Crystal Growth of Multifunctional Borates and Related Materials
Acknowledgments
References
- Franken, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Generation of Optical Harmonics. Phys. Rev. Lett. 1961, 7, 118–119. [Google Scholar] [CrossRef]
- Monchamp, R.R. The distribution coefficient on neodymium and lutetium in Czochralski grown Y3Al5O12. J. Cryst. Growth 1971, 11, 310–312. [Google Scholar] [CrossRef]
- Inorganic Crystal Structure Data Base—ICSD; Fachinformations Zentrum (FIZ) Karlsruhe: Karlsruhe, Germany; Available online: http://icsd.fiz-karlsruhe.de/ (accessed on 3 March 2019).
- Chen, C.; Wu, Y.; Li, R. The development of new NLO crystals in the borate series. J. Cryst. Growth 1990, 99, 790–798. [Google Scholar] [CrossRef]
- Leonyuk, N.I.; Leonyuk, L.I. Growth and characterization of RM3(BO3)4 crystals. Prog. Cryst. Growth Charact. Mater. 1995, 31, 179–278. [Google Scholar] [CrossRef]
- Leonyuk, N.I. Half a century of progress in crystal growth of multifunctional borates RAl3(BO3)4 (R = Y, Pr, Sm-Lu). J. Cryst. Growth 2017, 476, 69–77. [Google Scholar] [CrossRef]
- Gorbel, G.; Leblanc, M.; Antic-Fidancev, E.; Lamaitre-Blaise, M.; Krupa, J.C. Luminescence analysis and subsequent revision of the crystal structure of triclinic L-EuBO3. J. Alloy. Compd. 1999, 287, 71–78. [Google Scholar] [CrossRef]
- Boyer, D.; Bertrand-Chadeyron, G.; Mahiou, R.; Lou, L.; Brioude, A.; Mugnier, J. Spectral properties of LuBO3 powders and thin films processed by the sol-gel technique. Opt. Mater. 2001, 16, 21–27. [Google Scholar] [CrossRef]
- Wei, Z.G.; Sun, L.D.; Liao, C.S.; Jiang, X.C.; Yan, C.H. Synthesis and size dependent luminescent properties of hexagonal (Y,Gd)BO3:Eu nanocrystals. J. Mater. Chem. 2002, 12, 3665–3670. [Google Scholar] [CrossRef]
- Zvezdin, A.K.; Vorob’ev, G.P.; Kadomtseva, A.V.; Popov, Y.F.; Pyatakov, A.P.; Bezmaternykh, L.N.; Kuvardin, A.V.; Popova, E.A. Magnetoelectric and magnetoelastic interactions in NdFe3(BO3)4 multiferroics. JETP Lett. 2006, 83, 509–514. [Google Scholar] [CrossRef]
- Begunov, A.I.; Demidov, A.A.; Gudim, I.A.; Eremin, E.V. Features of the magnetic and magnetoelectric properties of HoAl3(BO3)4. JETP Lett. 2013, 97, 528–534. [Google Scholar] [CrossRef]
- Kadomtseva, A.M.; Popov, Y.F.; Vorob’ev, G.P.; Kostyuchenko, N.V.; Popov, A.I.; Mukhin, A.A.; Ivanov, V.Y.; Bezmaternykh, L.N.; Gudim, I.A.; Temerov, V.L.; et al. High-temperature magnetoelectricity of terbium aluminum borate: The role of excited states of the rare-earth ion. Phys. Rev. B 2014, 89, 014418. [Google Scholar] [CrossRef]
- Bludov, A.N.; Savina, Y.O.; Pashchenko, V.A.; Gnatchenko, S.L.; Maltsev, V.V.; Kuzmin, N.N.; Leonyuk, N.I. Magnetic properties of a GdCr3(BO3)4 single crystal. Low Temp. Phys. 2018, 44, 423–427. [Google Scholar] [CrossRef]
- Tolstik, N.A.; Kisel, V.E.; Kuleshov, N.V.; Maltsev, V.V.; Leonyuk, N.I. Er,Yb:YAl3(BO3)4—Efficient 1.5 µm laser crystal. Appl. Phys. B 2009, 97, 357–362. [Google Scholar] [CrossRef]
- Lagatsky, A.A.; Sibbett, W.; Kisel, V.E.; Troshin, A.E.; Tolstik, N.A.; Kuleshov, N.V.; Leonyuk, N.I.; Zhukov, A.E.; Rafailov, E.U. Diode-pumped passively mode-locked Er,Yb:YAl3(BO3)4 laser at 1.5–1.6 µm. Opt. Lett. 2008, 33, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Dekker, P.; Dawes, J.M. Liquid-Phase Epitaxial Growth and Characterization of Nd:YAl3(BO3)4 Optical Waveguides. Crystals 2019, 9, 79. [Google Scholar] [CrossRef]
- Cavalli, E.; Leonyuk, N.I. Comparative Investigation on the Emission Properties of RAl3(BO3)4 (R = Pr, Eu, Tb, Dy, Tm, Yb) Crystals with the Huntite Structure. Crystals 2019, 9, 44. [Google Scholar] [CrossRef]
- Buchen, J.; Wesemann, V.; Dehmelt, S.; Gross, A.; Rytz, D. Twins in YAl3(BO3)4 and K2Al2B2O7 Crystals as Revealed by Changes in Optical Activity. Crystals 2019, 9, 8. [Google Scholar] [CrossRef]
- Sinkevicius, G.; Baskys, A. Investigation of Piezoelectric Ringing Frequency Response of Beta Barium Borate Crystals. Crystals 2019, 9, 49. [Google Scholar] [CrossRef]
- Chen, F.; Cheng, X.; Yu, F.; Wang, C.; Zhao, X. Bismuth-Based Oxyborate Piezoelectric Crystals: Growth and Electro-Elastic Properties. Crystals 2019, 9, 29. [Google Scholar] [CrossRef]
- Kuz’micheva, G.M.; Kaurova, I.A.; Rybakov, V.B.; Podbel’skiy, V.V. Crystallochemical Design of Huntite-Family Compounds. Crystals 2019, 9, 100. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonyuk, N.I. Crystal Growth of Multifunctional Borates and Related Materials. Crystals 2019, 9, 164. https://doi.org/10.3390/cryst9030164
Leonyuk NI. Crystal Growth of Multifunctional Borates and Related Materials. Crystals. 2019; 9(3):164. https://doi.org/10.3390/cryst9030164
Chicago/Turabian StyleLeonyuk, Nikolay I. 2019. "Crystal Growth of Multifunctional Borates and Related Materials" Crystals 9, no. 3: 164. https://doi.org/10.3390/cryst9030164
APA StyleLeonyuk, N. I. (2019). Crystal Growth of Multifunctional Borates and Related Materials. Crystals, 9(3), 164. https://doi.org/10.3390/cryst9030164