Microstructure and Mechanical Properties of Aged and Hot Rolled AZ80 Magnesium Alloy Sheets
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Microstructure of the Solution Treated and Aged AZ80 Magnesium Alloy
3.2. The Microstructure, Texture Analysis of the Pre-Aged AZ80 Magnesium Alloy Sheets after Rolling
3.3. Mechanical Properties of the Pre-Aged AZ80 Magnesium Alloy Sheets after Rolling
4. Conclusions
- (1)
- The precipitates γ-Mg17Al12 progressively increased in accordance with pre-ageing time, and during rolling facilitated the newly created fine grains and sub-grains with some original grains growing, thus leading to an inhomogeneous or bimodal microstructure.
- (2)
- The larger amount of precipitates contributed to weakening the basal-type texture or occurrence of double-peak texture that favors the basal slip. The average Schmid Factor of basal plane were 0.18, 0.18, 0.228 and 0.252, respectively, according to the pre-ageing times of 75 min, 160 min, 200 min and 240 min.
- (3)
- The similar YS in the rolled AZ80 magnesium alloys pre-aged for various time indicated that the pre-ageing treatment had little effect on YS. However, the highest UTS of 363 MPa and a medium elongation of 13.3% for the alloy pre-aged for 200 min was put down to the interaction of hard second phase particles with dislocation gliding and the lowest basal-type texture intensity. The larger amount of particles and the particles decorating the grain boundaries led to initiating micro-cracks and deteriorated mechanical properties.
Author Contributions
Funding
Conflicts of Interest
References
- Guan, M.S.; Hu, Y.B.; Zheng, T.X.; Zhao, T.S.; Pan, F.S. Composition Optimization and Mechanical Properties of Mg-Al-Sn-Mn Alloys by Orthogonal Design. Materials 2018, 11, 1424. [Google Scholar] [CrossRef]
- Chen, Y.A.; Gao, J.J.; Song, Y.; Wang, Y. The influences of Sr on the microstructure and mechanical properties of Mg-5Zn-2Al alloy. Mater. Sci. Eng. A 2016, 671, 127–134. [Google Scholar] [CrossRef]
- Hu, Y.B.; Zhang, C.; Zheng, T.X.; Pan, F.S.; Tang, A.T. Strengthening Effects of Zn Addition on an Ultrahigh Ductility Mg-Gd-Zr Magnesium Alloy. Materials 2018, 11, 1942. [Google Scholar] [CrossRef]
- Hu, Y.B.; Guan, M.S.; Zheng, T.X. Microstructure, mechanical properties and yield asymmetry of Mg–4Al–2Sn–xY alloys. Mater. Sci. Technol. 2018, 34, 1131–1141. [Google Scholar] [CrossRef]
- Liu, S.J.; Yang, G.Y.; Luo, S.F.; Jie, W.Q. Microstructure and mechanical properties of sand mold cast Mg–4.58Zn–2.6Gd–0.18Zr magnesium alloy after different heat treatments. J. Alloys Compd. 2015, 644, 846–853. [Google Scholar] [CrossRef]
- Fu, W.; Wang, R.H.; Xue, H.; Kuang, J.; Zhang, J.Y.; Liu, G.; Sun, J. Effects of Zr addition on the multi-scale second-phase particles and fracture behavior for Mg-3Gd-1Zn alloy. J. Alloys Compd. 2018, 747, 197–210. [Google Scholar] [CrossRef]
- Wu, D.; Chen, R.S.; Han, E.H. Excellent room-temperature ductility and formability of rolled Mg–Gd–Zn alloy sheets. J. Alloys Compd. 2011, 509, 2856–2863. [Google Scholar] [CrossRef]
- Ding, H.L.; Zhang, P.; Cheng, G.P.; Kamado, S. Effect of calcium addition on microstructure and texture modification of Mg rolled sheets. Trans. Nonferrous Met. Soc. China 2015, 25, 2875–2883. [Google Scholar] [CrossRef]
- Hu, Y.B.; Deng, J.; Zhao, C.; Pan, F.S.; Peng, J. Microstructure and mechanical properties of Mg–Gd–Zr alloys with low gadolinium contents. J. Mater. Sci. 2011, 46, 5838–5846. [Google Scholar] [CrossRef]
- Zhang, B.P.; Wang, Y.; Geng, L.; Lu, C.X. Effects of calcium on texture and mechanical properties of hot-extruded Mg–Zn–Ca alloys. Mater. Sci. Eng. A 2012, 539, 56–60. [Google Scholar] [CrossRef]
- Zhang, B.P.; Geng, L.; Huang, L.J.; Zhang, X.X.; Dong, C.C. Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures. Scripta Mater. 2010, 63, 1024–1027. [Google Scholar] [CrossRef]
- Yan, H.; Chen, R.S.; Han, E.H. Room-temperature ductility and anisotropy of two rolled Mg–Zn–Gd alloys. Mater. Sci. Eng. A 2010, 527, 3317–3322. [Google Scholar] [CrossRef]
- Geng, L.; Zhang, B.P.; Li, A.B.; Dong, C.C. Microstructure and mechanical properties of Mg–4.0Zn–0.5Ca alloy. Mater. Lett. 2009, 63, 557–559. [Google Scholar] [CrossRef]
- Zheng, T.X.; Hu, Y.B.; Zhang, Y.X.; Pan, F.S. Formation of a hydrophobic and corrosion resistant coating on magnesium alloy via a one-step hydrothermal method. J. Colloid Interface Sci. 2017, 505, 87–95. [Google Scholar] [CrossRef]
- Zheng, T.X.; Hu, Y.B.; Yang, S.W. Effect of grain size on the electrochemical behavior of pure magnesium anode. J. Magnesium Alloys 2017, 5, 404–411. [Google Scholar] [CrossRef]
- Zheng, T.X.; Hu, Y.B.; Zhang, Y.X.; Yang, S.W.; Pan, F.S. Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries. Mater. Des. 2018, 137, 245–255. [Google Scholar] [CrossRef]
- Wang, C.P.; Xin, R.L.; Li, D.R.; Song, B.; Wu, M.Y.; Liu, Q. Enhancing the age-hardening response of rolled AZ80 alloy by pre-twinning deformation. Mater. Sci. Eng. A 2017, 680, 152–156. [Google Scholar] [CrossRef]
- Celotto, S.; Bastow, T.J. Study of precipitation in aged binary Mg–Al and ternary Mg–Al–Zn alloys using 27Al NMR spectroscopy. Acta Mater. 2001, 49, 41–51. [Google Scholar] [CrossRef]
- Duly, D.; Simon, J.P.; Brechet, Y. On the competition between continuous and discontinuous precipitations in binary Mg-Al alloys. Acta Metall. Mater. 1995, 43, 101–106. [Google Scholar]
- Lai, W.J.; Li, Y.Y.; Hsu, Y.F.; Trong, S.; Wang, W.H. Aging behaviour and precipitate morphologies in Mg–7.7Al–0.5Zn–0.3Mn (wt %) alloy. J. Alloys Compd. 2009, 476, 118–124. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N. Discontinuous and continuous precipitation in magnesium–aluminium type alloys. J. Alloys Compd. 2009, 477, 870–876. [Google Scholar] [CrossRef]
- Yu, S.L.; Gao, Y.H.; Liu, C.M.; Han, X.Z. Effect of aging temperature on precipitation behavior and mechanical properties of extruded AZ80-Ag alloy. J. Alloys Compd. 2015, 646, 431–436. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.M.; Xue, Y. Influence of aging on microstructure and mechanical properties of AZ80 and ZK60 magnesium alloys. Trans. Nonferrous Met. Soc. China 2011, 21, 739–744. [Google Scholar] [CrossRef]
- Xu, S.W.; Matsumoto, N.; Kamado, S.; Honma, T.; Kojima, Y. Effect of pre-aging treatment on microstructure and mechanical properties of hot compressed Mg–9Al–1Zn alloy. Mater. Sci. Eng. A 2009, 517, 354–360. [Google Scholar] [CrossRef]
- Wang, C.J.; Deng, K.K.; Nie, K.B.; Shang, S.J.; Liang, W. Competition behavior of the strengthening effects in as-extruded AZ91 matrix: Influence of pre-existed Mg 17 Al 12 phase. Mater. Sci. Eng. A 2016, 656, 102–110. [Google Scholar] [CrossRef]
- Li, X.; Jiao, F.; Al-Samman, T.; Ghosh Chowdhury, S. Influence of second-phase precipitates on the texture evolution of Mg–Al–Zn alloys during hot deformation. Scripta Mater. 2012, 66, 159–162. [Google Scholar] [CrossRef]
- Lv, C.L.; Liu, T.M.; Liu, D.J.; Jiang, S.; Zeng, W. Effect of heat treatment on tension–compression yield asymmetry of AZ80 magnesium alloy. Mater. Des. 2012, 33, 529–533. [Google Scholar] [CrossRef]
- Zhao, D.G.; Wang, Z.Q.; Zuo, M.; Geng, H.R. Effects of heat treatment on microstructure and mechanical properties of extruded AZ80 magnesium alloy. Mater. Des. 2014, 56, 589–593. [Google Scholar] [CrossRef]
- Zhou, X.J.; Zhang, J.; Chen, X.M.; Zhang, X.; Li, M.J. Fabrication of high-strength AZ80 alloys via multidirectional forging in air with no need of ageing treatment. J. Alloys Compd. 2019, 787, 551–559. [Google Scholar] [CrossRef]
- Jiang, Q.T.; Ma, X.M.; Zhang, K.; Li, Y.T.; Li, X.G.; Li, Y.J.; Ma, M.L.; Hou, B.R. Anisotropy of the crystallographic orientation and corrosion performance of high-strength AZ80 Mg alloy. J. Magnesium Alloys 2015, 3, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.S.; Suzuki, K.; Saito, N. Microstructure and mechanical properties of AZ80 magnesium alloy sheet processed by differential speed rolling. Mater. Sci. Eng. A 2009, 508, 226–233. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, D.F.; Tang, T.; Yu, D.L.; Xu, J.Y.; Pan, F.S. Effect of Aging Treatment before Extrusion on Microstructure and Mechanical Properties of AZ80 Magnesium Alloy. Rare Metal Mat Eng. 2017, 46, 1768–1774. [Google Scholar]
- Zindal, A.; Jain, J.; Prasad, R.; Singh, S.S.; Sarvesha, R.; Cizek, P.; Barnett, M.R. Effect of heat treatment variables on the formation of precipitate free zones (PFZs) in Mg-8Al-0.5Zn alloy. Mater. Charact. 2018, 136, 175–182. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Zhang, D.F.; Fan, X.W.; Guo, F.; Hu, G.S.; Xue, H.S.; Pan, F.S. The effect of Sn addition on aging behavior and mechanical properties of wrought AZ80 magnesium alloy. J. Alloys Compd. 2015, 620, 368–375. [Google Scholar] [CrossRef]
- Clark, J.B. Age hardening in a Mg-9 wt % Al alloy. Acta Metall. 1968, 16, 141–152. [Google Scholar] [CrossRef]
- Clark, J.B. Transmission Electron Microscopy Study of Age Hardening in a Mg-5 wt % Zn Alloy. Acta Metall. 1965, 13, 1281–1289. [Google Scholar] [CrossRef]
- Al-Samman, T. Modification of texture and microstructure of magnesium alloy extrusions by particle-stimulated recrystallization. Mater. Sci. Eng. A 2013, 560, 561–566. [Google Scholar] [CrossRef]
- Hu, Y.B.; Zhang, C.; Meng, W.Q.; Pan, F.S.; Zhou, J.P. Microstructure, mechanical and corrosion properties of Mg-4Al-2Sn-xY-0.4Mn alloys. J. Alloys Compd. 2017, 727, 491–500. [Google Scholar] [CrossRef]
- Yu, Z.W.; Tang, A.T.; He, J.J.; Gao, Z.Y.; She, J.; Liu, J.G.; Pan, F.S. Effect of high content of manganese on microstructure, texture and mechanical properties of magnesium alloy. Mater. Charact. 2018, 136, 310–317. [Google Scholar] [CrossRef]
- Zengin, H.; Turen, Y. Effect of La content and extrusion temperature on microstructure, texture and mechanical properties of Mg-Zn-Zr magnesium alloy. Mater. Chem. Phys. 2018, 214, 421–430. [Google Scholar] [CrossRef]
- Borkar, H.; Hoseini, M.; Pekguleryuz, M. Effect of strontium on the texture and mechanical properties of extruded Mg–1% Mn alloys. Mater. Sci. Eng. A 2012, 549, 168–175. [Google Scholar] [CrossRef]
- Styczynski, A.; Hartig, C.; Bohlen, J.; Letzig, D. Cold rolling textures in AZ31 wrought magnesium alloy. Scripta Mater. 2004, 50, 943–947. [Google Scholar] [CrossRef]
- Lugo, M.; Tschopp, M.A.; Jordon, J.B.; Horstemeyer, M.F. Microstructure and damage evolution during tensile loading in a wrought magnesium alloy. Scripta Mater. 2011, 64, 912–915. [Google Scholar] [CrossRef]
- Geng, J.; Nie, J.F. Microstructure and mechanical properties of extruded Mg–1Ca–1Zn–0.6Zr alloy. Mater. Sci. Eng. A 2016, 653, 27–34. [Google Scholar] [CrossRef]
- Kondori, B.; Benzerga, A.A. Modeling damage accumulation to fracture in a magnesium-rare earth alloy. Acta Mater. 2017, 124, 225–236. [Google Scholar] [CrossRef]
Pre-Ageing Time | Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Elongation (%) |
---|---|---|---|
75 min | 274 | 330 | 5.1 |
160 min | 276 | 350 | 9.8 |
200 min | 281 | 363 | 13.3 |
240 min | 273 | 332 | 5.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Hu, Y.; Zhao, T.; Yao, Q.; Pan, F. Microstructure and Mechanical Properties of Aged and Hot Rolled AZ80 Magnesium Alloy Sheets. Crystals 2019, 9, 239. https://doi.org/10.3390/cryst9050239
He B, Hu Y, Zhao T, Yao Q, Pan F. Microstructure and Mechanical Properties of Aged and Hot Rolled AZ80 Magnesium Alloy Sheets. Crystals. 2019; 9(5):239. https://doi.org/10.3390/cryst9050239
Chicago/Turabian StyleHe, Bing, Yaobo Hu, Tianshuo Zhao, Qingshan Yao, and Fusheng Pan. 2019. "Microstructure and Mechanical Properties of Aged and Hot Rolled AZ80 Magnesium Alloy Sheets" Crystals 9, no. 5: 239. https://doi.org/10.3390/cryst9050239
APA StyleHe, B., Hu, Y., Zhao, T., Yao, Q., & Pan, F. (2019). Microstructure and Mechanical Properties of Aged and Hot Rolled AZ80 Magnesium Alloy Sheets. Crystals, 9(5), 239. https://doi.org/10.3390/cryst9050239