High Stability LED-Pumped Nd:YVO4 Laser with a Cr:YAG for Passive Q-Switching
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Graydon, O.; Jenkins, A.; Won, R.P.C.; Gevaux, D. Haitz’s law. Nat. Photonics 2007, 1, 23. [Google Scholar]
- Ernst, H.-J.; Charra, F.; Douillard, L. Interband electronic excitation-assisted atomic-scale restructuring of metal surfaces by nanosecond pulsed laser light. Science 1998, 279, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Majchrowski, A.; Kityk, I.V.; Ebothé, J. Influence of YAB: Cr3+ nanocrystallite sizes on two-photon absorption of YAB: Cr3+. Physica Stat. Sol. (b) 2004, 241, 3047–3055. [Google Scholar] [CrossRef]
- Ochs, S.A.; Pankove, J.I. Injection-luminescence pumping of a CaF2:Dy2+ laser. Proc. IEEE 1964, 52, 713–714. [Google Scholar] [CrossRef]
- Reinberg, A.R.; Riseberg, L.A.; Brown, R.M.; Wacker, R.; Holton, W.C. GaAs:Si LED Pumped Yb-Doped YAG Laser. Appl. Phys. Lett. 1971, 19, 11–13. [Google Scholar] [CrossRef]
- Farmer, G.I.; Kiang, Y.C. Low-current-density LED-pumped Nd:YAG laser using a solid cylindrical reflector. J. Appl. Phys. 1974, 45, 1356–1371. [Google Scholar] [CrossRef]
- Stone, J.; Burrus, C.A. Self-contained LED-pumped single-crystal Nd:YAG fiber laser. Fiber Integr. Opt. 1979, 2, 19–46. [Google Scholar] [CrossRef]
- Bilak, V.I.; Goldobin, I.S.; Georgii; Zverev, M.; Kuratev, I.I.; Pashkov, V.A.; Stel’makh, M.F.; Tsvetkov, Y.V.; Solov’eva, N.M. Neodymium YAG lasers pumped by light-emitting diodes. Sov. J. Quantum Electron. 1981, 11, 1471. [Google Scholar] [CrossRef]
- Allen, R.B.; Scalise, S.J. Continuous operation of a Nd:YAG laser by injection luminescent pumping. Appl. Phys. Lett. 1969, 14, 188–190. [Google Scholar] [CrossRef]
- Huang, K.; Su, C.; Lin, M.; Chiu, Y.; Huang, Y. 750-nm LED-pumped Nd: YAG laser with 9% optical efficiency. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 5–10 June 2016; Optical Society of America: Washington, DC, USA, 2016. [Google Scholar]
- Herrnsdorf, J.; Wang, Y.; McKendry, J.J.D.; Gong, Z.; Massoubre, D.; Guilhabert, B.; Tsiminis, G.; Turnbull, G.; Samuel, I.D.W.; Laurand, N.; et al. Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers. Laser Photonics Rev. 2013, 7, 1065–1078. [Google Scholar] [CrossRef]
- Pichon, P.; Barbet, A.; Blanchot, J.; Druon, F.; Balembois, F.; Georges, P. Light-emitting diodes: A new paradigm for Ti:sapphire pumping. Optica 2018, 5, 1236–1239. [Google Scholar] [CrossRef]
- Tucker, A.W.; Birnbaum, M.; Fincher, C.L.; Erler, J.W. Stimulated-emission cross section at 1064 and 1342 nm in Nd: YVO4. J. Appl. Phys. 1977, 48, 4907–4911. [Google Scholar] [CrossRef]
- Lin, D.; Clarkson, W. End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam. Opt. Lett. 2017, 42, 2910–2913. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, T.M.; Wang, C.L. Passively Q-switched diode-pumped Nd:YVO4/Cr4+: YAG single-frequency microchip laser. Electron. Lett. 1997, 33, 1880–1881. [Google Scholar] [CrossRef]
- Barbet, A.; Balembois, F.; Paul, A.; Blanchot, J.; Viotti, A.; Sabater, J.; Druon, F.; Georges, P. Revisiting of LED pumped bulk laser: First demonstration of Nd:YVO4 LED pumped laser. Opt. Lett. 2014, 39, 6731–6734. [Google Scholar] [CrossRef] [PubMed]
- Barbet, A.; Paul, A.; Gallinelli, T.; Balembois, F.; Blanchot, J.; Forget, S.; Chénais, S.; Druon, F.; Georges, P. Light-emitting diode pumped luminescent concentrators: A new opportunity for low-cost solid-state lasers. Optica 2016, 3, 465–468. [Google Scholar] [CrossRef]
- Barbet, A.; Paul, A.; Gallinelli, T.; Balembois, F.; Blanchot, J.; Forget, S.; Chénais, S.; Druon, F.; Georges, P. New scheme for pumping solid-state lasers based on LED-pumped luminescent concentrators. In Proceedings of the Lasers Congress 2016 (ASSL, LSC, LAC), Boston, MA, USA, 30 October 2016; Optical Society of America: Washington, DC, USA, 2016. [Google Scholar]
- Cho, C.Y.; Pu, C.C.; Su, K.W.; Chen, Y.F. LED-side-pumped Nd: YAG laser with >20% optical efficiency and the demonstration of an efficient passively Q-switched LED-pumped solid-state laser. Opt. Lett. 2017, 42, 2394–2397. [Google Scholar] [CrossRef] [PubMed]
- Chenais, S.; Balembois, F.; Druon, F.; Lucas-Leclin, G.; Georges, P. Thermal lensing in diode-pumped ytterbium Lasers-Part I: Theoretical analysis and wavefront measurements. IEEE J. Quantum Electron. 2004, 40, 1217–1234. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Zhao, T.; Ge, W.; Zhong, Q.; Li, M.; Yu, J.; Fan, Z.; Bian, S.; Chen, Y. High Stability LED-Pumped Nd:YVO4 Laser with a Cr:YAG for Passive Q-Switching. Crystals 2019, 9, 201. https://doi.org/10.3390/cryst9040201
Xiao H, Zhao T, Ge W, Zhong Q, Li M, Yu J, Fan Z, Bian S, Chen Y. High Stability LED-Pumped Nd:YVO4 Laser with a Cr:YAG for Passive Q-Switching. Crystals. 2019; 9(4):201. https://doi.org/10.3390/cryst9040201
Chicago/Turabian StyleXiao, Hong, Tianzhuo Zhao, Wenqi Ge, Qixiu Zhong, Mingshan Li, Jiaqi Yu, Zhongwei Fan, Shengwei Bian, and Yanzhong Chen. 2019. "High Stability LED-Pumped Nd:YVO4 Laser with a Cr:YAG for Passive Q-Switching" Crystals 9, no. 4: 201. https://doi.org/10.3390/cryst9040201
APA StyleXiao, H., Zhao, T., Ge, W., Zhong, Q., Li, M., Yu, J., Fan, Z., Bian, S., & Chen, Y. (2019). High Stability LED-Pumped Nd:YVO4 Laser with a Cr:YAG for Passive Q-Switching. Crystals, 9(4), 201. https://doi.org/10.3390/cryst9040201