C.; Hauser, B.G.; Wilmer, C.E.; Sarjeant, A.A.; Snurr, R.Q.; Nguyen, S.T.; Yazaydın, A.Ö.; Hupp, J.T. Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc. 2012, 134, 15016–15021. [Google Scholar] [CrossRef]
- Gangu, K.K.; Maddila, S.; Mukkamala, S.B.; Jonnalagadda, S.B. A review on contemporary Metal-Organic Framework materials. Inorg. Chim. Acta 2016, 446, 61–74. [Google Scholar] [CrossRef]
- Bétard, A.; Bux, H.; Henke, S.; Zacher, D.; Caro, J.; Fischer, R.A. Fabrication of a CO2-selective membrane by stepwise liquid-phase deposition of an alkylether functionalized pillared-layered metal-organic framework [Cu2L2P]n on a macroporous support. Microporous Mesoporous Mater. 2012, 150, 76–82. [Google Scholar] [CrossRef]
- Ismail, A.F.; Khulbe, K.C.; Matsuura, T. Gas Separation Membrane Materials and Structures. In Gas Separation Membranes: Polymeric and Inorganic; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Hu, Z.; Castano, I.; Wang, S.; Wang, Y.; Peng, Y.; Qian, Y.; Chi, C.; Wang, X.; Zhao, D. Modulator Effects on the Water-Based Synthesis of Zr/Hf Metal–Organic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. Cryst. Growth Des. 2016, 16, 2295–2301. [Google Scholar] [CrossRef]
- Sakata, Y.; Furukawa, S.; Kim, C.; Kitagawa, S. Formation of Nanocrystals of a Zinc Pillared-layer Porous Coordination Polymer Using Microwave-assisted Coordination Modulation. Chem. Lett. 2012, 41, 1436–1438. [Google Scholar] [CrossRef] [Green Version]
- Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth. Angew. Chem. Int. Ed. 2009, 48, 4739–4743. [Google Scholar] [CrossRef] [PubMed]
- Masoomi, M.Y.; Beheshti, S.; Morsali, A. Shape Control of Zn (II) Metal-Organic Frameworks by Modulation Synthesis and Their Morphology-Dependent Catalytic Performance. Cryst. Growth Des. 2015, 15, 2533–2538. [Google Scholar] [CrossRef]
- Pham, M.-H.; Vuong, G.-T.; Fontaine, F.-G.; Do, T.-O. Rational Synthesis of Metal-Organic Framework Nanocubes and Nanosheets Using Selective Modulators and Their Morphology-Dependent Gas-Sorption Properties. Cryst. Growth Des. 2012, 12, 3091–3095. [Google Scholar] [CrossRef]
- Shete, M.; Kumar, P.; Bachman, J.E.; Ma, X.; Smith, Z.P.; Xu, W.; Mkhoyan, K.A.; Long, J.R.; Tsapatsis, M. On the direct synthesis of Cu (BDC) MOF nanosheets and their performance in mixed matrix membranes. J. Memb. Sci. 2018, 549, 312–320. [Google Scholar] [CrossRef]
- Ghorbanpour, A.; Huelsenbeck, L.D.; Smilgies, D.-M.; Giri, G. Oriented UiO-66 thin films through solution shearing. Cryst. Eng. Comm. 2018, 20, 294–300. [Google Scholar] [CrossRef]
- Selyanchyn, R.; Fujikawa, S. Membrane thinning for efficient CO2 capture. Sci. Technol. Adv. Mater. 2017, 18, 816–827. [Google Scholar] [CrossRef]
- Gu, Y.; Epling, W.S. Passive NOx Adsorber: An Overview of Catalyst Performance and Reaction Chemistry. Appl. Catal. A Gen. 2018. [Google Scholar] [CrossRef]
- Wang, Z.L.; Mohamed, M.B.; Link, S.; El-Sayed, M.A. Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf. Sci. 1999, 440, L809–L814. [Google Scholar] [CrossRef]
- Furukawa, S.; Hirai, K.; Nakagawa, K.; Takashima, Y.; Matsuda, R.; Tsuruoka, T.; Kondo, M.; Haruki, R.; Tanaka, D.; Sakamoto, H.; et al. Heterogeneously Hybridized Porous Coordination Polymer Crystals: Fabrication of Heterometallic Core-Shell Single Crystals with an In-Plane Rotational Epitaxial Relationship. Angew. Chem. Int. Ed. 2009, 48, 1766–1770. [Google Scholar] [CrossRef]
- Chun, H.; Dybtsev, D.N.; Kim, H.; Kim, K. Synthesis, X-ray Crystal Structures, and Gas Sorption Properties of Pillared Square Grid Nets Based on Paddle-Wheel Motifs: Implications for Hydrogen Storage in Porous Materials. Chem. A Eur. J. 2005, 11, 3521–3529. [Google Scholar] [CrossRef] [PubMed]
- Phan, A.; Doonan, C.J.; Uribe-Romo, F.J.; Knobler, C.B.; Okeeffe, M.; Yaghi, O.M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67. [Google Scholar] [CrossRef]
- Lin, Y.; Kong, C.; Chen, L. Direct synthesis of amine-functionalized MIL-101 (Cr) nanoparticles and application for CO2 capture. RSC Adv. 2012, 2, 6417–6419. [Google Scholar] [CrossRef]
- Saha, D.; Bao, Z.; Jia, F.; Deng, S. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177 and zeolite 5A. Environ. Sci. Technol. 2010, 44, 1820–1826. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.; Imrie, D.A.; Raab, R.E. Measurement of the electric quadrupole moments of CO2, CO, N2, Cl2 and BF3. Mol. Phys. Int. J. Interface Chem. Phys. 1998, 1, 49–56. [Google Scholar] [CrossRef]
- Jiang, Z.R.; Wang, H.; Hu, Y.; Lu, J.; Jiang, H.L. Polar Group and Defect Engineering in a Metal-Organic Framework: Synergistic Promotion of Carbon Dioxide Sorption and Conversion. Chem. Sustain. Energy Mater. 2015, 8, 878–885. [Google Scholar] [CrossRef]
- Heinke, L.; Gu, Z.; Wöll, C. The surface barrier phenomenon at the loading of metal-organic frameworks. Nat. Commun. 2014, 5, 4562. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.; Alnemrat, S.; Yu, L.; Vasiliev, I.; Ren, Q.; Lu, X.; Deng, S. Kinetic separation of carbon dioxide and methane on a copper metal-organic framework. J. Colloid Interface Sci. 2011, 2, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Ruthven, D.M. Principles of Adsorption and Adsorption Processes; Wiley: New York, NY, USA, 1984; ISBN 0471866067. [Google Scholar]
- Bao, Z.; Yu, L.; Ren, Q.; Lu, X.; Deng, S. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J. Colloid Interface Sci. 2011, 2, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Karra, J.R.; Walton, K.S. Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal-organic frameworks. J. Phys. Chem. C 2010, 114, 15735–15740. [Google Scholar] [CrossRef]
- Cmarik, G.E.; Kim, M.; Cohen, S.M.; Walton, K.S. Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir 2012, 28, 15606–15613. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.; Mehlhorn, D.; Zeigermann, P.; Kärger, J.; Valiullin, R. Transport properties of hierarchical micro-mesoporous materials. Chem. Soc. Rev. 2016, 12, 3439–3467. [Google Scholar] [CrossRef] [PubMed]
- Caro, J.; Noack, M. Zeolite membranes-Recent developments and progress. Microporous Mesoporous Mater. 2008, 3, 215–333. [Google Scholar] [CrossRef]
- Lai, Z.; Bonilla, G.; Diaz, I.; Nery, J.G.; Sujaoti, K.; Amat, M.A.; Kokkoli, E.; Terasaki, O.; Thompson, R.W.; Tsapatsis, M.; et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Science 2003, 300, 456–460. [Google Scholar] [CrossRef]
- Giri, G.; Li, R.; Smilgies, D.M.; Li, E.Q.; Diao, Y.; Lenn, K.M.; Chiu, M.; Lin, D.W.; Allen, R.; Reinspach, J.; et al. One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films. Nat. Commun. 2014, 5, 3573. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, S.M.; Smilgies, D.M.; Giri, G. Controlling Polymorphism in Pharmaceutical Compounds Using Solution Shearing. Cryst. Growth Des. 2018, 18, 602–606. [Google Scholar] [CrossRef]
- Scardi, P.; Leoni, M. Diffraction line profiles from polydisperse crystalline systems. Acta Crystallogr. Sect. A Found. Crystallogr. 2001, 57, 604–613. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z. Evaporative Self-Assembly of Ordered Complex Structures. Evaporative Self-Assembly Ordered Complex Struct; World Scientific Publishing Company, Inc.: Singapore, 2012. [Google Scholar] [CrossRef]
Morphology | Minor Axis (µm) | Major Axis (µm) | Aspect Ratio | Major Surface Plane(s) |
---|---|---|---|---|
Bulk | 0.3 ± 0.1 | 0.6 ± 0.3 | 2.1 ± 1.1 | N/A |
Rod | 1.2 ± 0.5 | 10.5 ± 5.4 | 10.1 ± 5.3 | (100), (010) |
Plate | 0.4 ± 0.1 | 2.7 ± 0.4 | 6.9 ± 2.5 | (001) |
Morphology | BET Surface Area (m2/g) |
---|---|
Zn2(NDC)2(DABCO) Bulk [25] | 1000 |
Bulk | 1226 ± 16 |
Rod | 1100 ± 68 |
Plate | 946 ± 127 |
Morphology | Adsorbate | am (mmol/g) | b (kPa−1) | K (mmol/g kPa) | CO2/CH4 Selectivity, α |
---|---|---|---|---|---|
Bulk | CO2 | 12.78 | 0.0066 | 0.0842 | 3.85 |
CH4 | 9.38 | 0.0023 | 0.0219 | ||
Rod | CO2 | 10.35 | 0.0069 | 0.0716 | 4.46 |
CH4 | 5.26 | 0.0031 | 0.0161 | ||
Plate | CO2 | 10.21 | 0.0070 | 0.0719 | 4.26 |
CH4 | 6.16 | 0.0027 | 0.0169 |
Morphology | CO2 Dc/rc(s−1) × 10−3 | CH4 Dc/rc(s−1) × 10−3 | CO2/CH4 Kinetic Selectivity |
---|---|---|---|
Bulk | 1.57 ± 0.07 | 5.24 ± 0.44 | 0.300 ± 0.028 |
Rod | 1.73 ± 0.13 | 8.75 ± 0.74 | 0.197 ± 0.022 |
Plate | 1.88 ± 0.15 | 4.72 ± 0.27 | 0.399 ± 0.039 |
Morphology | Isotropic Powder | Powder | Dropcast | Solution Sheared at 0.25 mm/s |
---|---|---|---|---|
Bulk | 2.98 | 4.11 | 4.05 | 4.67 |
Rod | 2.98 | 7.75 | 40.63 | 43.50 |
Plate | 2.98 | 2.19 | 1.11 | 1.23 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huelsenbeck, L.; Westendorff, K.S.; Gu, Y.; Marino, S.; Jung, S.; Epling, W.S.; Giri, G. Modulating and Orienting an Anisotropic Zn-Based Metal Organic Framework for Selective CH4/CO2 Gas Separation. Crystals 2019, 9, 20. https://doi.org/10.3390/cryst9010020
Huelsenbeck L, Westendorff KS, Gu Y, Marino S, Jung S, Epling WS, Giri G. Modulating and Orienting an Anisotropic Zn-Based Metal Organic Framework for Selective CH4/CO2 Gas Separation. Crystals. 2019; 9(1):20. https://doi.org/10.3390/cryst9010020
Chicago/Turabian StyleHuelsenbeck, Luke, Karl S. Westendorff, Yuntao Gu, Silvia Marino, Sangeun Jung, William S. Epling, and Gaurav Giri. 2019. "Modulating and Orienting an Anisotropic Zn-Based Metal Organic Framework for Selective CH4/CO2 Gas Separation" Crystals 9, no. 1: 20. https://doi.org/10.3390/cryst9010020
APA StyleHuelsenbeck, L., Westendorff, K. S., Gu, Y., Marino, S., Jung, S., Epling, W. S., & Giri, G. (2019). Modulating and Orienting an Anisotropic Zn-Based Metal Organic Framework for Selective CH4/CO2 Gas Separation. Crystals, 9(1), 20. https://doi.org/10.3390/cryst9010020