Enhancing Capsid Proteins Capacity in Plant Virus-Vector Interactions and Virus Transmission
Abstract
:1. Introduction
2. The Capsid Proteins in Semi-Persistent Aphid Transmission of Caulimoviruses
3. CP-RTD Domain in Persistent, Circulative Aphid Transmission of Luteoviruses
4. CP-RTD in Fungal Transmission of Benyviruses
5. Unusual Capsid Proteins in Aphid, Whitefly, and Mealybug Transmission of Closteroviruses
6. Evolution of Capsid Proteins as Virus Transmission Determinants
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ng, J.C.K.; Falk, B.W. Virus-Vector Interactions Mediating Nonpersistent and Semipersistent Transmission of Plant Viruses. Annu. Rev. Phytopathol. 2006, 44, 183–212. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.C.K.; Zhou, J.S. Insect vector–plant virus interactions associated with non-circulative, semi-persistent transmission: Current perspectives and future challenges. Curr. Opin. Virol. 2015, 15, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitfield, A.E.; Falk, B.W.; Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virology 2015, 480, 278–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lung, M.; Pirone, T. Acquisition factor required for aphid transmission of purified cauliflower mosaic virus. Virology 1974, 60, 260–264. [Google Scholar] [CrossRef]
- Armour, S.L.; Melcher, U.; Pirone, T.P.; Lyttle, D.; Essenberg, R. Helper component for aphid transmission encoded by region II of cauliflower mosaic virus DNA. Virology 1983, 129, 25–30. [Google Scholar] [CrossRef]
- Schmidt, I.; Blanc, S.; Esperandieu, P.; Kühl, G.; Devauchelle, G.; Louis, C.; Cerutti, M. Interaction between the aphid transmission factor and virus particles is a part of the molecular mechanism of cauliflower mosaic virus aphid transmission. Proc. Natl. Acad. Sci. USA 1994, 91, 8885–8889. [Google Scholar] [CrossRef] [Green Version]
- Plisson, C.; Uzest, M.; Drucker, M.; Froissart, R.; Dumas, C.; Conway, J.F.; Thomas, D.; Blanc, S.; Bron, P. Structure of the Mature P3-virus Particle Complex of Cauliflower Mosaic Virus Revealed by Cryo-electron Microscopy. J. Mol. Biol. 2005, 346, 267–277. [Google Scholar] [CrossRef]
- Hohn, T. Plant pararetroviruses: Interactions of cauliflower mosaic virus with plants and insects. Curr. Opin. Virol. 2013, 3, 629–638. [Google Scholar] [CrossRef]
- Govier, D.; Kassanis, B. A virus-induced component of plant sap needed when aphids acquire potato virus Y from purified preparations. Virology 1974, 61, 420–426. [Google Scholar] [CrossRef]
- Pirone, T.P.; Blanc, S. Helper-dependent vector transmission of plant viruses. Annu. Rev. Phytopathol. 1996, 34, 227–247. [Google Scholar] [CrossRef]
- Mossop, D.; Francki, R. Association of RNA 3 with aphid transmission of cucumber mosaic virus. Virology 1977, 81, 177–181. [Google Scholar] [CrossRef]
- Perry, K.L.; Zhang, L.; Shintaku, M.H.; Palukaitis, P. Mapping Determinants in Cucumber Mosaic Virus for Transmission by Aphis gossypii. Virology 1994, 205, 591–595. [Google Scholar] [CrossRef]
- Rush, C.M. Ecology and epidemiology of benyviruses and plasmodiophorid vectors. Annu. Rev. Phytopathol. 2003, 41, 567–592. [Google Scholar] [CrossRef] [PubMed]
- Lister, R.M.; Ranieri, R. Distribution and Economic Importance of Barley Yellow Dwarf. In Barley Yellow Dwarf-40 Years of Progress; D’Arcy, C.J., Burnett, P.A., Eds.; APS Press: St. Paul, MN, USA, 1995; pp. 29–53. [Google Scholar]
- Choudhury, S.; Hu, H.; Meinke, H.; Shabala, S.; Westmore, G.; Larkin, P.; Zhou, M. Barley yellow dwarf viruses: Infection mechanisms and breeding strategies. Euphytica 2017, 213, 168. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Garnsey, S.; Gonsalves, D. The Closteroviruses: A Distinct Group of Elongated Plant Viruses. Adv. Virus Res. 1979, 25, 93–168. [Google Scholar] [CrossRef]
- Cheng, R.H.; Olson, N.H.; Baker, T.S. Cauliflower mosaic virus: A 420 subunit (T = 7), multilayer structure. Virology 1992, 186, 655–668. [Google Scholar] [CrossRef] [Green Version]
- Hohn, T.; Rothnie, H. Plant pararetroviruses: Replication and expression. Curr. Opin. Virol. 2013, 3, 621–628. [Google Scholar] [CrossRef]
- Moreno, A.; Palacios, I.; Blanc, S.; Fereres, A. Intracellular salivation is the mechanism involved in the inoculation of Cauliflower mosaic virus by its major vectors, Brevicoryne brassicae and Myzus persicae. Ann. Entomol. Soc. Am. 2005, 98, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Uzest, M.; Gargani, D.; Drucker, M.; Hébrard, E.; Garzo, E.; Candresse, T.; Fereres, A.; Blanc, S. A protein key to plant virus transmission at the tip of the insect vector stylet. Proc. Natl. Acad. Sci. USA 2007, 104, 17959–17964. [Google Scholar] [CrossRef] [Green Version]
- Webster, C.G.; Pichon, E.; Van Munster, M.; Monsion, B.; Deshoux, M.; Gargani, D.; Calevro, F.; Jimenez, J.; Moreno, A.; Krenz, B.; et al. Identification of Plant Virus Receptor Candidates in the Stylets of Their Aphid Vectors. J. Virol. 2018, 92, e00432-18. [Google Scholar] [CrossRef] [Green Version]
- Martinière, A.; Bak, A.; Macia, J.-L.; Lautrédou, N.; Gargani, D.; Doumayrou, J.; Garzo, E.; Moreno, A.; Fereres, A.; Blanc, S.; et al. A virus responds instantly to the presence of the vector on the host and forms transmission morphs. eLife 2013, 2, e00183. [Google Scholar] [CrossRef] [PubMed]
- Drucker, M.; Froissart, R.; Hébrard, E.; Uzest, M.; Ravallec, M.; Espérandieu, P.; Mani, J.-C.; Pugnière, M.; Roquet, F.; Fereres, A.; et al. Intracellular distribution of viral gene products regulates a complex mechanism of cauliflower mosaic virus acquisition by its aphid vector. Proc. Natl. Acad. Sci. USA 2002, 99, 2422–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, W.A.; Rasochová, L. Barley Yellow Dwarf Viruses. Annu. Rev. Phytopathol. 1997, 35, 167–190. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.A. Luteoviridae. Encyclopedia of Virology, 2nd ed.; Academic Press: San Diego, CA, USA, 1999; pp. 901–908. [Google Scholar]
- Wang, S.; Browning, K.S.; Miller, W. A viral sequence in the 3′-untranslated region mimics a 5′ cap in facilitating translation of uncapped mRNA. EMBO J. 1997, 16, 4107–4116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Allen, E.; Miller, W.A. Structure and function of a cap-independent translation element that functions in either the 3′ or the 5′ untranslated region. RNA 2000, 6, 1808–1820. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, U.; Powell, P.; Goss, D.J. Eukaryotic initiation factor (eIF) 3 mediates Barley Yellow Dwarf Viral mRNA 3′-5′ UTR interactions and 40S ribosomal subunit binding to facilitate cap-independent translation. Nucleic Acids Res. 2019, 47, 6225–6235. [Google Scholar] [CrossRef]
- Brown, C.M.; Dinesh-Kumar, S.P.; Miller, W.A. Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J. Virol. 1996, 70, 5884–5892. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.A.; White, K.A. Long-Distance RNA-RNA Interactions in Plant Virus Gene Expression and Replication. Annu. Rev. Phytopathol. 2006, 44, 447–467. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.; Gildow, F.E. Luteovirus-aphid interactions. Ann. Rev. Phytopathol. 2003, 41, 539–566. [Google Scholar] [CrossRef]
- Brault, V.; Heuvel, J.V.D.; Verbeek, M.; Ziegler-Graff, V.; Reutenauer, A.; Herrbach, E.; Garaud, J.; Guilley, H.; Richards, K.; Jonard, G. Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO J. 1995, 14, 650–659. [Google Scholar] [CrossRef]
- Linz, L.B.; Liu, S.; Chougule, N.P.; Bonning, B.C. In VitroEvidence Supports Membrane Alanyl Aminopeptidase N as a Receptor for a Plant Virus in the Pea Aphid Vector. J. Virol. 2015, 89, 11203–11212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Cox-Foster, D.; Gray, S.M.; Gildow, F. Vector Specificity of Barley Yellow Dwarf Virus (BYDV) Transmission: Identification of Potential Cellular Receptors Binding BYDV-MAV in the Aphid, Sitobion avenae. Virology 2001, 286, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Seddas, P.; Boissinot, S.; Strub, J.-M.; Van Dorsselaer, A.; Van Regenmortel, M.H.; Pattus, F. Rack-1, GAPDH3, and actin: Proteins of Myzus persicae potentially involved in the transcytosis of beet western yellows virus particles in the aphid. Virology 2004, 325, 399–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuvel, J.F.V.D.; Bruyère, A.; Hogenhout, S.A.; Ziegler-Graff, V.; Brault, V.; Verbeek, M.; Van Der Wilk, F.; Richards, K. The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J. Virol. 1997, 71, 7258–7265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, W.A.; Dinesh-Kumar, S.P.; Paul, C.P. Luteovirus Gene Expression. Crit. Rev. Plant. Sci. 1995, 14, 179–211. [Google Scholar] [CrossRef]
- Bruyère, A.; Brault, V.; Ziegler-Graff, V.; Simonisa, M.T.; Heuvel, J.V.D.; Richards, K.; Guilley, H.; Jonard, G.; Herrbach, E. Effects of Mutations in the Beet Western Yellows Virus Readthrough Protein on Its Expression and Packaging and on Virus Accumulation, Symptoms, and Aphid Transmission. Virology 1997, 230, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Da Silva, W.L.; Qian, Y.; Gray, S.M. An aromatic amino acid and associated helix in the C-terminus of the potato leafroll virus minor capsid protein regulate systemic infection and symptom expression. PLoS Pathog. 2018, 14, e1007451. [Google Scholar] [CrossRef] [Green Version]
- Brault, V.; Mutterer, J.; Scheidecker, D.; Simonis, M.T.; Herrbach, E.; Richards, K.; Ziegler-Graff, V. Effects of Point Mutations in the Readthrough Domain of the Beet Western Yellows Virus Minor Capsid Protein on Virus Accumulation in Planta and on Transmission by Aphids. J. Virol. 2000, 74, 1140–1148. [Google Scholar] [CrossRef] [Green Version]
- Richard-Molard, M. Rhizomania: A world-wide danger to sugar beet. SPAN 1985, 28, 92–94. [Google Scholar]
- Koenig, R. Benyvirus. Encyclopedia of Virology; Elsevier BV: Amsterdam, The Netherlands, 2008; pp. 308–314. [Google Scholar]
- Gilmer, D. Molecular Biology and Replication of Beet Necrotic Yellow Vein Virus. Rhizomania; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 85–107. [Google Scholar]
- Firth, A.E.; Wills, N.M.; Gesteland, R.F.; Atkins, J.F. Stimulation of stop codon readthrough: Frequent presence of an extended 3′ RNA structural element. Nucleic Acids Res. 2011, 39, 6679–6691. [Google Scholar] [CrossRef] [Green Version]
- Abe, H.; Tamada, T. Association of beet necrotic yellow vein virus with isolates of Polymyxa betae Keskin strains in rhizomania infested soils of sugar beet in Japan. Ann. Phytopathol. Soc. Jpn. 1986, 52, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Barr, D.J.S. Zoosporic Plant Parasites as Fungal Vectors of Viruses: Taxonomy and Life Cycles of Species Involved. In Developments in Applied Biology II Viruses with Fungal Vectors; Cooper, J.I., Asher, M.J., Eds.; Association of Applied Biologists: Wellesbourne, UK, 1988; pp. 123–137. [Google Scholar]
- Campbell, R.N. Fungal transmission of plant viruses. Annu. Rev. Phytopathol. 1996, 34, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Verchot, J.; Rush, C.M.; Payton, M.; Colberg, T. Beet necrotic yellow vein virus accumulates inside resting spores and zoosporangia of its vector Polymyxa betae BNYVV infects P. betae. Virol. J. 2007, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Stussi-Garaud, C.; Schmitt-Keichinger, C.; Garaud, J.-C.; Richards, K.E.; Guilley, H.; Jonard, G. Detection by immunogold labelling of P75 readthrough protein near an extremity of beet necrotic yellow vein virus particles. Arch. Virol. 1994, 134, 195–203. [Google Scholar] [CrossRef]
- Tamada, T.; Kusume, T. Evidence that the 75K readthrough protein of beet necrotic yellow vein virus RNA-2 is essential for transmission by the fungus Polymyxa betae. J. Gen. Virol. 1991, 72, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Tamada, T.; Schmitt, C.; Saito, M.; Guilley, H.; Richards, K.; Jonard, G. High resolution analysis of the readthrough domain of beet necrotic yellow vein virus readthrough protein: A KTER motif is important for efficient transmission of the virus by Polymyxa betae. J. Gen. Virol. 1996, 77, 1359–1367. [Google Scholar] [CrossRef]
- Tamada, T.; Abe, H. Evidence that Beet Necrotic Yellow Vein Virus RNA-4 Is Essential for Efficient Transmission by the Fungus Polymyxa betae. J. Gen. Virol. 1989, 70, 3391–3398. [Google Scholar] [CrossRef]
- Rahim, M.D.; Andika, I.B.; Han, C.; Kondo, H.; Tamada, T. RNA4-encoded p31 of beet necrotic yellow vein virus is involved in efficient vector transmission, symptom severity and silencing suppression in roots. J. Gen. Virol. 2007, 88, 1611–1619. [Google Scholar] [CrossRef]
- Agranovsky, A. Principles of Molecular Organization, Expression, and Evolution of Closteroviruses: Over The Barriers. Adv. Virus Res. 1996, 47, 119–158. [Google Scholar] [CrossRef]
- Agranovsky, A.A. Closteroviruses: Molecular Biology, Evolution and Interactions with Cells. Plant. Viruses: Evolution and Management; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 231–252. [Google Scholar]
- Dolja, V.V.; Kreuze, J.F.; Valkonen, J.P. Comparative and functional genomics of closteroviruses. Virus Res. 2006, 117, 38–51. [Google Scholar] [CrossRef]
- Agranovsky, A.A.; Boyko, V.P.; Karasev, A.V.; Lunina, N.A.; Koonin, E.V.; Dolja, V.V. Nucleotide Sequence of the 3′-terminal Half of Beet Yellows Closterovirus RNA genome: Unique Arrangement of Eight Virus Genes. J. Gen. Virol. 1991, 72, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Agranovsky, A.; Koonin, E.; Boyko, V.; Maiss, E.; Frötschl, R.; Lunina, N.; Atabekov, J. Beet Yellows Closterovirus: Complete Genome Structure and Identification of a Leader Papain-like Thiol Protease. Virology 1994, 198, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Karasev, A.; Boyko, V.; Gowda, S.; Nikolaeva, O.; Hilf, M.; Koonin, E.; Niblett, C.; Cline, K.; Gumpf, D.; Lee, R.; et al. Complete Sequence of the Citrus Tristeza Virus RNA Genome. Virology 1995, 208, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Peremyslov, V.V.; Hagiwara, Y.; Dolja, V.V. Genes Required for Replication of the 15.5-Kilobase RNA Genome of a Plant Closterovirus. J. Virol. 1998, 72, 5870–5876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.-W.; Napuli, A.J.; Dolja, V.V. Leader Proteinase of Beet Yellows Virus Functions in Long-Distance Transport. J. Virol. 2003, 77, 2843–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erokhina, T.N.; Vitushkina, M.V.; Jelkmann, W.; Zinovkin, R.A.; Agranovsky, A.A. Detection of beet yellows closterovirus methyltransferase-like and helicase-like proteins in vivo using monoclonal antibodies. J. Gen. Virol. 2000, 81, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Dolja, V.V.; Boyko, V.P.; Agranovsky, A.A.; Koonin, E.V. Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: Two families with distinct patterns of sequence and probably structure conservation. Virology 1991, 184, 79–86. [Google Scholar] [CrossRef]
- Boyko, V.P.; Karasev, A.V.; Agranovsky, A.A.; Koonin, E.V.; Dolja, V.V. Coat protein gene duplication in a filamentous RNA virus of plants. Proc. Natl. Acad. Sci. USA 1992, 89, 9156–9160. [Google Scholar] [CrossRef] [Green Version]
- Napuli, A.J.; Alzhanova, D.V.; Doneanu, C.E.; Barofsky, D.F.; Koonin, E.V.; Dolja, V.V. The 64-Kilodalton Capsid Protein Homolog of Beet Yellows Virus Is Required for Assembly of Virion Tails. J. Virol. 2003, 77, 2377–2384. [Google Scholar] [CrossRef] [Green Version]
- Agranovsky, A.A.; Boyko, V.P.; Karasev, A.V.; Koonin, E.V.; Dolja, V.V. The putative 65K protein of beet yellows closterovirus is a homologue of HSP70 heat shock proteins. J. Mol. Biol. 1991, 217, 603–610. [Google Scholar] [CrossRef]
- Agranovsky, A.A.; Denisenko, O.N.; Folimonov, A.S.; Folimonova, S.Y.; Zinovkin, R.A. The beet yellows closterovirus p65 homologue of HSP70 chaperones has ATPase activity associated with its conserved N-terminal domain but does not interact with unfolded protein chains. J. Gen. Virol. 1997, 78, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agranovsky, A.A.; Lesemann, D.E.; Maiss, E.; Hull, R.; Atabekov, J. “Rattlesnake” structure of a filamentous plant RNA virus built of two capsid proteins. Proc. Natl. Acad. Sci. USA 1995, 92, 2470–2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinovkin, R.A.; Jelkmann, W.; Agranovsky, A.A. The minor coat protein of beet yellows closterovirus encapsidates the 5′ terminus of RNA in virions. J. Gen. Virol. 1999, 80, 269–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Febres, V.J.; Ashoulin, L.; Mawassi, M.; Frank, A.; Bar-Joseph, M.; Manjunath, K.L.; Lee, R.F.; Niblett, C.L. The p27 proteinis present at one end of citrus tristeza virus particles. Phytopathology 1996, 86, 1331–1335. [Google Scholar]
- Tian, T.; Rubio, L.; Yeh, H.H.; Crawford, B.; Falk, B.W. Lettuce infectious yellows virus: In vitro acquisition analysis using partially purified virions and the whitefly Bemisia tabaci. J. Gen. Virol. 1999, 80, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Napuli, A.J.; Falk, B.W.; Dolja, V.V. Interaction between HSP70 Homolog and Filamentous Virions of the Beet Yellows Virus. Virology 2000, 274, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.Y.S.; Walker, G.P.; Carter, D.; Ng, J.C.K. A virus capsid component mediates virion retention and transmission by its insect vector. Proc. Natl. Acad. Sci. USA 2011, 108, 16777–16782. [Google Scholar] [CrossRef] [Green Version]
- Stewart, L.R.; Medina, V.; Tian, T.; Turina, M.; Falk, B.W.; Ng, J.C.K. A Mutation in the Lettuce Infectious Yellows Virus Minor Coat Protein Disrupts Whitefly Transmission but Not In Planta Systemic Movement. J. Virol. 2010, 84, 12165–12173. [Google Scholar] [CrossRef] [Green Version]
- Klaassen, V.A.; Boeshore, M.L.; Koonin, E.V.; Tian, T.; Falk, B.W. Genome Structure and Phylogenetic Analysis of Lettuce Infectious Yellows Virus, a Whitefly-Transmitted, Bipartite Closterovirus. Virology 1995, 208, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Watson, M.A. The transmission of beet mosaic and beet yellows viruses by aphides; a comparative study of a non-persistent and a persistent virus having host plants and vectors in common. Proc. R. Soc. London. Ser. B Boil. Sci. 1946, 133, 200–219. [Google Scholar] [CrossRef] [Green Version]
- Watson, M.A.; Hull, R.; Blencowe, J.W.; Hamlyn, B.G. The spread of beet yellows and beet mosaic viruses in the sugar beet root. Ann. Appl. Biol. 1951, 28, 743–764. [Google Scholar] [CrossRef]
- Yokomi, R.K.; Lastra, R.; Stoetzel, M.B.; Damsteegt, V.D.; Lee, R.F.; Garnsey, S.M.; Gottwald, T.R.; Rocha-Pena, M.A.; Niblett, C.L. Establishment of the Brown Citrus Aphid (Homoptera: Aphididae) in Central America and the Caribbean Basin and Transmission of Citrus Tristeza Virus. J. Econ. Ѐntomol. 1994, 87, 1078–1085. [Google Scholar] [CrossRef]
- Jiménez, J.; Tjallingii, W.F.; Moreno, A.; Fereres, A. Newly Distinguished Cell Punctures Associated with Transmission of the Semipersistent Phloem-LimitedBeet Yellows Virus. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Killiny, N.; Harper, S.J.; Alfaress, S.; El Mohtar, C.; Dawson, W.O. Minor Coat and Heat Shock Proteins Are Involved in the Binding of Citrus Tristeza Virus to the Foregut of Its Aphid Vector, Toxoptera citricida. Appl. Environ. Microbiol. 2016, 82, 6294–6302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelbrecht, D.J.; Kasdorf, G.G.F. Transmission of grapevine leafroll disease and associated closteroviruses by the vine mealybug, planococcus ficus. Phytophylactica 1990, 22, 341–346. [Google Scholar]
- Sether, D.M.; Ullman, D.E.; Hu, J.S. Transmission of Pineapple Mealybug Wilt-Associated Virus by Two Species of Mealybug (Dysmicoccus spp.). Phytopathology 1998, 88, 1224–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.-W.; Chau, J.; Fernandez, L.; Bosco, D.; Daane, K.M.; Almeida, R.P.P. Transmission of Grapevine leafroll-associated virus 3 by the Vine Mealybug (Planococcus ficus). Phytopathology 2008, 98, 1093–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.-W.; Rowhani, A.; Golino, D.A.; Daane, K.; Almeida, R.P.P. Mealybug Transmission of Grapevine Leafroll Viruses: An Analysis of Virus–Vector Specificity. Phytopathology 2010, 100, 830–834. [Google Scholar] [CrossRef] [Green Version]
- Le Maguet, J.; Beuve, M.; Herrbach, E.; Lemaire, O. Transmission of Six Ampeloviruses and Two Vitiviruses to Grapevine by Phenacoccus aceris. Phytopathology 2012, 102, 717–723. [Google Scholar] [CrossRef] [Green Version]
- Golino, D.A.; Sim, S.T.; Gill, R.; Rowhani, A. California mealybugs can spread grapevine leafroll disease. Calif. Agric. 2002, 56, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Cid, M.; Pereira, S.; Cabaleiro, C.; Faoro, F.; Segura, A. Presence of Grapevine leafroll-associated virus 3 in primary salivary glands of the mealybug vector Planococcus citri suggests a circulative transmission mechanism. Eur. J. Plant Pathol. 2007, 118, 23–30. [Google Scholar] [CrossRef]
- Prator, C.A.; Almeida, R.P.P. A Lectin Disrupts Vector Transmission of a Grapevine Ampelovirus. Viruses 2020, 12, 843. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, D.A.; Holland, J.J. Rapid Evolution of RNA Viruses. Annu. Rev. Microbiol. 1987, 41, 409–431. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.W. Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. Sci. USA 1993, 90, 4171–4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sztuba-Solinska, J.; Urbanowicz, A.; Figlerowicz, M.; Bujarski, J.J. RNA-RNA Recombination in Plant Virus Replication and Evolution. Annu. Rev. Phytopathol. 2011, 49, 415–443. [Google Scholar] [CrossRef]
- Keese, P.; Gibbs, A. Plant viruses: Master explorers of evolutionary space. Curr. Opin. Genet. Dev. 1993, 3, 873–877. [Google Scholar] [CrossRef]
- Yasaka, R.; Nguyen, H.D.; Ho, S.Y.W.; Duchene, S.; Korkmaz, S.; Katis, N.; Takahashi, H.; Gibbs, A.J.; Ohshima, K. The Temporal Evolution and Global Spread of Cauliflower mosaic virus, a Plant Pararetrovirus. PLoS ONE 2014, 9, e85641. [Google Scholar] [CrossRef]
- Keese, P.K.; Gibbs, A. Origins of genes: “big bang” or continuous creation? Proc. Natl. Acad. Sci. USA 1992, 89, 9489–9493. [Google Scholar] [CrossRef] [Green Version]
- Holland, P.W.H.; Marlétaz, F.; Maeso, I.; Dunwell, T.L.; Paps, J. New genes from old: Asymmetric divergence of gene duplicates and the evolution of development. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20150480. [Google Scholar] [CrossRef]
- Holmes, E.C. Error thresholds and the constraints to RNA virus evolution. Trends Microbiol. 2003, 11, 543–546. [Google Scholar] [CrossRef]
- Dolja, V.V.; Karasev, A.V.; Koonin, E.V. Molecular biology and evolution of closteroviruses: Sophisticated build-up of large RNA genomes. Annu. Rev. Phytopathol. 1994, 32, 261–285. [Google Scholar] [CrossRef]
- Koonin, E.V.; Dolja, V.V.; Morris, T.J. Evolution and Taxonomy of Positive-Strand RNA Viruses: Implications of Comparative Analysis of Amino Acid Sequences. Crit. Rev. Biochem. Mol. Biol. 1993, 28, 375–430. [Google Scholar] [CrossRef] [PubMed]
- Neelakanta, G.; Sultana, H. Viral receptors of the gut: Vector-borne viruses of medical importance. Curr. Opin. Insect Sci. 2016, 16, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Matrosovich, M.; Herrler, G.; Klenk, H.-D. Sialic Acid Receptors of Viruses. Top. Curr. Chem. 2013, 367, 1–28. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agranovsky, A. Enhancing Capsid Proteins Capacity in Plant Virus-Vector Interactions and Virus Transmission. Cells 2021, 10, 90. https://doi.org/10.3390/cells10010090
Agranovsky A. Enhancing Capsid Proteins Capacity in Plant Virus-Vector Interactions and Virus Transmission. Cells. 2021; 10(1):90. https://doi.org/10.3390/cells10010090
Chicago/Turabian StyleAgranovsky, Alexey. 2021. "Enhancing Capsid Proteins Capacity in Plant Virus-Vector Interactions and Virus Transmission" Cells 10, no. 1: 90. https://doi.org/10.3390/cells10010090
APA StyleAgranovsky, A. (2021). Enhancing Capsid Proteins Capacity in Plant Virus-Vector Interactions and Virus Transmission. Cells, 10(1), 90. https://doi.org/10.3390/cells10010090