Silicon Heterojunction Solar Cells with p-Type Silicon Carbon Window Layer
Abstract
:1. Introduction
2. Experimental
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Taguchi, M.; Yano, A.; Tohoda, S.; Matsuyama, K.; Nakamura, Y.; Nishiwaki, T.; Fujita, K.; Maruyama, E. 24.7% Record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 2014, 4, 96–99. [Google Scholar] [CrossRef]
- DeWolf, S.; Descoeudres, A.; Holman, Z.C.; Ballif, C. High-efficiency silicon heterojunction solar cells: A review. Green 2012, 2, 7–24. [Google Scholar]
- Mueller, T.; Wong, J.; Aberle, A.G. Heterojunction silicon wafer solar cells using amorphous silicon suboxides for interface passivation. Energy Procedia 2012, 15, 97–106. [Google Scholar] [CrossRef]
- Descoeudres, A.; Allebé, C.; Badel, N.; Barraud, L.; Champliaud, J.; Debrot, F.; Faes, A.; Lachowicz, A.; Levrat, J.; Nicolay, S.; et al. Silicon Heterojunction Solar Cells: Towards Low-cost High-Efficiency Industrial Devices and Application to Low-concentration PV. Energy Procedia 2015, 77, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Stanislau, Y.; Herasimenka, W.J.D.; Bowden, S.G. > 750 mV open circuit voltage measured on 50 μm thick silicon heterojunction solar cell. Appl. Phys. Lett. 2013, 103, 053511. [Google Scholar]
- Holman, Z.C.; Descoeudres, A.; Barraud, L.; Fernandez, F.Z.; Seif, J.P.; Wolf, S.D.; Ballif, C. Current Losses at the Front of Silicon Heterojunction Solar Cells. IEEE J. Photovolt. 2012, 2, 7–15. [Google Scholar] [CrossRef]
- Ding, K.; Aeberhard, U.; Finger, F.; Rau, U. Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers. Phys. Status Solidi Rapid Res. Lett. 2012, 6, 193–195. [Google Scholar] [CrossRef]
- Battaglia, C.; DeNicolás, S.M.; DeWolf, S.; Yin, X.; Zheng, M.; Ballif, C.; Javey, A. Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl. Phys. Lett. 2014, 104, 113902. [Google Scholar] [CrossRef]
- Peter Seif, J.; Descoeudres, A.; Filipič, M.; Smole, F.; Topič, M.; Charles Holman, Z.; DeWolf, S.; Ballif, C. Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells. J. Appl. Phys. 2014, 115, 024502. [Google Scholar] [CrossRef] [Green Version]
- Sritharathikhun, J.; Jiang, F.; Miyajima, S.; Yamada, A.; Konagai, M. Optimization of p-type hydrogenated microcrystalline silicon oxide window layer for high-efficiency crystalline silicon heterojunction solar cells. Jpn. J. Appl. Phys. 2009, 48, 1016031–1016035. [Google Scholar] [CrossRef]
- Lu, M.; Bowden, S.; Das, U.; Birkmire, R. Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation. Appl. Phys. Lett. 2007, 91, 063507. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (Version 45). Prog. Photovolt. 2015, 23, 1–9. [Google Scholar] [CrossRef]
- Yang, J.; Banerjee, A.; Guha, S. Amorphous silicon based photovoltaics–From earth to the “final frontier”. Sol. Energy Mater. Sol. Cells 2003, 78, 597–612. [Google Scholar] [CrossRef]
- Andoh, N.; Nagayoshi, H.; Kanbashi, T.; Kamisako, K. Characterization of high-quality a-SiC: H films prepared by hydrogen-radical CVD method. Sol. Energy Mater. Sol. Cells 1997, 49, 89–94. [Google Scholar] [CrossRef]
- Wang, Y.H.; Lin, J.; Huan, C.H. Multiphase structure of hydrogenated amorphous silicon carbide thin films. Mater. Sci. Eng. B 2002, 95, 43. [Google Scholar] [CrossRef]
- Bullot, J.; Schmidt, M.P. Physics of Amorphous Silicon–Carbon Alloys. Phys. Status Solidi B 1987, 143, 345. [Google Scholar] [CrossRef]
- Vasin, A.V.; Kolesnik, S.P.; Konchits, A.A.; Rusavsky, A.V.; Lysenko, V.S.; Nazarov, A.N.; Ishikawa, Y.; Koshka, Y. Structure, paramagnetic defects and light-emission of carbon-rich a-SiC:H films. J. Appl. Phys. 2008, 103, 123710. [Google Scholar] [CrossRef]
- Robertson, J. Defects in Diamond-Like Carbon. J. Phys. Status Solidi A 2001, 186, 177. [Google Scholar] [CrossRef]
- Yao, Y.; Xiao, S.; Zhang, X.; Gu, X. Simulation optimizing of n type HIT solar cells with AFORS-HET Mod. Phys. Lett. B 2017, 31, 1740025. [Google Scholar]
- Lisheng, W.; Fengxiang, C.; Yu, A. Simulation of high efficiency heterojunction solar cells with AFORS-HET. J. Phys. Conf. Ser. 2011, 276, 012177. [Google Scholar] [CrossRef]
- Fortes, M.; Belfar, A.; Garcia-Loureiro, A.J. Two-dimensional simulation study of textured p-i-n a-Si:H solar cells with p-a-SiC:H and p-nc-Si:H window layers. Optik 2016, 127, 9464–9473. [Google Scholar] [CrossRef]
- Cannella, G.; Principato, F.; Foti, M.; Di Marco, S.; Grasso, A.; Lombardo, S. Carrier transport mechanism in the SnO2: F/p-type a-Si:H heterojunction. J. Appl. Phys. 2011, 110, 024502. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Liu, W.; Yao, J.H. Novel high-efficiency crystalline-silicon-based compound heterojunction solar cells: HCT (heterojunction with compound thin-layer). Phys. Chem. Chem. Phys. 2014, 16, 15400. [Google Scholar] [CrossRef]
- Baek, S.; Lee, J.; Lee, Y.-J.; Iftiquar, S.M.; Kim, Y.; Park, J.; Yi, J. Interface modification effect between p-type a-SiC:H and ZnO: Al in p-i-n amorphous silicon solar cells. Nanoscale Res. Lett. 2012, 7, 81. [Google Scholar] [CrossRef]
- Dao, V.A.; Lee, Y.; Kim, S.; Cho, J.; Ahn, S.; Kim, Y.; Lakshminarayan, N.; Yi, J. Effect of Valence Band Offset and Surface Passivation Quality in the Silicon Heterojunction Solar Cells. J. Electrochem. Soc. 2011, 158, H1129. [Google Scholar] [CrossRef]
- Shen, L.; Meng, F.; Liu, Z. Roles of the Fermi level of doped a-Si: H and band offsets at a-Si: H/c-Si interfaces in n-type HIT solar cells. Sol. Energy 2013, 97, 168–175. [Google Scholar] [CrossRef]
- Wang, F.; Du, R.; Ren, Q.; Wei, C.; Zhao, Y.; Zhang, X. Band alignment and enhancement of the interface properties for heterojunction solar cells by employing amorphous–nanocrystalline hierarchical emitter layers. J. Mater. Chem. C 2017, 5, 1751–1757. [Google Scholar] [CrossRef]
- Pham, D.P.; Kim, S.; Park, J.; Cho, J.; Kim, H.; Le, A.H.T.; Yi, J. Role of a-Si:H buffer layer at the p/i interface and band gap profiling of the absorption layer on enhancing cell parameters in hydrogenated amorphous silicon germanium solar cells. Optik 2017, 136, 507–512. [Google Scholar] [CrossRef]
- Yu, F.; Huang, G.; Lin, W.; Xu, C. An analysis for S-shaped I-V characteristics of organic solar cells using lumped-parameter equivalent circuit model. Sol. Energy 2019, 177, 229–240. [Google Scholar] [CrossRef]
- Huang, G.; Yu, F.; Xu, C. An Analytical Solution to Lumped Parameter Equivalent Circuit Model of Organic Solar Cells. Crystals 2018, 8, 224. [Google Scholar] [CrossRef]
- Yu, F.; Huang, G.; Lin, W.; Xu, C. Lumped-Parameter Equivalent Circuit Model for S-Shaped Current–Voltage Characteristics of Organic Solar Cells. IEEE Trans. Electron Devices 2019, 66, 670–677. [Google Scholar] [CrossRef]
- Zhang, C.F.; Zhang, J.C.; Hao, Y.; Lin, Z.H.; Zhu, C.X. A simple and efficient solar cell parameter extraction method from a single current-voltage curve. J. Appl. Phys. 2011, 110, 064504. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Power (W) | 10 |
Pressure (Pa) | 80 |
Substrate Temperature (°C) | 250 |
Thickness (μm) | 0.5 |
Process time (min) | 40 |
SiH4 flow rate (sccm) | 20 |
B2H6 flow rate (sccm) | 10 |
CH4 flow rate (sccm) | 0~50 |
H2 flow rate (sccm) | 90~40 |
Parameter | a-Si:H | a-SiC1 | a-SiC2 | a-SiC3 |
---|---|---|---|---|
Power (W) | 10 | 10 | 10 | 10 |
Pressure (Pa) | 80 | 80 | 80 | 80 |
Substrate Temperature (°C) | 200 | 200 | 200 | 200 |
Thickness (μm) | 0.5 | 0.5 | 0.5 | 0.5 |
Process time (min) | 40 | 40 | 40 | 40 |
SiH4 flow rate (sccm) | 20 | 20 | 20 | 20 |
B2H6 flow rate (sccm) | 10 | 10 | 10 | 10 |
CH4 flow rate (sccm) | 0 | 10 | 30 | 50 |
H2 flow rate (sccm) | 90 | 80 | 60 | 40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-H.; Zhang, X.-Y.; Zhao, M.J.; Lin, H.-J.; Zhu, W.-Z.; Lien, S.-Y. Silicon Heterojunction Solar Cells with p-Type Silicon Carbon Window Layer. Crystals 2019, 9, 402. https://doi.org/10.3390/cryst9080402
Hsu C-H, Zhang X-Y, Zhao MJ, Lin H-J, Zhu W-Z, Lien S-Y. Silicon Heterojunction Solar Cells with p-Type Silicon Carbon Window Layer. Crystals. 2019; 9(8):402. https://doi.org/10.3390/cryst9080402
Chicago/Turabian StyleHsu, Chia-Hsun, Xiao-Ying Zhang, Ming Jie Zhao, Hai-Jun Lin, Wen-Zhang Zhu, and Shui-Yang Lien. 2019. "Silicon Heterojunction Solar Cells with p-Type Silicon Carbon Window Layer" Crystals 9, no. 8: 402. https://doi.org/10.3390/cryst9080402
APA StyleHsu, C.-H., Zhang, X.-Y., Zhao, M. J., Lin, H.-J., Zhu, W.-Z., & Lien, S.-Y. (2019). Silicon Heterojunction Solar Cells with p-Type Silicon Carbon Window Layer. Crystals, 9(8), 402. https://doi.org/10.3390/cryst9080402