Focusing of Microcrystals and Liquid Condensates in Acoustofluidics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microfluidic Chip Design and Set-Up
2.2. Preparation: Pharmaceutical Compound, Protein, Liquid Condensate
2.3. Experimental Procedure
2.4. Numerical Simulations
3. Results and Discussion
3.1. Crystal Handling in Microfluidic Channel
3.2. Numerical Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, H.H.; Xiao, Y.; Ferguson, S.; Huang, X.; Wang, N.; Hao, H.X. Progress of crystallization in microfluidic devices. Lab Chip 2017, 17, 2167–2185. [Google Scholar] [CrossRef] [PubMed]
- Gerard, C.J.J.; Ferry, G.; Vuillard, L.M.; Boutin, J.A.; Ferte, N.; Grossier, R.; Candoni, N.; Veesler, S. A Chemical Library to Screen Protein and Protein-Ligand Crystallization Using a Versatile Microfluidic Platform. Cryst. Growth Des. 2018, 18, 5130–5137. [Google Scholar] [CrossRef]
- Zhang, S.; Gerarda, C.J.J.; Ikni, A.; Ferry, G.; Vuillard, L.M.; Boutin, J.A.; Ferte, N.; Grossier, R.; Candoni, N.; Veesler, S. Microfluidic platform for optimization of crystallization conditions. J. Cryst. Growth 2017, 472, 18–28. [Google Scholar] [CrossRef]
- Guo, F.; Zhou, W.; Li, P.; Mao, Z.; Yennawar, N.H.; French, J.B.; Huang, T.J. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves. Small 2015, 11, 2733–2737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, A.; Duman, R.; Stevens, B.; Ward, A. Microcrystal manipulation with laser tweezers. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 1297–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuttitta, C.M.; Ericson, D.L.; Scalia, A.; Roessler, C.G.; Teplitsky, E.; Joshi, K.; Campos, O.; Agarwal, R.; Allaire, M.; Orville, A.M.; et al. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening. Acta Crystallogr. Sect. D 2015, 71, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Roessler, C.G.; Agarwal, R.; Allaire, M.; Alonso-Moriet, R.; Andi, B.; Bachega, J.F.R.; Bommer, M.; Brewster, A.S.; Browne, M.C.; Chatterjee, R.; et al. Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. Structure 2016, 24, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Mafuné, F.; Miyajima, K.; Tono, K.; Takeda, Y.; Kohno, J.; Miyauchi, N.; Kobayashi, J.; Joti, Y.; Nango, E.; Iwata, S.; et al. Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta Crystallogr. Sect. D 2016, D72, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Jacquamet, L.; Ohana, J.; Joly, J.; Legrand, P.; Kahn, R.; Borel, F.; Pirocchi, M.; Charrault, P.; Carpentier, P.; Ferrer, J.-L. A new highly integrated sample environment for protein crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004, 60, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Deller, M.; Rupp, B. Approaches to automated protein crystal harvesting. Acta Crystallogr. Sect. F 2014, 70, 133–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerard, C.J.J.; Ferry, G.; Vuillard, L.M.; Boutin, J.A.; Chavas, L.M.G.; Huet, T.; Ferte, N.; Grossier, R.; Candoni, N.; Veesler, S. Crystallization via tubing microfluidics permits both in situ and ex situ X-ray diffraction. Acta Crystallogr. Sect. FStructural Biol. Commun. 2017, 73, 574–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyman, A.A.; Weber, C.A.; Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 2014, 30, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Qamar, S.; Lin, J.Q.; Schierle, G.S.K.; Rees, E.; Miyashita, A.; Costa, A.R.; Dodd, R.B.; Chan, F.T.S.; Michel, C.H.; et al. ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function. Neuron 2015, 88, 678–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, M.-T.; Elbaum-Garfinkle, S.; Holehouse, A.S.; Chen, C.C.-H.; Feric, M.; Arnold, C.B.; Priestley, R.D.; Pappu, R.V.; Brangwynne, C.P. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat. Chem. 2017, 9, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Lee, H.O.; Jawerth, L.; Maharana, S.; Jahnel, M.; Hein, M.Y.; Stoynov, S.; Mahamid, J.; Saha, S.; Franzmann, T.M.; et al. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 2015, 162, 1066–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeynaems, S.; Alberti, S.; Fawzi, N.L.; Mittag, T.; Polymenidou, M.; Rousseau, F.; Schymkowitz, J.; Shorter, J.; Wolozin, B.; Van Den Bosch, L.; et al. Protein Phase Separation: A New Phase in Cell Biology. Trends Cell Biol. 2018, 28, 420–435. [Google Scholar] [CrossRef] [PubMed]
- Abbondanzieri, E.A.; Meyer, A.S. More than just a phase: The search for membraneless organelles in the bacterial cytoplasm. Curr. Genet. 2019, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Barnkob, R.; Augustsson, P.; Laurell, T.; Bruus, H. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Phys. Rev. E 2012, 86, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.; Petersson, F.; Jönsson, H.; Laurell, T. Acoustic control of suspended particles in micro fluidic chips. Lab Chip 2004, 4, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.B.; Rossi, M.; Marín, Á.G.; Barnkob, R.; Augustsson, P.; Laurell, T.; Kähler, C.J.; Bruus, H. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Phys. Rev. E 2013, 88, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Petersson, F.; Nilsson, A.; Holm, C.; Jönsson, H.; Laurell, T. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels. Analyst 2004, 129, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Fornell, A.; Garofalo, F.; Nilsson, J.; Bruus, H.; Tenje, M. Intra-droplet acoustic particle focusing: Simulations and experimental observations. Microfluid. Nanofluidics 2018, 22, 1–9. [Google Scholar] [CrossRef]
- Laurell, T.; Petersson, F.; Nilsson, A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 2007, 36, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Böhm, H.; Anthony, P.; Davey, M.R.; Briarty, L.G.; Power, J.B.; Lowe, K.C.; Benes, E.; Gröschl, M. Viability of plant cell suspensions exposed to homogeneous ultrasonic fields of different energy density and wave type. Ultrasonics 2000, 38, 629–632. [Google Scholar] [CrossRef]
- Vanherberghen, B.; Manneberg, O.; Christakou, A.; Frisk, T.; Ohlin, M.; Hertz, H.M.; Önfelt, B.; Wiklund, M. Ultrasound-controlled cell aggregation in a multi-well chip. Lab Chip 2010, 10, 2727–2732. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, M. Acoustofluidics 12: Biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 2012, 12, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.B.; Barnkob, R.; Jensen, M.J.H.; Bruus, H. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 2012, 12, 4617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnkob, R.; Augustsson, P.; Laurell, T.; Bruus, H. Measuring the local pressure amplitude in microchannel acoustophoresis. Lab Chip 2010, 10, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Rivas, D.F.; Kuhn, S. Acoustophoretic focusing effects on particle synthesis and clogging in microreactors. Lab Chip 2019, 19, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.J.; Wanzeller, M.G.; de Almeida Farias, P.; da Rocha Neto, J.S. Development of circuits for excitation and reception in ultrasonic transducers for generation of guided waves in hollow cylinders for fouling detection. IEEE Trans. Instrum. Meas. 2008, 57, 1149–1153. [Google Scholar] [CrossRef]
- Calvey, G.D.; Katz, A.M.; Schaffer, C.B.; Pollack, L. Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers. Struct. Dyn. 2016, 3, 1–19. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelin, P.; Van Lindt, J.; Bratek-Skicki, A.; Stroobants, S.; Krzek, M.; Ziemecka, I.; Tompa, P.; De Malsche, W.; Maes, D. Focusing of Microcrystals and Liquid Condensates in Acoustofluidics. Crystals 2019, 9, 120. https://doi.org/10.3390/cryst9030120
Gelin P, Van Lindt J, Bratek-Skicki A, Stroobants S, Krzek M, Ziemecka I, Tompa P, De Malsche W, Maes D. Focusing of Microcrystals and Liquid Condensates in Acoustofluidics. Crystals. 2019; 9(3):120. https://doi.org/10.3390/cryst9030120
Chicago/Turabian StyleGelin, Pierre, Joris Van Lindt, Anna Bratek-Skicki, Sander Stroobants, Marzena Krzek, Iwona Ziemecka, Peter Tompa, Wim De Malsche, and Dominique Maes. 2019. "Focusing of Microcrystals and Liquid Condensates in Acoustofluidics" Crystals 9, no. 3: 120. https://doi.org/10.3390/cryst9030120
APA StyleGelin, P., Van Lindt, J., Bratek-Skicki, A., Stroobants, S., Krzek, M., Ziemecka, I., Tompa, P., De Malsche, W., & Maes, D. (2019). Focusing of Microcrystals and Liquid Condensates in Acoustofluidics. Crystals, 9(3), 120. https://doi.org/10.3390/cryst9030120