Quantitative Analysis of Photon Density of States for One-Dimensional Photonic Crystals in a Rectangular Waveguide
Abstract
:1. Introduction
2. Formulations
2.1. Transfer Matrix Method
2.2. Band Structures
2.3. Photon Density of States
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
1D | one-dimensional |
2D | two-dimensional |
3D | three-dimensional |
BS | band structure |
EM | electromagnetic |
PBG | photonic band gap |
PC | photonic crystal |
PDOS | photon density of states |
TE | transverse electric |
TM | transverse magnetic |
Appendix A. FORMULAS
References
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Joannopoulos, J.D.; Villeneuve, P.R.; Fan, S. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149. [Google Scholar] [CrossRef]
- Yariv, A.; Yeh, P. Optical Waves in Crystals; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Kittel, C. Introduction to Solid State Physics; Wiley: New York, NY, USA, 1976. [Google Scholar]
- O’Brien, J.L.; Furusawa, A.; Vučković, J. Photonic quantum technologies. Nat. Photonics 2009, 3, 687–691. [Google Scholar] [CrossRef]
- Purcell, E.M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 1946, 69, 681. [Google Scholar]
- Kleppner, D. Inhibited Spontaneous Emission. Phys. Rev. Lett. 1981, 47, 233–236. [Google Scholar] [CrossRef]
- Barut, A.O.; Dowling, J.P. Quantum electrodynamics based on self-energy: Spontaneous emission in cavities. Phys. Rev. A 1987, 36, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Rigneault, H.; Monneret, S. Modal analysis of spontaneous emission in a planar microcavity. Phys. Rev. A 1996, 54, 2356–2368. [Google Scholar] [CrossRef]
- Dowlin, J.P.; Bowden, C.M. Atomic emission rates in inhomogeneous media with applications to photonic band structures. Phys. Rev. A 1992, 46, 612–622. [Google Scholar] [CrossRef]
- Suzuki, T.; Yu, P.K.L. Emission power of an electric dipole in the photonic band structure of the fcc lattice. Opt. Soc. Am. B 1995, 12, 570–582. [Google Scholar] [CrossRef]
- Kamli, A.; Babiker, M.; Al-Hajry, A.; Enfati, N. Dipole relaxation in dispersive photonic band-gap structures. Phys. Rev. A 1997, 55, 1454–1461. [Google Scholar] [CrossRef]
- Sánchez, A.S.; Halevi, P. Spontaneous emission in one-dimensional photonic crystals. Phys. Rev. E 2005, 72, 056609. [Google Scholar] [CrossRef]
- Halevi, P.; Sánchez, A.S. Spontaneous emission in a high-contrast one-dimensional photonic crystal. Opt. Commun. 2005, 251, 109–114. [Google Scholar] [CrossRef]
- Lin, M.C.; Jao, R.F. Quantitative analysis of photon density of states for a realistic superlattice with omnidirectional light propagation. Phys. Rev. E 2006, 74, 046613. [Google Scholar] [CrossRef] [PubMed]
- Jao, R.F.; Lin, M.C. Efficient and quantitative analysis of photon density of states for two-dimensional photonic crystals with omnidirectional light propagation. Phys. Rev. E 2018, 98, 053306. [Google Scholar] [CrossRef] [Green Version]
- Rumsey, I.; Melinda, P.M.; Kelly, P.K. Photonic bandgap structures used as filters in microstrip circuits. IEEE Microw. Guided Wave Lett. 1998, 8, 336–338. [Google Scholar] [CrossRef]
- Kim, T.; Seo, C. A novel photonic bandgap structure for low-pass filter of wide stopband. IEEE Microw. Guided Wave Lett. 2000, 10, 13–15. [Google Scholar]
- Iluz, Z.; Shavit, R.; Bauer, R. Microstrip antenna phased array with electromagnetic bandgap substrate. IEEE Trans. Antennas Prop. 2004, 52, 1446–1453. [Google Scholar] [CrossRef]
- Yang, F.R.; Qian, Y.; Coccioli, R.; Itoh, T. A novel low slow-wave microstrip structure. IEEE Microw. Guided Wave Lett. 1998, 8, 372–374. [Google Scholar] [CrossRef]
- Xue, Q.; Shum, K.; Chan, C. Novel 1D microstrip PBG cells. IEEE Microw. Wirel. Compon. Lett. 2000, 10, 403–405. [Google Scholar]
- Yang, H.W.; Zhong, W.X.; Sui, Y.K. Analysis of dielectric layer PBG structure using precise integration. In Proceedings of the International Symposium on Computational Mechanics, Beijing, China, 30 July–1 August 2007; pp. 1239–1245. [Google Scholar]
- Kshetrimayum, R.S.; Zhu, L. Guided-wave characteristics of waveguide based periodic structures loaded with various FSS strip layers. IEEE Trans. Antennas Prop. 2005, 53, 120–124. [Google Scholar] [CrossRef]
- Marini, S.; Covers, Á.; Boria, V.E.; Gimeno, B. Full-wave modal analysis of slow-wave periodic structures loaded with elliptical waveguides. IEEE Trans. Electron Devices 2010, 57, 516–524. [Google Scholar] [CrossRef]
- Razavizadeh, S.M.; Sadeghzadeh, R.; Navarri-Cía, M.; Ghattan, Z. Compact THz waveguide filter based on periodic dielectric-gold rings. In Proceedings of the 5th International Conference on Millimeter-Wave and Terahertz Technologies, Tehran, Iran, 18–20 December 2018; pp. 42–44. [Google Scholar]
- Pelster, R.; Gasparian, V.; Nimtz, G. Propagation of plane waves and of waveguide modes in quasiperiodic dielectric heterostructures. Phys. Rev. E 1997, 55, 7645–7655. [Google Scholar] [CrossRef] [Green Version]
- Amari, S.; Vahldieck, R.; Bornemann, J.; Leuchtmann, P. Propagation in a circular waveguide periodically loaded with dielectric disks. IEEE MTT-S Digest. 1998, 3, 1535–1538. [Google Scholar]
- Kesari, V.; Basu, B.N. Analysis of some periodic structures of microwave tubes: Part II: Analysis of disc-loaded fast-wave circular waveguide structures for gyro-travelling-wave tubes. J. Electomagn. Waves Appl. 2018, 32, 1–36. [Google Scholar] [CrossRef]
- Christie, L.; Erabati, G.; Jana, M. Analysis of propagation characteristics of circular waveguide loaded with dielectric disks using coupled integral equation technique. In Proceedings of the 5th International Conference on Advances in Computing and Communications, Kochi, India, 2–4 September 2015; pp. 231–234. [Google Scholar]
- Miller, R.D.; Jones, T.B. On the effective dielectric constant of columns or layers of dielectric spheres. J. Phys. D Appl. Phys. 1988, 21, 527–532. [Google Scholar] [CrossRef]
- Peng, S.T.; Tamir, T.; Bertoni, H.L. Theory of periodic dielectric waveguides. IEEE Trans. Microw. Theory Technol. 1975, MTT-23, 123–133. [Google Scholar] [CrossRef]
- Villeneuve, P.R.; Fan, S.; Johnson, S.G.; Joannopoulos, J.D. Three-dimensional photonic confinement in photonic crystals of low-dimensional periodicity. IEE Proc. Optoelectron. 1998, 145, 384–390. [Google Scholar] [CrossRef]
- Young, A.B.; Thijssen, A.C.T.; Beggs, D.M.; Androvitsaneas, P.; Kuipers, L.; Rarity, J.G.; Hughes, S.; Oulton, R. Polarization engineering in photonic crystal waveguides for spin-photon entanlers. Phys. Rev. Lett. 2015, 115, 153901. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.C. A multilayer waveguide window for wide-bandwidth millimeter wave tubes. Int. J. Infrared Millim. Waves 2007, 28, 355–362. [Google Scholar] [CrossRef]
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jao, R.-F.; Lin, M.-C. Quantitative Analysis of Photon Density of States for One-Dimensional Photonic Crystals in a Rectangular Waveguide. Crystals 2019, 9, 576. https://doi.org/10.3390/cryst9110576
Jao R-F, Lin M-C. Quantitative Analysis of Photon Density of States for One-Dimensional Photonic Crystals in a Rectangular Waveguide. Crystals. 2019; 9(11):576. https://doi.org/10.3390/cryst9110576
Chicago/Turabian StyleJao, Ruei-Fu, and Ming-Chieh Lin. 2019. "Quantitative Analysis of Photon Density of States for One-Dimensional Photonic Crystals in a Rectangular Waveguide" Crystals 9, no. 11: 576. https://doi.org/10.3390/cryst9110576
APA StyleJao, R. -F., & Lin, M. -C. (2019). Quantitative Analysis of Photon Density of States for One-Dimensional Photonic Crystals in a Rectangular Waveguide. Crystals, 9(11), 576. https://doi.org/10.3390/cryst9110576