Radiation Tolerance in Nano-Structured Crystalline Fe(Cr)/Amorphous SiOC Composite
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructural Characterization of As-Deposited Films
3.2. SRIM Simulation
3.3. Irradiation Response of Fe(Cr) Film and Fe(Cr)/SiOC Multilayer
3.4. Comparison of Irradiation-Induced Grain Growth
4. Discussion
4.1. Irradiation-Induced Grain Growth
4.2. Cr Addition Effect on Irradiation Resistance
4.3. Cr Segregation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Terrani, K.A.; Snead, L.L. Motivation for utilizing new high-performance advanced materials in nuclear energy systems. Curr. Opin. Solid State Mater. Sci. 2016, 20, 401–410. [Google Scholar] [CrossRef]
- Odette, G.R.; Lucas, G.E. Embrittlement of nuclear reactor pressure vessels. JOM J. Miner. Met. Mater. Soc. 2001, 53, 18–22. [Google Scholar] [CrossRef]
- Odette, G.R.; Alinger, M.J.; Wirth, B.D. Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 2008, 38, 471–503. [Google Scholar] [CrossRef]
- Odette, G.R.; Hoelzer, D.T. Irradiation-tolerant Nanostructured Ferritic Alloys: Transforming Helium from a Liability to an Asset. JOM 2010, 62, 84–92. [Google Scholar] [CrossRef]
- Chen, D.; Wang, J.; Chen, T.Y.; Shao, L. Defect annihilation at grain boundaries in alpha-Fe. Sci. Rep. 2013, 3, 1450. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N. Effect of Grain-Size on Void Formation during High-Energy Electron-Irradiation of Austenitic Stainless-Steel. Philos. Mag. 1974, 29, 25–42. [Google Scholar] [CrossRef]
- Bai, X.M.; Voter, A.F.; Hoagland, R.G.; Nastasi, M.; Uberuaga, B.P. Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission. Science 2010, 327, 1631–1634. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.; Demkowicz, M.J.; Zhang, X.; Hoagland, R.G. The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 2007, 59, 62–65. [Google Scholar] [CrossRef]
- Soraru, G.D.; Suttor, D. High temperature stability of sol-gel-derived SiOC glasses. J. Sol-Gel Sci. Technol. 1999, 14, 69–74. [Google Scholar] [CrossRef]
- Soraru, G.D.; Dallapiccola, E.; DAndrea, G. Mechanical characterization of sol-gel-derived silicon oxycarbide glasses. J. Am. Ceram. Soc. 1996, 79, 2074–2080. [Google Scholar] [CrossRef]
- Harshe, R.; Balan, C.; Riedel, R. Amorphous Si(Al)OC ceramic from polysiloxanes: Bulk ceramic processing, crystallization behavior and applications. J. Eur. Ceram. Soc. 2004, 24, 3471–3482. [Google Scholar] [CrossRef]
- Rouxel, T.; Massouras, G.; Soraru, G.D. High temperature behavior of a gel-derived SiOC glass: Elasticity and viscosity. J. Sol-Gel Sci. Technol. 1999, 14, 87–94. [Google Scholar] [CrossRef]
- Nastasi, M.; Su, Q.; Price, L.; Colón Santana, J.A.; Chen, T.; Balerio, R.; Shao, L. Superior radiation tolerant materials: Amorphous silicon oxycarbide. J. Nucl. Mater. 2015, 461, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Cui, B.; Kirk, M.A.; Nastasi, M. Cascade effects on the irradiation stability of amorphous SiOC. Philos. Mag. Lett. 2016, 96, 60–66. [Google Scholar] [CrossRef]
- Su, Q.; Ding, H.P.; Price, L.; Shao, L.; Hinks, J.A.; Greaves, G.; Donnelly, S.E.; Demkowicz, M.J.; Nastasi, M. Rapid and damage-free outgassing of implanted helium from amorphous silicon oxycarbide. Sci. Rep. 2018, 8, 5009. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Inoue, S.; Ishimaru, M.; Gigax, J.; Wang, T.Y.; Ding, H.P.; Demkowicz, M.J.; Shao, L.; Nastasi, M. Helium Irradiation and Implantation Effects on the Structure of Amorphous Silicon Oxycarbide. Sci. Rep. 2017, 7, 3900. [Google Scholar] [CrossRef]
- Di, Z.F.; Bai, X.M.; Wei, Q.M.; Won, J.; Hoagland, R.G.; Wang, Y.Q.; Misra, A.; Uberuaga, B.P.; Nastasi, M. Tunable helium bubble superlattice ordered by screw dislocation network. Phys. Rev. B 2011, 84, 052101. [Google Scholar] [CrossRef]
- Zhang, X.; Li, N.; Anderoglu, O.; Wang, H.; Swadener, J.G.; Hochbauer, T.; Misra, A.; Hoagland, R.G. Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation. Nucl. Instrum. Methods B 2007, 261, 1129–1132. [Google Scholar] [CrossRef]
- Demkowicz, M.J.; Hoagland, R.G.; Hirth, J.P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 2008, 100, 136102. [Google Scholar] [CrossRef]
- Su, Q.; Wang, T.Y.; Gigax, J.; Shao, L.; Nastasi, M. Resistance to Helium Bubble Formation in Amorphous SiOC/Crystalline Fe Nanocomposite. Materials 2019, 12, 93. [Google Scholar] [CrossRef]
- Madjasevic, M.; Alrriazouzi, A. Effect of Cr on the mechanical properties and microstructure of Fe-Cr model alloys after n-irradiation. J. Nucl. Mater. 2008, 377, 147–154. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Meslin, E.; Henry, J.; Barbu, A.; Poissonnet, S.; Decamps, B. Effect of chromium on void swelling in ion irradiated high purity Fe-Cr alloys. Acta Mater. 2016, 108, 241–251. [Google Scholar] [CrossRef]
- Jenkins, M.L.; Yao, Z.; Hernandez-Mayoral, M.; Kirk, M.A. Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys. J. Nucl. Mater. 2009, 389, 197–202. [Google Scholar] [CrossRef]
- Horvath, J.; Uhlig, H.H. Critical Potentials for Pitting Corrosion of Ni Cr-Ni Cr-Fe and Related Stainless Steels. J. Electrochem. Soc. 1968, 115, 791–795. [Google Scholar] [CrossRef]
- Su, Q.; Zhernenkov, M.; Ding, H.; Price, L.; Haskel, D.; Watkins, E.B.; Majewski, J.; Shao, L.; Demkowicz, M.J.; Nastasi, M. Reaction of amorphous/crystalline SiOC/Fe interfaces by thermal annealing. Acta Mater. 2017, 135, 61–67. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.P. The Stopping and Range of Ions in Solids; Pergamon Press: New York, NY, USA, 1985. [Google Scholar]
- Kaiser, N. Review of the fundamentals of thin-film growth. Appl. Opt. 2002, 41, 3053–3060. [Google Scholar] [CrossRef]
- Jenkins, M.L.; Kirk, M.A. Characterisation of Radiation Damage by Transmission Electron Microscopy; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2000. [Google Scholar]
- Liu, J.C.; Nastasi, M.; Mayer, J.W. Ion Irradiation Induced Grain-Growth in Pd Polycrystalline Thin-Films. J. Appl. Phys. 1987, 62, 423–428. [Google Scholar] [CrossRef]
- Liu, J.C.; Li, J.; Mayer, J.W. Temperature Effect on Ion-Irradiation-Induced Grain-Growth in Cu Thin-Films. J. Appl. Phys. 1990, 67, 2354–2358. [Google Scholar] [CrossRef]
- Atwater, H.A.; Thompson, C.V.; Smith, H.I. Ion-Bombardment-Enhanced Grain-Growth in Germanium, Silicon, and Gold Thin-Films. J. Appl. Phys. 1988, 64, 2337–2353. [Google Scholar] [CrossRef]
- Alexander, D.E.; Was, G.S.; Rehn, L.E. Ion-Induced Grain-Growth in Multilayer and Coevaporated Metal Alloy Thin-Films. Nucl. Instrum. Methods B 1991, 59, 462–466. [Google Scholar] [CrossRef]
- Kaoumi, D.; Motta, A.T.; Birtcher, R.C. A thermal spike model of grain growth under irradiation. J. Appl. Phys. 2008, 104, 073525. [Google Scholar] [CrossRef]
- Voegeli, W.; Albe, K.; Hahn, H. Simulation of grain growth in nanocrystalline nickel induced by ion irradiation. Nucl. Instrum. Methods B 2003, 202, 230–235. [Google Scholar] [CrossRef]
- Bacon, D.J.; Calder, A.F.; Gao, F.; Kapinos, V.G.; Wooding, S.J. Computer-Simulation of Defect Production by Displacement Cascades in Metals. Nucl. Instrum. Methods B 1995, 102, 37–46. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Seitzman, L.E.; Wolfer, W.G. Stability of Vacancy Clusters in Metals.1. Energy Calculations for Pure Metals. Philos. Mag. A 1987, 55, 111–125. [Google Scholar] [CrossRef]
- Fu, C.C.; Dalla Torre, J.; Willaime, F.; Bocquet, J.L.; Barbu, A. Multiscale modelling of defect kinetics in irradiated iron. Nat. Mater. 2005, 4, 68–74. [Google Scholar] [CrossRef]
- Shim, J.-H.; Lee, H.-J.; Wirth, B.D. Molecular dynamics simulation of primary irradiation defect formation in Fe–10%Cr alloy. J. Nucl. Mater. 2006, 351, 56–64. [Google Scholar] [CrossRef]
- Terentyev, D.; Malerba, L.; Barashev, A.V. On the correlation between self-interstitial cluster diffusivity and irradiation-induced swelling in Fe-Cr alloys. Philos. Mag. Lett. 2005, 85, 587–594. [Google Scholar] [CrossRef]
- Wharry, J.P.; Was, G.S. The mechanism of radiation-induced segregation in ferritic-martensitic alloys. Acta Mater. 2014, 65, 42–55. [Google Scholar] [CrossRef]
- Senninger, O.; Soisson, F.; Martinez, E.; Nastar, M.; Fu, C.C.; Brechet, Y. Modeling radiation induced segregation in iron-chromium alloys. Acta Mater. 2016, 103, 1–11. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Q.; Wang, T.; Shao, L.; Nastasi, M. Radiation Tolerance in Nano-Structured Crystalline Fe(Cr)/Amorphous SiOC Composite. Crystals 2019, 9, 147. https://doi.org/10.3390/cryst9030147
Su Q, Wang T, Shao L, Nastasi M. Radiation Tolerance in Nano-Structured Crystalline Fe(Cr)/Amorphous SiOC Composite. Crystals. 2019; 9(3):147. https://doi.org/10.3390/cryst9030147
Chicago/Turabian StyleSu, Qing, Tianyao Wang, Lin Shao, and Michael Nastasi. 2019. "Radiation Tolerance in Nano-Structured Crystalline Fe(Cr)/Amorphous SiOC Composite" Crystals 9, no. 3: 147. https://doi.org/10.3390/cryst9030147
APA StyleSu, Q., Wang, T., Shao, L., & Nastasi, M. (2019). Radiation Tolerance in Nano-Structured Crystalline Fe(Cr)/Amorphous SiOC Composite. Crystals, 9(3), 147. https://doi.org/10.3390/cryst9030147