Dielectric Relaxor and Conductivity Mechanism in Fe-Substituted PMN-32PT Ferroelectric Crystal
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Park, S.E.; Shrout, T.R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 1997, 82, 1804–1811. [Google Scholar] [CrossRef]
- Sun, E.; Cao, W. Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci. 2014, 65, 124–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, C.; Liu, J.; Li, F.; Xu, Z. Thickness dependence of dielectric and piezoelectric properties for alternating current electric-field-poled relaxor-PbTiO3 crystals. J. Appl. Phys. 2019, 125, 014102. [Google Scholar] [CrossRef]
- Xu, G.; Wen, J.; Stock, C.; Gehring, P.M. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nature Mater. 2008, 7, 562–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Zhang, S.J.; Yang, T.; Xu, Z.; Zhang, N.; Liu, G.; Wang, J.; Cheng, Z.; Ye, Z.G.; Luo, J.; Shrout, T.R.; Chen, L.Q. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nature. Commun. 2016, 7, 13807. [Google Scholar] [CrossRef] [Green Version]
- Manley, M.E.; Lynn, J.W.; Abernathy, D.L.; Specht, E.D.; Delaire, O.; Bishop, A.R.; Sahul, R.; Budai, J.D. Phonon localization drives polar nanoregions in a relaxor ferroelectric. Nature Commun. 2014, 5, 3683. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Lin, D.B.; Chen, Z.B.; Cheng, Z.X.; Wang, J.L.; Li, C.C.; Xu, Z.; Huang, Q.W.; Liao, X.Z.; Chen, L.Q.; Shrout, T.R.; Zhang, S.J. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nature Mater. 2018, 17, 349–354. [Google Scholar] [CrossRef]
- Zhang, T.F.; Tang, X.G.; Ge, P.Z.; Liu, Q.X.; Jiang, Y.P. Orientation related electrocaloric effect and dielectric phase transitions of relaxor PMN-PT single crystals. Ceram. Int. 2017, 43, 16300–16305. [Google Scholar] [CrossRef]
- Oh, H.T.; Joo, H.J.; Kim, M.C.; Lee, H.Y. Thickness–Dependent Properties of Undoped and Mn-doped (001) PMN–29PT[Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals. J. Korean Ceram. Soc. 2018, 55, 290–298. [Google Scholar] [CrossRef]
- Luo, L.H.; Wang, F.F.; Tang, Y.X.; Zhu, Y.J.; Wang, J.; Luo, H.S. Fe-doped 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystals. J. Phys. D: Appl. Phys. 2008, 41, 205401. [Google Scholar] [CrossRef]
- Wan, X.M.; Chew, K.H.; Chan, H.L.W.; Choy, C.L.; Zhao, X.Y.; Luo, H.S. The effect of Fe substitution on pyroelectric properties of 0.62Pb(Mg1/3Nb2/3)O3–0.38PbTiO3 single crystals. J. Appl. Phys. 2005, 97, 064105. [Google Scholar] [CrossRef]
- Zheng, L.M.; Yang, L.Y.; Li, Y.R.; Lu, X.Y.; Huo, D.; Lü, W.M.; Zhang, R.; Yang, B.; Cao, W.W. Origin of Improvement in Mechanical Quality Factor in Acceptor-Doped Relaxor-Based Ferroelectric Single Crystals. Phys. Rev. Appl. 2018, 9, 064028. [Google Scholar] [CrossRef]
- Li, X.J.; Jing, Q.; Xi, Z.Z.; Liu, P.; Long, W.; Fang, P.Y. Dielectric relaxation and electrical conduction in (BixNa1−x)0.94Ba0.06TiO3 ceramics. J. Am. Ceram. Soc. 2018, 101, 789–799. [Google Scholar] [CrossRef]
- Elissalde, C.; Ravez, J. Ferroelectric ceramics: defects and dielectric relaxations. J. Mater. Chem. 2001, 11, 1957–1967. [Google Scholar] [CrossRef]
- Chen, A.; Zhi, Y.; Cross, L.E. Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction. Phys. Rev. B 2000, 62, 228–236. [Google Scholar]
- Xie, X.C.; Zhou, Z.Y.; Wang, T.Z.; Liang, R.H.; Dong, X.L. High temperature impedance properties and conduction mechanism of W6+–doped CaBi4Ti4O15 Aurivillius piezoceramics. J. Appl. Phys. 2018, 124, 204101. [Google Scholar] [CrossRef]
- Zhao, L.L.; Xu, R.X.; Wei, Y.X.; Han, X.; Zhai, C.X.; Zhang, Z.X.; Qi, X.F.; Cui, B.; Jonesc, J.L. Giant dielectric phenomenon of Ba0.5Sr0.5TiO3/CaCu3Ti4O12 multilayers due to interfacial polarization for capacitor applications. J. Eur. Ceram. Soc. 2019, 39, 1116–1121. [Google Scholar] [CrossRef]
- Wang, C.C.; Zhang, M.N.; Xu, K.B.; Wang, G.J. Origin of high-temperature relaxor-like behavior in CaCu3Ti4O12. J. Appl. Phys. 2012, 112, 034109. [Google Scholar] [CrossRef]
- Wu, X.; Liu, L.H.; Li, X.B.; Zhao, X.Y.; Lin, D.; Luo, H.S.; Huang, Y.L. The influence of defects on ferroelectric and pyroelectric properties of Pb(Mg1/3Nb2/3)O3–0. 28PbTiO3 single crystals. Mater. Chem. Phys. 2012, 132, 87–90. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, S.J.; Liu, W.; Donnelly, N.J.; Xu, Z.; Randall, C.A. Time dependent dc resistance degradation in lead-based perovskites: 0.7PbMg1/3Nb2/3O3−0.3PbTiO3. J. Appl. Phys. 2009, 105, 053705. [Google Scholar] [CrossRef]
- Wang, C.C.; Zhang, M.N.; Xia, W. High-Temperature Dielectric Relaxation in Pb(Mg1/3Nb2/3)O3–PbTiO3 Single Crystals. J. Am. Ceram. Soc. 2013, 96, 1521–1525. [Google Scholar] [CrossRef]
- He, A.G.; Xi, Z.Z.; Li, X.J.; Long, W.; Fang, P.Y.; Zhao, J.; Yu, H.B.; Kong, Y.L. Optical properties of Ho3+- and Ho3+/Yb3+-modified PSN-PMN-PT crystals. Mater. Lett. 2018, 219, 64–67. [Google Scholar] [CrossRef]
- Luo, N.N.; Zhang, S.J.; Li, Q.; Yan, Q.F.; Zhang, Y.L.; Ansella, T.; Luo, J.; Shrout, T.R. Crystallographic Dependence of Internal Bias in Domain Engineered Mn–doped Relaxor–PbTiO3 Single Crystals. J. Mater. Chem. C 2016, 4, 4568–4576. [Google Scholar] [CrossRef]
- Islam, M.S.J. Ionic transport in ABO3 perovskite oxides: a computer modelling tour. Mater. Chem. 2000, 10, 1027–1038. [Google Scholar] [CrossRef]
- Liu, X.; Fang, B.J.; Deng, J.; Deng, H.; Yan, H.; Yue, Q.W.; Chen, J.W.; Li, X.B.; Ding, J.N.; Zhao, X.Y.; Luo, H.S. Phase transition behavior and defect chemistry of [001]-oriented 0.15Pb(In1/2Nb1/2)O3−0.57Pb(Mg1/3Nb2/3)O3−0.28PbTiO3-Mn single crystals. J. Appl. Phys. 2015, 117, 244102. [Google Scholar] [CrossRef]
- Li, X.J.; Xi, Z.Z.; Liu, P.; Long, W.; Fang, P.Y. Stress and temperature-induced phase transitions and thermal expansion in (001)-cut PMN-31PT single crystal. J. Alloys Compound. 2015, 652, 287–291. [Google Scholar] [CrossRef]
- Noheda, B.; Cox, D.E.; Shirane, G.; Gao, J.; Ye, Z.G. (1−x)PbMg1/3Nb2/3O3−xPbTiO3. Phys. Rev. B 2002, 66, 054104. [Google Scholar] [CrossRef]
- Gridnev, S.A.; Glazunov, A.A.; Tsotsorin, A.N. Temperature Evolusion of the Local Order Parameter in Relaxor Ferroelectrics (1−x)PMN−xPZT. Phys. Stat. Sol. A 2005, 202, R121–R124. [Google Scholar] [CrossRef]
- Liu, L.J.; Huang, Y.M.; Su, C.X.; Fang, L.; Wu, M.X.; Hu, C.Z.; Fan, H.Q. Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Appl. Phys. A 2011, 104, 1047–1051. [Google Scholar] [CrossRef]
- Raymond, M.V.; Smyth, D.M. Defects and charge transport in perovskit ferroelectrics. J. Ph, Che. Sohds. 1996, 10, 1507–1511. [Google Scholar] [CrossRef]
- Robertson, J.; Warren, W.L.; Tuttle, B.A.; Dimos, D.; Smyth, D.M. Shallow Pb3+ hole traps in lead zirconate titanate ferroelectrics. Appl. Phys. Lett. 1993, 63, 1519. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Fan, X.; Xi, Z.; Liu, P.; Long, W.; Fang, P.; Guo, F.; Nan, R. Dielectric Relaxor and Conductivity Mechanism in Fe-Substituted PMN-32PT Ferroelectric Crystal. Crystals 2019, 9, 241. https://doi.org/10.3390/cryst9050241
Li X, Fan X, Xi Z, Liu P, Long W, Fang P, Guo F, Nan R. Dielectric Relaxor and Conductivity Mechanism in Fe-Substituted PMN-32PT Ferroelectric Crystal. Crystals. 2019; 9(5):241. https://doi.org/10.3390/cryst9050241
Chicago/Turabian StyleLi, Xiaojuan, Xing Fan, Zengzhe Xi, Peng Liu, Wei Long, Pinyang Fang, Feifei Guo, and Ruihua Nan. 2019. "Dielectric Relaxor and Conductivity Mechanism in Fe-Substituted PMN-32PT Ferroelectric Crystal" Crystals 9, no. 5: 241. https://doi.org/10.3390/cryst9050241
APA StyleLi, X., Fan, X., Xi, Z., Liu, P., Long, W., Fang, P., Guo, F., & Nan, R. (2019). Dielectric Relaxor and Conductivity Mechanism in Fe-Substituted PMN-32PT Ferroelectric Crystal. Crystals, 9(5), 241. https://doi.org/10.3390/cryst9050241