N,O Chelating Ligands Construct Five-Coordinated Zn(II) Exclusive {Zn6} Clusters: Decomposition, Stepwise Assembly and Photoluminescence Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure
2.2. High Resolution Electrospray Ionization Mass Spectrometry
2.3. Photoluminescence Properties
3. Conclusions
4. Experimental Section
4.1. Materials and Measurements
4.2. Single-Crystal X-Ray Crystallography
4.3. High Resolution Electrospray Mass Spectrometry (HRESI-MS) Test
4.4. Synthesis of Cluster Zn6
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Nevado, C.; de Haro, T. Synthetic Potential behind Gold-Catalyzed Redox Processes. In New Strategies in Chemical Synthesis and Catalysis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012. [Google Scholar]
- Sun, Q.F.; Sato, S.; Fujita, M. An M18L24 stellated cuboctahedron through post-stellation of an M12L24 core. Nat. Chem. 2012, 4, 330–333. [Google Scholar] [PubMed]
- Miras, H.N.; Cooper, G.J.T.; Long, D.L.; Bögge, H.; Müller, A.; Streb, C.; Cronin, L. Unveiling the transient template in the self-assembly of a molecular oxide nanowheel. Science 2010, 327, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.Y.; Su, H.F.; Kurmoo, M.; Tung, C.-H.; Sun, D.; Zheng, L.-S. Core–Shell {Mn7⊂(Mn, Cd) 12} Assembled from Core {Mn7} Disc. J. Am. Chem. Soc. 2017, 139, 14033–14036. [Google Scholar] [PubMed]
- Deng, Y.K.; Su, H.F.; Xu, J.H.; Wang, W.-G.; Kurmoo, M.; Lin, S.-C.; Tan, Y.-Z.; Jia, J.; Sun, D.; Zheng, L.-S. Hierarchical assembly of a {MnII15MnIII4} brucite disc: step-by-step formation and ferrimagnetism. J. Am. Chem. Soc. 2016, 138, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Schröder, D. Applications of electrospray ionization mass spectrometry in mechanistic studies and catalysis research. Acc. Chem. Res. 2012, 45, 1521–1532. [Google Scholar] [PubMed]
- Cook, T.R.; Stang, P.J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 2015, 115, 7001. [Google Scholar] [PubMed]
- Yu, G.C.; Zhang, M.M.; Saha, M.L.; Mao, Z.W.; Chen, J.; Yao, Y.; Zhou, Z.J.; Liu, Y.J.; Gao, C.Y.; Huang, F.H.; et al. Antitumor Activity of a Unique Polymer That Incorporates a Fluorescent Self-Assembled Metallacycle. J. Am. Chem. Soc. 2017, 139, 15940–15949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Du, M.-H.; Lin, S.-C.; Tang, Z.-C.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. Assembly of a Wheel-Like Eu24Ti8 Cluster under the Guidance of High-Resolution Electrospray Ionization Mass Spectrometry. Angew. Chem. Int. Ed. 2018, 57, 10976–10979. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.-H.; Ma, X.-F.; Wang, H.-L.; Zou, H.-H.; Mo, K.-Q.; Zhang, Y.-Q.; Yang, Q.-Z.; Li, B.; Liang, F.-P. A triangular Dy3 single-molecule toroic with high inversion energy barrier: magnetic properties and multiple-step assembly mechanism. Inorg. Chem. Front. 2018, 5, 3155–3162. [Google Scholar] [CrossRef]
- Wang, H.-L.; Ma, X.-F.; Peng, J.-M.; Zhu, Z.-H.; Li, B.; Zou, H.-H.; Liang, F.-P. Tracking the Stepwise Formation of the Dysprosium Cluster (Dy10) with Multiple Relaxation Behavior. Inorg. Chem. 2019, 58, 9169–9174. [Google Scholar]
- Ma, X.-F.; Wang, H.-L.; Zhu, Z.-H.; Li, B.; Mo, K.-Q.; Zou, H.-H.; Liang, F.-P. Formation of nanocluster {Dy12} containing Dy-exclusive vertex-sharing [Dy4(μ3-OH)4] cubanes via simultaneous multitemplate guided and step-by-step assembly. Dalton Trans. 2019, 48, 11338–11344. [Google Scholar] [CrossRef]
- Wang, H.L.; Peng, J.M.; Zhu, Z.H.; Mo, K.-Q.; Ma, X.-F.; Li, B.; Zou, H.-H.; Liang, F.-P. Step-by-Step and Competitive Assembly of Two Dy(III) Single-Molecule Magnets with Their Performance Tuned by Schiff Base Ligands. Cryst. Growth Des. 2019. [Google Scholar] [CrossRef]
- Yang, P.; Bassil, B.S.; Lin, Z.; Haider, A.; Alfaro-Espinoza, G.; Ullrich, M.S.; Silvestru, C.; Kortz, U. Organoantimony (III)-Containing Tungstoarsenates (III): From Controlled Assembly to Biological Activity. Chem. - A Eur. J. 2015, 21, 15600–15606. [Google Scholar] [CrossRef]
- Zhou, J.; Du, X.; Xu, B. Regulating the Rate of Molecular Self-Assembly for Targeting Cancer Cells. Angew. Chem. Int. Ed. 2016, 55, 5770–5775. [Google Scholar] [CrossRef]
- Wang, Q.M.; Lin, Y.M.; Liu, K.G. Role of anions associated with the formation and properties of silver clusters. Acc. Chem. Res. 2015, 48, 1570–1579. [Google Scholar] [CrossRef]
- Brown, C.J.; Toste, F.D.; Bergman, R.G.; Raymond, K.N. Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 2015, 115, 3012–3035. [Google Scholar] [CrossRef]
- Xu, F.; Miras, H.N.; Scullion, R.A.; Long, D.L.; Thiel, J.; Cronin, L. Correlating the magic numbers of inorganic nanomolecular assemblies with a {Pd84} molecular-ring Rosetta Stone. Proc. Natl. Acad. Sci. USA 2012, 109, 11609–11612. [Google Scholar] [CrossRef]
- Kong, X.J.; Long, L.S.; Zheng, Z.; Huang, R.B.; Zheng, L.S. Keeping the ball rolling: Fullerene-like molecular clusters. Acc. Chem. Res. 2009, 43, 201–209. [Google Scholar] [CrossRef]
- Saha, M.L.; Yan, X.; Stang, P.J. Photophysical properties of organoplatinum (II) compounds and derived self-assembled metallacycles and metallacages: Fluorescence and its applications. Acc. Chem. Res. 2016, 49, 2527–2539. [Google Scholar] [CrossRef]
- Miras, H.N.; Wilson, E.F.; Cronin, L. Unravelling the complexities of inorganic and supramolecular self-assembly in solution with electrospray and cryospray mass spectrometry. Chem. Commun. 2009, 1297–1311. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Q.-J.; Chen, M.; Chen, D.-C.; Chen, C.-A. N,O Chelating Ligands Construct Five-Coordinated Zn(II) Exclusive {Zn6} Clusters: Decomposition, Stepwise Assembly and Photoluminescence Study. Crystals 2019, 9, 416. https://doi.org/10.3390/cryst9080416
Deng Q-J, Chen M, Chen D-C, Chen C-A. N,O Chelating Ligands Construct Five-Coordinated Zn(II) Exclusive {Zn6} Clusters: Decomposition, Stepwise Assembly and Photoluminescence Study. Crystals. 2019; 9(8):416. https://doi.org/10.3390/cryst9080416
Chicago/Turabian StyleDeng, Qian-Jun, Min Chen, Dong-Chu Chen, and Chang-Ai Chen. 2019. "N,O Chelating Ligands Construct Five-Coordinated Zn(II) Exclusive {Zn6} Clusters: Decomposition, Stepwise Assembly and Photoluminescence Study" Crystals 9, no. 8: 416. https://doi.org/10.3390/cryst9080416
APA StyleDeng, Q. -J., Chen, M., Chen, D. -C., & Chen, C. -A. (2019). N,O Chelating Ligands Construct Five-Coordinated Zn(II) Exclusive {Zn6} Clusters: Decomposition, Stepwise Assembly and Photoluminescence Study. Crystals, 9(8), 416. https://doi.org/10.3390/cryst9080416