Investigations on the Solubility of Vortioxetine Based on X-ray Structural Data and Crystal Contacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentations and Materials
2.2. Preparation of Vortioxetine Salts with Dihydroxybenzoic Acids
2.3. Solubility Measurement
3. Results and Discussion
3.1. Crystal Structure Analysis
3.1.1. Crystal Structure of VOT-23BA-H2O (1:1:0.5) Salt
3.1.2. Crystal Structure of VOT-24BA-TOL (1:1:0.5) Salt
3.1.3. Crystal Structure of VOT-25BA (1:1) Salt
3.1.4. VOT-26BA (1:1) Salt
3.1.5. Structural Comparison
3.2. Powder X-ray Diffraction Analyses
3.3. Thermal Analyses
3.4. Aqueous Solubility and Stability study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Owoyemi, B.C.D.; da Silva, C.C.P.; Souza, M.S.; Diniz, L.F.; Ellena, J.; Carneiro, R.L. Synthesis and structural characterization of four new pharmaceutical cocrystal forms. Cryst. Growth Des. 2019, 5, 648–657. [Google Scholar] [CrossRef]
- Nechipadappu, S.K.; Truvedi, D.R. Pharmaceutical salts of ethionamide with GRAS counter ion donors to enhance the solubility. Eur. J. Pharm. Sci. 2017, 96, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Berge, S.M.; Bighley, L.D.; Monkhouse, D.C. Pharmaceutical salts. J. Pharm. Sci. 1977, 66, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Morissetee, S.L.; Almarsson, O.; Peterson, M.L.; Remenar, J.F.; Read, M.J.; Lemmo, A.V.; Ellis, S.; Cima, M.J.; Gardner, C.R. High-throughput crystallization: Polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Deliver. Rev. 2004, 56, 275–300. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zou, D.; Zhang, Y.; Zhang, D.; Zhang, Y.; Zhang, Q.; Wang, J.; Zeng, S.; Wang, C. Assembly of three pharmaceutical salts/cocrystals of tetrahydroberberine with sulfophenyl acids: Improving the properties by formation of charge-assisted hydrogen bonds. New J. Chem. 2019, 43, 4886–4894. [Google Scholar] [CrossRef]
- Carvalho, P.S.; Diniz, L.F.; Tenorio, J.C.; Souza, M.S.; Franco, C.H.; Rial, R.C.; de Oliveira, K.R.W.; Nazario, C.E.D.; Ellena, J. Pharmaceutical paroxetine-based organic salts of carboxylic acids with optimized properties: The identification and characterization of potential novel API solid forms. CrystEngComm 2019, 21, 3668–3678. [Google Scholar] [CrossRef]
- Sathisaran, I.; Dalvi, S. Engineering cocrystals of poor water-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics 2018, 10, 108. [Google Scholar] [CrossRef]
- Owoyemi, B.C.D.; Da Silva, C.C.P.; Diniz, L.F.; Souza, M.S.; Ellena, J.; Carneiro, R.L. Fluconazolium oxalate: Synthesis and structural characterization of a highly soluble crystalline form. CrystEngComm 2019, 21, 1114–1121. [Google Scholar] [CrossRef]
- Arabiani, M.R.; Lodagekar, A.; Yadav, B.; Chavan, R.B.; Shastri, N.R.; Purohit, P.Y.; Shelat, P.; Dave, D. Mechanochemical synthesis of brexpiprazole cocrystals to improve its pharmaceutical attributes. CrystEngComm 2019, 21, 800–806. [Google Scholar] [CrossRef]
- Park, B.; Yoon, W.; Yun, J.; Ban, E.; Yun, H.; Kim, A. Emodin-nicotinamide (1:2) cocrystal identified by thermal screening to improve emodin solubility. Int. J. Pharm. 2019, 557, 26–35. [Google Scholar] [CrossRef]
- Lu, Q.; Dun, J.; Chen, J.M.; Liu, S.; Sun, C.C. Improving solid-state properties of berberine chloride through forming a salt cocrystal with citric acid. Int. J. Pharm. 2019, 554, 14–20. [Google Scholar] [CrossRef]
- Burchell, C.J.; Ferguson, G.; Lough, A.J.; Gregson, R.M.; Glidewell, C. Hydrated salts of 3,5-dihydroxybenzoic acid with organic diamines: Hydrogen-bonded supramolecular structures in two and three dimensions. Acta Crystallogr. B 2001, 57, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Childs, S.L.; Hardcastle, K.I. Cocrystal of chlorzoxazone with carboxylic acids. CrystEngComm 2007, 9, 364–367. [Google Scholar] [CrossRef]
- Brittain, H.G. Cocrytal systems of pharmaceutical interest: 2010. Cryst. Growth Des. 2012, 12, 1046–1054. [Google Scholar] [CrossRef]
- Sanphui, P.; Tothadi, S.; Ganguly, S.; Desiraju, G.R. Salt and cocrystals of sildenafil with dicarboxylic acids: Solubility and pharmacokinetic advantage of the glutarate salt. Mol. Pharm. 2013, 10, 4687–4697. [Google Scholar] [CrossRef] [PubMed]
- Varughese, S.; Desiraju, G.R. Using water as a design element in crystal engineering. Host-guest compounds of hydrated 3,5-dihydroxybenzoic acid. Cryst. Growth Des. 2010, 10, 4184–4196. [Google Scholar] [CrossRef]
- Gautam, M.K.; Besan, M.; Pandit, D.; Mandal, S.; Chadha, R. Cocrystal of 5-fluorouracil: Characterization and evaluation of biopharmaceutical parameters. AAPS PharmSciTech 2019, 20, 149. [Google Scholar] [CrossRef]
- Barbas, R.; Font-Bardia, M.; Paradkar, A.; Hunter, C.A.; Prohens, R. Combined virtual/experimental multicomponent solid forms screening of sildenafil: New salts, cocrystals, and hybrid salt-cocrystals. Cryst. Growth Des. 2018, 18, 7618–7627. [Google Scholar] [CrossRef]
- Nechipadappu, S.K.; Reddy, I.R.; Tarafder, K.; Trivedi, D.R. Salt/cocrystal of anti-fibrinolytic hemostatic drug tranexamic acid: Structural, DFT, and stability study of salt/cocrystal with GRAS molecules. Cryst. Growth Des. 2018, 19, 347–361. [Google Scholar] [CrossRef]
- Bora, P.; Saikia, B.; Sarma, B. Regulation of π··· π stacking interactions in small molecule cocrystals and/or salts for physiochemical property modulation. Cryst Growth Des. 2018, 18, 1448–1458. [Google Scholar] [CrossRef]
- Sanchez, C.; Asin, K.E.; Artigas, F. Vortioxetine, a novel antidepressant with multimodal activity: Review of preclinical and clinical data. Pharmacol. Ther. 2015, 145, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Mclntyre, R.S.; Lophaven, S.; Olsen, C.K. A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int. J. Neuropsychop. 2014, 17, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- He, S.F.; Zhang, X.R.; Zhang, S.; Guan, S.; Li, J.; Li, S.; Zhang, L. An investigation into vortioxetine salts: Crystal structure, thermal stability, and solubilization. J. Pharm. Sci. 2016, 105, 2123–2128. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, L.Y.; He, S.F.; Li, S.; Dong, C.Z.; Zhang, L. Crystal structures, X-ray photoelectron spectroscopy, thermodynamic stabilities, and improved solubilities of 2-hydrochloride salts of vortioxetine. J. Pharm. Sci. 2017, 106, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Hu, X.; Wu, S.; Ye, J.; Sun, M.; Gu, J.; Zhu, J.; Zhang, Z. Structures and physicochemical properties of vortioxetine salts. Acta Crystallogr. B 2016, 72, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, X.R.; He, S.F.; Li, J.; Zhang, L. Syntheses, crystal structures and theoretical studies of three novel salts of vortioxetine and the investigation of their solubility. Chin. J. Struct. Chem. 2016, 35, 1645–1654. [Google Scholar]
- Gao, L.; Zhang, X.R.; Yang, S.P.; Liu, J.J.; Chen, C.J. Improved solubility of vortioxetine using C2–C4 straight-chain dicarboxylic acid salt hydrates. Crystals 2018, 8, 352. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXTL, Version 5.1; Bruker Analytical X-ray Instruments Inc.: Madison, WI, USA, 1998. [Google Scholar]
- Sheldrick, G.M. SHELXL-97, PC Version; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Lipinski, C. Poor aqueous solubility—An industry wide problem in drug discovery. Am. Pharm. Rev. 2002, 5, 82–85. [Google Scholar]
VOT-23BA-H2O | VOT-24BA-TOL | VOT-25BA | VOT-26BA | |
---|---|---|---|---|
chemical formula | 2C18H23N2S, 2C7H5O4,H2O | 2C18H23N2S, 2C7H5O4,C7H8 | C18H23N2S, C7H5O4 | C18H23N2S, C7H5O4 |
formula sum | C50H58N4O9S2 | C57H64N4O8S2 | C25H28N2O4S | C25H28N2O4S |
formula weight | 923.12 | 997.24 | 452.55 | 452.55 |
crystal system | monoclinic | triclinic | triclinic | monoclinic |
space group | C2/c | P-1 | P-1 | P21/c |
a (Å) | 26.5624(5) | 12.3577(8) | 9.9394(8) | 17.0666(8) |
b (Å) | 8.10730(10) | 12.9526(6) | 10.1982(6) | 6.3133(2) |
c (Å) | 23.0375(5) | 17.4064(11) | 12.1724(9) | 22.2716(10) |
Α (°) | 90 | 82.219(5) | 89.628(6) | 90 |
Β (°) | 92.162(2) | 80.757(6) | 76.453(7) | 107.112(5) |
γ (°) | 90 | 87.213(4) | 85.399(6) | 90 |
Z | 4 | 2 | 2 | 4 |
V (Å3) | 4957.58(16) | 2723.6(3) | 1195.55(15) | 2293.46(17) |
Dcalc (g cm−3) | 1.237 | 1.216 | 1.257 | 1.311 |
M (mm−1) | 1.444 | 1.339 | 1.472 | 0.175 |
reflns. collected | 4385 | 9612 | 4573 | 3075 |
observed reflns. | 3509 | 3889 | 2187 | 2592 |
R1 (I > 2σ (I)) | 0.0438 | 0.0677 | 0.0632 | 0.0409 |
wR2 (all data, F2) | 0.1246 | 0.1703 | 0.1704 | 0.0995 |
GOF | 1.054 | 1.036 | 1.042 | 1.013 |
largest diff. peak and hole (e·Å-3) | 0.775/–0.168 | 0.341/–0.356 | 0.271/–0.468 | 0.184/–0.240 |
CCDC | 1,937,936 | 1,937,937 | 1,937,938 | 1,937,939 |
H-Bond | d(D−H) | d(H···A) | d(D···A) | ∠(DHA) | Symmetry Code |
---|---|---|---|---|---|
VOT-23BA-H2O | |||||
N1+−H1B···O3 | 0.88 | 1.99 | 2.856(2) | 166 | x, y, z |
N1+−H1A···O5 | 0.93 | 1.86 | 2.783(2) | 174 | x, y, z |
O3−H3···O2 | 1.01 | 1.51 | 2.471(2) | 156 | x, y, z |
O4−H4···O1 | 0.88 | 1.71 | 2.585(2) | 177 | x, y+1, z |
O5−H5A···O2 | 0.90 | 1.77 | 2.658(2) | 172 | x, y+1, z |
VOT-24BA-TOL | |||||
N1+−H1C···O1 | 0.80 | 2.02 | 2.804(4) | 165 | -x+1, -y+1, -z |
N1+−H1D···O2 | 1.04 | 1.70 | 2.722(4) | 167 | x, y+1, z |
N3+−H3C···O6 | 0.86 | 1.88 | 2.738(4) | 168 | x-1, y, z |
N3+−H3D···O5 | 0.93 | 1.82 | 2.743(4) | 170 | -x+1, -y+1, -z |
O3−H3···O2 | 0.92 | 1.67 | 2.542(4) | 155 | x, y, z |
O4−H4···O5 | 0.70 | 2.04 | 2.726(4) | 169 | x, y, z |
O7−H7A···O6 | 0.76 | 1.81 | 2.526(4) | 155 | x, y, z |
O8−H8A···O1 | 0.93 | 1.79 | 2.714(4) | 171 | x, y+1, z |
VOT-25BA | |||||
N1+−H1C···O2 | 0.97 | 1.86 | 2.810(3) | 168 | x, y+1, z |
N1+−H1D···O1 | 1.01 | 1.72 | 2.723(3) | 173 | -x, -y+1, -z |
O3−H3···O1 | 0.96 | 1.68 | 2.555(3) | 150 | x, y, z |
O4−H4···O2 | 0.89 | 1.84 | 2.685(3) | 157 | -x+1, -y, -z |
VOT-26BA | |||||
N1+−H1A···O2 | 0.91 | 1.91 | 2.814(3) | 173 | -x+1, y-1/2, -z+3/2 |
N1+−H1B···O1 | 0.95 | 1.85 | 2.753(3) | 158 | x, -y-1/2, z-1/2 |
O3−H3···O2 | 0.82 | 1.82 | 2.548(3) | 147 | x, y, z |
O4−H4···O1 | 0.82 | 1.85 | 2.573(3) | 147 | x, y, z |
Compound | Equilibrium Solubility of VOT in Water (mg/mL) | Coformer Solubility in Water(a) (mg/mL) |
---|---|---|
VOT | 0.04 | - |
VOT-23BA-H2O | 0.09 | 26.10 |
VOT-24BA-TOL | - | 5.78 |
VOT-25BA | 0.35 | 5.00 |
VOT-26BA | 0.20 | 9.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.-R.; Gao, L.; He, G.-Y.; Chen, C.-J. Investigations on the Solubility of Vortioxetine Based on X-ray Structural Data and Crystal Contacts. Crystals 2019, 9, 536. https://doi.org/10.3390/cryst9100536
Zhang X-R, Gao L, He G-Y, Chen C-J. Investigations on the Solubility of Vortioxetine Based on X-ray Structural Data and Crystal Contacts. Crystals. 2019; 9(10):536. https://doi.org/10.3390/cryst9100536
Chicago/Turabian StyleZhang, Xian-Rui, Lei Gao, Gui-Yuan He, and Chao-Jie Chen. 2019. "Investigations on the Solubility of Vortioxetine Based on X-ray Structural Data and Crystal Contacts" Crystals 9, no. 10: 536. https://doi.org/10.3390/cryst9100536
APA StyleZhang, X. -R., Gao, L., He, G. -Y., & Chen, C. -J. (2019). Investigations on the Solubility of Vortioxetine Based on X-ray Structural Data and Crystal Contacts. Crystals, 9(10), 536. https://doi.org/10.3390/cryst9100536