The Organization of Pericentromeric Heterochromatin in Polytene Chromosome 3 of the Drosophila melanogaster Line with the Rif11; SuURES Su(var)3-906 Mutations Suppressing Underreplication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fly strains and Genetic Crosses
2.2. FISH Probes
2.3. Light Microscopy
2.4. A Hidden Markov Model of Chromatin States for Heterochromatin Proteins
2.5. Enrichment and Depletion of Chromatin Proteins and Histone Modifications in the Four Chromatin States of Heterochromatic Regions of Chromosome 3
3. Results
3.1. Morphology of the Newly Polytenized Heterochromatic Region in the Polytene Chromosomes of Mutants for Suppression of Underreplication
3.2. Localization of the Genomic Features and Morphological Markers of Heterochromatin in Polytene Chromosomes
3.3. Genes in Chromosome 3 Heterochromatin
3.4. Origin Recognition Complexes, Late Replication and Underreplication in Chromosome 3 Heterochromatin
3.5. DNA Repeats in Chromosome 3 Heterochromatin
3.6. Distribution of Proteins and Histone Modifications in the Newly Polytenized Regions of Chromosome 3 Heterochromatin
3.7. Localization of Antibodies to Proteins of Polytene Chromosome 3 Heterochromatin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zykova, T.Y.; Levitsky, V.G.; Belyaeva, E.S.; Zhimulev, I.F. Polytene chromosomes—A portrait of functional organization of the Drosophila genome. Curr. Genom. 2018, 19, 179–191. [Google Scholar] [CrossRef]
- Zhimulev, I.F. Morphology and structure of polytene chromosomes. Adv. Genet. 1996, 34, 1–497. [Google Scholar] [CrossRef]
- Filion, G.J.; van Bemmel, J.G.; Braunschweig, U.; Talhout, W.; Kind, J.; Ward, L.D.; Brugman, W.; de Castro, I.J.; Kerkhoven, R.M.; Bussemaker, H.J.; et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 2010, 143, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Kharchenko, P.V.; Alekseyenko, A.A.; Schwartz, Y.B.; Minoda, A.; Riddle, N.C.; Ernst, J.; Sabo, P.J.; Larschan, E.; Gorchakov, A.A.; Gu, T.; et al. Comprehensive analysis of the chromatin landscape in Drosophila. Nature 2011, 471, 480–485. [Google Scholar] [CrossRef] [Green Version]
- Milon, B.; Sun, Y.; Chang, W.; Creasy, T.; Mahurkar, A.; Shetty, A.; Nurminsky, D.; Nurminskaya, M. Map of open and closed chromatin domains in Drosophila genome. BMC Genom. 2014, 15, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhimulev, I.F.; Zykova, T.Y.; Goncharov, F.P.; Khoroshko, V.A.; Demakova, O.V.; Semeshin, V.F.; Pokholkova, G.V.; Boldyreva, L.V.; Demidova, D.S.; Babenko, V.N.; et al. Genetic organization of interphase chromosome bands and interbands in Drosophila melanogaster. PLoS ONE 2014, 9, e101631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoroshko, V.A.; Pokholkova, G.V.; Levitsky, V.G.; Zykova, T.Y.; Antonenko, O.V.; Belyaeva, E.S.; Zhimulev, I.F. Genes containing long introns occupy series of bands and interbands in Drosophila melanogaster polytene chromosomes. Genes 2020, 11, 417. [Google Scholar] [CrossRef]
- Vatolina, T.Y.; Boldyreva, L.V.; Demakova, O.V.; Demakov, S.A.; Kokoza, E.B.; Semeshin, V.F.; Babenko, V.N.; Goncharov, F.P.; Belyaeva, E.S.; Zhimulev, I.F. Identical functional organization of nonpolytene and polytene chromosomes in Drosophila melanogaster. PLoS ONE 2011, 6, e25960. [Google Scholar] [CrossRef]
- Heitz, E. Der bilaterale bau der geschlechtschromosomen und autosomen bei pellia fabbroniana, P. epiphylla und einigen anderen jungermanniaceen. Z. Wiss. Biol. Abt. E Planta 1928, 5, 725–768. [Google Scholar] [CrossRef]
- Allshire, R.C.; Madhani, H.D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 2018, 19, 229–244. [Google Scholar] [CrossRef]
- Amaral, N.; Ryu, T.; Li, X.; Chiolo, I. Nuclear dynamics of heterochromatin repair. Trends Genet. 2017, 33, 86–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funikov, S.Y.; Rezvykh, A.P.; Kulikova, D.A.; Zelentsova, E.S.; Protsenko, L.A.; Chuvakova, L.N.; Tyukmaeva, V.I.; Arkhipova, I.R.; Evgenev, M.B. Adaptation of gene loci to heterochromatin in the course of Drosophila evolution is associated with insulator proteins. Sci. Rep. 2020, 10, 11893. [Google Scholar] [CrossRef] [PubMed]
- Marsano, R.M.; Giordano, E.; Messina, G.; Dimitri, P. A new portrait of constitutive heterochromatin: Lessons from Drosophila melanogaster. Trends Genet. 2019, 35, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Moschetti, R.; Palazzo, A.; Lorusso, P.; Viggiano, L.; Marsano, R.M. “What you need, baby, I got it”: Transposable elements as suppliers of cis-operating sequences in Drosophila. Biology 2020, 9, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, P.; Sowpati, D.T.; Soujanya, M.; Srivastava, I.; Mishra, R.K. Interplay of pericentromeric genome organization and chromatin landscape regulates the expression of Drosophila melanogaster heterochromatic genes. Epigenet. Chromatin 2020, 13, 41. [Google Scholar] [CrossRef]
- Zenk, F.; Zhan, Y.; Kos, P.; Löser, E.; Atinbayeva, N.; Schächtle, M.; Tiana, G.; Giorgetti, L.; Iovino, N. HP1 drives de novo 3D genome reorganization in early Drosophila embryos. Nature 2021, 593, 289–293. [Google Scholar] [CrossRef]
- Zhimulev, I.F. Polytene chromosomes, heterochromatin, and position effect variegation. Adv. Genet. 1998, 37, 1–555. [Google Scholar] [CrossRef]
- Hoskins, R.A.; Smith, C.D.; Carlson, J.W.; Carvalho, A.B.; Halpern, A.; Kaminker, J.S.; Kennedy, C.; Mungall, C.J.; Sullivan, B.A.; Sutton, G.G.; et al. Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol. 2002, 3, research0085.1. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, R.A.; Carlson, J.W.; Wan, K.H.; Park, S.; Mendez, I.; Galle, S.E.; Booth, B.W.; Pfeiffer, B.D.; George, R.A.; Svirskas, R.; et al. The release 6 reference sequence of the Drosophila melanogaster genome. Genome Res. 2015, 25, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Losada, A.; Villasante, A. Autosomal location of a new subtype of 1.688 satellite DNA of Drosophila melanogaster. Chromosom. Res. 1996, 4, 372–383. [Google Scholar] [CrossRef]
- Pimpinelli, S.; Berloco, M.; Fanti, L.; Dimitri, P.; Bonaccorsi, S.; Marchetti, E.; Caizzi, R.; Caggese, C.; Gatti, M. Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. USA 1995, 92, 3804–3808. [Google Scholar] [CrossRef] [Green Version]
- Weiler, K.S.; Wakimoto, B.T. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 1995, 29, 577–605. [Google Scholar] [CrossRef]
- Yamamoto, M.-T.; Mitchelson, A.; Tudor, M.; O′Hare, K.; Davies, J.A.; Miklos, G.L.G. Molecular and cytogenetic analysis of the heterochromatin-euchromatin junction region of the Drosophila melanogaster X chromosome using cloned DNA sequences. Genetics 1990, 125, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Berghella, L.; Dimitri, P. The heterochromatic rolled gene of Drosophila melanogaster is extensively polytenized and transcriptionally active in the salivary gland chromocenter. Genetics 1996, 144, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-H.; Chavan, A.; Palladino, J.; Wei, X.; Martins, N.M.C.; Santinello, B.; Chen, C.C.; Erceg, J.; Beliveau, B.J.; Wu, C.T.; et al. Islands of retroelements are the major components of Drosophila centromeres. PLoS Biol. 2019, 17, e3000241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.-H.; Larracuente, A.M. Heterochromatin-enriched assemblies reveal the sequence and organization of the Drosophila melanogaster Y chromosome. Genetics 2019, 211, 333–348. [Google Scholar] [CrossRef] [Green Version]
- Devlin, R.; Bingham, B.; Wakimoto, B. The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics 1990, 125, 129–140. [Google Scholar] [CrossRef]
- Gatti, M.; Pimpinelli, S. Functional elements in Drosophila melanogaster heterochromatin. Annu. Rev. Genet. 1992, 26, 239–275. [Google Scholar] [CrossRef]
- Hoskins, R.A.; Carlson, J.W.; Kennedy, C.; Acevedo, D.; Evans-Holm, M.; Frise, E.; Wan, K.H.; Park, S.; Mendez-Lago, M.; Rossi, F.; et al. Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 2007, 316, 1625–1628. [Google Scholar] [CrossRef] [Green Version]
- Dimitri, P.; Caizzi, R.; Giordano, E.; Carmela Accardo, M.; Lattanzi, G.; Biamonti, G. Constitutive heterochromatin: A surprising variety of expressed sequences. Chromosoma 2009, 118, 419–435. [Google Scholar] [CrossRef]
- Dimitri, P.; Corradini, N.; Rossi, F.; Vernì, F.; Cenci, G.; Belloni, G.; Zhimulev, I.F.; Koryakov, D.E. Vital genes in the heterochromatin of chromosomes 2 and 3 of Drosophila melanogaster. Genetica 2003, 117, 209–215. [Google Scholar] [CrossRef]
- Smith, C.D.; Shu, S.Q.; Mungall, C.J.; Karpen, G.H. The release 5.1 annotation of Drosophila melanogaster heterochromatin. Science 2007, 316, 1586–1591. [Google Scholar] [CrossRef] [Green Version]
- Yasuhara, J.C.; DeCrease, C.H.; Wakimoto, B.T. Evolution of heterochromatic genes of Drosophila. Proc. Natl. Acad. Sci. USA 2005, 102, 10958–10963. [Google Scholar] [CrossRef] [Green Version]
- Kurek, R.; Reugels, A.M.; Lammermann, U.; Bünemann, H. Molecular aspects of intron evolution in dynein encoding mega-genes on the heterochromatic Y chromosome of Drosophila sp. Genetica 2000, 109, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.B.; Dobo, B.A.; Vibranovski, M.D.; Clark, A.G. Identification of five new genes on the Y chromosome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2001, 98, 13225–13230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fingerhut, J.M.; Moran, J.V.; Yamashita, Y.M. Satellite DNA-containing gigantic introns in a unique gene expression program during Drosophila spermatogenesis. PLoS Genet. 2019, 15, e1008028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Davis, C.I.; Mekhedov, S.L.; Hartl, D.L.; Koonin, E.V.; Kondrashov, F.A. Selection for short introns in highly expressed genes. Nat. Genet. 2002, 31, 415–418. [Google Scholar] [CrossRef]
- Marygold, S.J.; Coelho, C.M.A.; Leevers, S.J. Genetic analysis of RpL38 and RpL5, two minute genes located in the centric heterochromatin of chromosome 2 of Drosophila melanogaster. Genetics 2005, 169, 683–695. [Google Scholar] [CrossRef] [Green Version]
- Schulze, S.R.; Sinclair, D.A.R.; Fitzpatrick, K.A.; Honda, B.M. A genetic and molecular characterization of two proximal heterochromatic genes on chromosome 3 of Drosophila melanogaster. Genetics 2005, 169, 2165–2177. [Google Scholar] [CrossRef] [Green Version]
- Wakimoto, B.T.; Hearn, M.G. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster. Genetics 1990, 125, 141–154. [Google Scholar] [CrossRef]
- Eberl, D.F.; Duyf, B.J.; Hilliker, A.J. The role of heterochromatin in the expression of a heterochromatic gene, the rolled locus of Drosophila melanogaster. Genetics 1993, 134, 277–292. [Google Scholar] [CrossRef]
- Clegg, N.J.; Honda, B.M.; Whitehead, I.P.; Grigliatti, T.A.; Wakimoto, B.; Brock, H.W.; Lloyd, V.K.; Sinclair, D.A. Suppressors of position-effect variegation in Drosophila melanogaster affect expression of the heterochromatic gene light in the absence of a chromosome rearrangement. Genome 1998, 41, 495–503. [Google Scholar] [CrossRef]
- Lu, B.Y.; Emtage, P.C.R.; Duyf, B.J.; Hilliker, A.J.; Eissenberg, J.C. Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics 2000, 155, 699–708. [Google Scholar] [CrossRef] [PubMed]
- De Wit, E.; Greil, F.; van Steensel, B. Genome-wide HP1 binding in Drosophila: Developmental plasticity and genomic targeting signals. Genome Res. 2005, 15, 1265–1273. [Google Scholar] [CrossRef] [Green Version]
- Greil, F.; van der Kraan, I.; Delrow, J.; Smothers, J.F.; de Wit, E.; Bussemaker, H.J.; van Driel, R.; Henikoff, S.; van Steensel, B. Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev. 2003, 17, 2825–2838. [Google Scholar] [CrossRef] [Green Version]
- Riddle, N.C.; Minoda, A.; Kharchenko, P.V.; Alekseyenko, A.A.; Schwartz, Y.B.; Tolstorukov, M.Y.; Gorchakov, A.A.; Jaffe, J.D.; Kennedy, C.; Linder-Basso, D.; et al. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res. 2011, 21, 147–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, P.; Sowpati, D.T.; Mishra, R.K. Epigenomic and genomic landscape of Drosophila melanogaster heterochromatic genes. Genomics 2019, 111, 177–185. [Google Scholar] [CrossRef]
- Yasuhara, J.C.; Wakimoto, B.T. Molecular landscape of modified histones in Drosophila heterochromatic genes and euchromatin-heterochromatin transition zones. PLoS Genet. 2008, 4, e16. [Google Scholar] [CrossRef] [Green Version]
- James, T.C.; Eissenberg, J.C.; Craig, C.; Dietrich, V.; Hobson, A.; Elgin, S.C.R. Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur. J. Cell Biol. 1989, 50, 170–180. [Google Scholar]
- Cléard, F.; Delattre, M.; Spierer, P. SU(VAR)3-7, a Drosophila heterochromatin-associated protein and companion of HP1 in the genomic silencing of position-effect variegation. EMBO J. 1997, 16, 5280–5288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schotta, G.; Ebert, A.; Krauss, V.; Fischer, A.; Hoffmann, J.; Rea, S.; Jenuwein, T.; Dorn, R.; Reuter, G. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 2002, 21, 1121–1131. [Google Scholar] [CrossRef]
- Makunin, I.V.; Volkova, E.I.; Belyaeva, E.S.; Nabirochkina, E.N.; Pirrotta, V.; Zhimulev, I.F. The Drosophila suppressor of underreplication protein binds to late-replicating regions of polytene chromosomes. Genetics 2002, 160, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Andreyeva, E.N.; Kolesnikova, T.D.; Demakova, O.V.; Mendez-Lago, M.; Pokholkova, G.V.; Belyaeva, E.S.; Rossi, F.; Dimitri, P.; Villasante, A.; Zhimulev, I.F. High-resolution analysis of Drosophila heterochromatin organization using SuUR Su(var)3-9 double mutants. Proc. Natl. Acad. Sci. USA 2007, 104, 12819–12824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Spradling, A.C. The Drosophila salivary gland chromocenter contains highly polytenized subdomains of mitotic heterochromatin. Genetics 1995, 139, 659–670. [Google Scholar] [CrossRef]
- Belyaeva, E.S.; Zhimulev, I.F.; Volkova, E.I.; Alekseyenko, A.A.; Moshkin, Y.M.; Koryakov, D.E. Su(UR)ES: A gene suppressing DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster polytene chromosomes. Proc. Natl. Acad. Sci. USA 1998, 95, 7532–7537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semeshin, V.F.; Belyaeva, E.S.; Zhimulev, I.F. Electron microscope mapping of the pericentric and intercalary heterochromatic regions of the polytene chromosomes of the mutant Suppressor of underreplication in Drosophila melanogaster. Chromosoma 2001, 110, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Kolesnikova, T.D.; Koryakov, D.E.; Semeshin, V.F.; Belyaeva, E.S.; Zhimulev, I.F. Interlinear differences in the morphology of the pericentric region of salivary gland polytene X chromosome of Drosophila melanogaster. Russ. J. Genet. 2001, 37, 1373–1381. [Google Scholar] [CrossRef]
- Moshkin, Y.M.; Belyakin, S.N.; Rubtsov, N.B.; Kokoza, E.B.; Alekseyenko, A.A.; Volkova, E.I.; Belyaeva, E.S.; Makunin, I.V.; Spierer, P.; Zhimulev, I.F. Microdissection and sequence analysis of pericentric heterochromatin from the Drosophila melanogaster mutant suppressor of underreplication. Chromosoma 2002, 111, 114–125. [Google Scholar] [CrossRef]
- Koryakov, D.E.; Domanitskaya, E.V.; Belyakin, S.N.; Zhimulev, I.F. Abnormal tissue-dependent polytenization of a block of chromosome 3 pericentric heterochromatin in Drosophila melanogaster. J. Cell Sci. 2003, 116, 1035–1044. [Google Scholar] [CrossRef] [Green Version]
- Zhimulev, I.F.; Belyaeva, E.S.; Makunin, I.V.; Pirrotta, V.; Volkova, E.I.; Alekseyenko, A.A.; Andreyeva, E.N.; Makarevich, G.F.; Bodyreva, L.V.; Nanayev, R.A.; et al. Influence of the SuUR gene on intercalary heterochromatin in Drosophila melanogaster polytene chromosomes. Chromosoma 2003, 111, 377–398. [Google Scholar] [CrossRef]
- Lohe, A.R.; Brutlag, D.L. Multiplicity of satellite DNA sequences in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1986, 83, 696–700. [Google Scholar] [CrossRef] [Green Version]
- Lohe, A.R.; Hilliker, A.J.; Roberts, P.A. Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 1993, 134, 1149–1174. [Google Scholar] [CrossRef]
- Munden, A.; Rong, Z.; Gangula, R.; Mallal, S.; Nordman, J.T. Rif1 inhibits replication fork progression and controls DNA copy number in Drosophila. Elife 2018, 7, e39140. [Google Scholar] [CrossRef]
- Kolesnikova, T.D.; Kolodyazhnaya, A.V.; Pokholkova, G.V.; Schubert, V.; Dovgan, V.V.; Romanenko, S.A.; Prokopov, D.Y.; Zhimulev, I.F. Effects of mutations in the Drosophila melanogaster Rif1 gene on the replication and underreplication of pericentromeric heterochromatin in salivary gland polytene chromosomes. Cells 2020, 9, 1501. [Google Scholar] [CrossRef] [PubMed]
- Garavís, M.; Méndez-Lago, M.; Gabelica, V.; Whitehead, S.L.; González, C.; Villasante, A. The structure of an endogenous Drosophila centromere reveals the prevalence of tandemly repeated sequences able to form i-motifs. Sci. Rep. 2015, 5, 13307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashburner, M.; Bergman, C.M. Drosophila melanogaster: A case study of a model genomic sequence and its consequences. Genome Res. 2005, 15, 1661–1667. [Google Scholar] [CrossRef] [Green Version]
- Kolesnikova, T.D.; Posukh, O.V.; Andreyeva, E.N.; Bebyakina, D.S.; Ivankin, A.V.; Zhimulev, I.F. Drosophila SUUR protein associates with PCNA and binds chromatin in a cell cycle-dependent manner. Chromosoma 2013, 122, 55–66. [Google Scholar] [CrossRef]
- Taramasco, O.; Bauer, S. RHmm: Hidden Markov Models Simulations and Estimations. Available online: https://r-forge.r-project.org/projects/rhmm/2013 (accessed on 3 March 2021).
- The modENCODE Consortium; Roy, S.; Ernst, J.; Kharchenko, P.V.; Kheradpour, P.; Negre, N.; Eaton, M.L.; Landolin, J.M.; Bristow, C.A.; Ma, L.; et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 2010, 330, 1787–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, M.; Gentleman, R.; Carey, V. R-tracklayer: An R package for interfacing with genome browsers. Bioinformatics 2009, 25, 1841–1842. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef]
- Vatolina, T.Y.; Demakov, S.A.; Semeshin, V.F.; Makunin, I.V.; Babenko, V.N.; Belyaeva, E.S.; Zhimulev, I.F. Identification and molecular genetic characterization of the polytene chromosome interbands in Drosophila melanogaster. Russ. J. Genet. 2011, 47, 521–532. [Google Scholar] [CrossRef]
- Belyakin, S.N.; Christophides, G.K.; Alekseyenko, A.A.; Kriventseva, E.V.; Belyaeva, E.S.; Nanayev, R.A.; Makunin, I.V.; Hild, M.; Beckmann, B.; Haas, S.A.; et al. Genomic analysis of Drosophila chromosome underreplication reveals a link between replication control and transcriptional territories. Proc. Natl. Acad. Sci. USA 2005, 102, 8269–8274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaton, M.L.; Prinz, J.A.; MacAlpine, H.K.; Tretyakov, G.; Kharchenko, P.V.; MacAlpine, D.M. Chromatin signatures of the Drosophila replication program. Genome Res. 2011, 21, 164–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sher, N.; Bell, G.W.; Li, S.; Nordman, J.; Eng, T.; Eaton, M.L.; MacAlpine, D.M.; Orr-Weaver, T.L. Developmental control of gene copy number by repression of replication initiation and fork progression. Genome Res. 2012, 22, 64–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoskins, R.A.; Landolin, J.M.; Brown, J.B.; Sandler, J.E.; Takahashi, H.; Lassmann, T.; Booth, B.W.; Zhang, D.; Wan, K.H.; Yang, L.; et al. Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Res. 2011, 21, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Schwaiger, M.; Stadler, M.B.; Bell, O.; Kohler, H.; Oakeley, E.J.; Sehübeler, D. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev. 2009, 23, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Bridges, P.N. A revised map of the left limb of the third chromosome of Drosophila melanogaster. J. Hered. 1941, 32, 64–66. [Google Scholar] [CrossRef]
- Spradling, A.C.; Bellen, H.J.; Hoskins, R.A. Drosophila P elements preferentially transpose to replication origins. Proc. Natl. Acad. Sci. USA 2011, 108, 15948–15953. [Google Scholar] [CrossRef] [Green Version]
- Khoroshko, V.A.; Levitsky, V.G.; Zykova, T.Y.; Antonenko, O.V.; Belyaeva, E.S.; Zhimulev, I.F. Chromatin heterogeneity and distribution of regulatory elements in the late-replicating intercalary heterochromatin domains of Drosophila melanogaster chromosomes. PLoS ONE 2016, 6, e0157147. [Google Scholar] [CrossRef]
- Kolesnikova, T.D.; Goncharov, F.P.; Zhimulev, I.F. Similarity in replication timing between polytene and diploid cells is associated with the organization of the Drosophila genome. PLoS ONE 2018, 13, e0195207. [Google Scholar] [CrossRef]
- Sidorenko, D.S.; Sidorenko, I.A.; Zykova, T.Y.; Goncharov, F.P.; Larsson, J.; Zhimulev, I.F. Molecular and genetic organization of bands and interbands in the dot chromosome of Drosophila melanogaster. Chromosoma 2019, 128, 97–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff, F.R.; Ponstingl, H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 1991, 354, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Frasch, M. The maternally expressed Drosophila gene encoding the chromatin-binding protein BJ1 is a homolog of the vertebrate gene regulator of chromatin condensation, RCC1. EMBO J. 1991, 10, 1225–1236. [Google Scholar] [CrossRef]
- Dasso, M. RCC1 in the cell cycle: The regulator of chromosome condensation takes on new roles. Trends Biochem. Sci. 1993, 18, 96–101. [Google Scholar] [CrossRef]
- Kozlova, T.Y.; Semeshin, V.F.; Tretyakova, I.V.; Kokoza, E.B.; Pirrotta, V.; Grafodatskaya, V.E.; Belyaeva, E.S.; Zhimulev, I.F. Molecular and cytogenetical characterization of the 10A1-2 band and adjoining region in the Drosophila melanogaster polytene X chromosome. Genetics 1994, 136, 1063–1073. [Google Scholar] [CrossRef]
# | Genes | Number of Tissues in Which the Gene Is Expressed as Indicated | 5′UTR Chromatin State | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Extremely High (>1000) | Very High (101–1000) | High (51–100) | Moderate High (26–50) | Moderate (11–25) | Low (4–10) | Very Low (1–3) | Extremely Low/None (0–0) | |||
5′UTR Contains CHRIZ | ||||||||||
1 | mRps5 | 1 | 10 | 15 | 3 | Aq | ||||
2 | Set1 | 2 | 14 | 12 | 1 | Aq | ||||
3 | CG40178 | 1 | 3 | 7 | 9 | 9 | Aq | |||
4 | CG40228 | 2 | 13 | 14 | Aq | |||||
5 | RpL15 | 28 | 1 | Aq | ||||||
6 | CG17514 | 1 | 8 | 17 | 3 | no data | ||||
7 | CG12581 | 1 | 1 | 12 | 7 | 7 | 1 | no data | ||
8 | Tim17b | 10 | 17 | 2 | Aq | |||||
9 | CG40472 | 6 | 20 | 3 | Aq | |||||
10 | ND-AGGG | 16 | 12 | 1 | Aq | |||||
11 | MED21 | 2 | 1 | 6 | 10 | 8 | 2 | Aq | ||
12 | UQCR-11 | 3 | 13 | 12 | 1 | Aq | ||||
13 | CG40160 | 3 | 21 | 5 | Aq | |||||
14 | vtd | 1 | 7 | 20 | 1 | Aq | ||||
15 | Dbp80 | 2 | 8 | 17 | 2 | Aq | ||||
16 | Parp | 1 | 4 | 16 | 8 | Aq | ||||
17 | Alg-2 | 2 | 13 | 12 | 2 | Aq | ||||
18 | CG41128 | 2 | 12 | 9 | 6 | Aq | ||||
19 | CG41099 | 1 | 1 | 8 | 17 | 2 | Aq | |||
20 | scro | 1 | 4 | 9 | 5 | 10 | Mlch | |||
21 | eIF4B | 13 | 16 | Aq | ||||||
22 | Me18S-C419 | 1 | 9 | 19 | Aq | |||||
5′UTR Does Not Contain CHRIZ | ||||||||||
23 | CR42722 | 29 | Lz | |||||||
24 | CR42723 | 29 | Lz | |||||||
25 | FASN3 | 2 | 1 | 1 | 6 | 19 | Rb | |||
26 | CG41284 | 7 | 22 | Rb y | ||||||
27 | CG42598 | 1 | 28 | Mlch | ||||||
28 | spok | 1 | 1 | 4 | 23 | Rb | ||||
29 | CG42402 | 1 | 10 | 8 | 10 | Rb | ||||
30 | CR41601 | 1 | 1 | 27 | Rb | |||||
31 | CG40198 | 2 | 1 | 3 | 2 | 4 | 6 | 11 | Mlch | |
32 | Pzl | 2 | 27 | Rb | ||||||
No Data on CHRIZ Content | ||||||||||
33 | Gfat1 | 2 | 5 | 10 | 8 | 3 | 1 | no data | ||
34 | Myo81F | 1 | 2 | 26 | no data | |||||
35 | CR41597 | 29 | no data | |||||||
36 | CG45782 | 3 | 4 | 2 | 2 | 1 | 17 | no data | ||
37 | CR45180 | 5 | 6 | 18 | no data | |||||
38 | CR45182 | 2 | 9 | 18 | no data | |||||
39 | CR41320 | 29 | no data | |||||||
40 | CR45177 | 1 | 11 | 17 | no data | |||||
41 | CR46252 | 29 | no data | |||||||
42 | CR45181 | 3 | 9 | 17 | no data | |||||
43 | CR46250 | 29 | no data | |||||||
44 | CR46122 | 3 | 26 | no data | ||||||
45 | CR45220 | 3 | 26 | no data | ||||||
46 | CR46141 | 1 | 1 | 1 | 4 | 22 | no data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zykova, T.; Maltseva, M.; Goncharov, F.; Boldyreva, L.; Pokholkova, G.; Kolesnikova, T.; Zhimulev, I. The Organization of Pericentromeric Heterochromatin in Polytene Chromosome 3 of the Drosophila melanogaster Line with the Rif11; SuURES Su(var)3-906 Mutations Suppressing Underreplication. Cells 2021, 10, 2809. https://doi.org/10.3390/cells10112809
Zykova T, Maltseva M, Goncharov F, Boldyreva L, Pokholkova G, Kolesnikova T, Zhimulev I. The Organization of Pericentromeric Heterochromatin in Polytene Chromosome 3 of the Drosophila melanogaster Line with the Rif11; SuURES Su(var)3-906 Mutations Suppressing Underreplication. Cells. 2021; 10(11):2809. https://doi.org/10.3390/cells10112809
Chicago/Turabian StyleZykova, Tatyana, Mariya Maltseva, Fedor Goncharov, Lidia Boldyreva, Galina Pokholkova, Tatyana Kolesnikova, and Igor Zhimulev. 2021. "The Organization of Pericentromeric Heterochromatin in Polytene Chromosome 3 of the Drosophila melanogaster Line with the Rif11; SuURES Su(var)3-906 Mutations Suppressing Underreplication" Cells 10, no. 11: 2809. https://doi.org/10.3390/cells10112809
APA StyleZykova, T., Maltseva, M., Goncharov, F., Boldyreva, L., Pokholkova, G., Kolesnikova, T., & Zhimulev, I. (2021). The Organization of Pericentromeric Heterochromatin in Polytene Chromosome 3 of the Drosophila melanogaster Line with the Rif11; SuURES Su(var)3-906 Mutations Suppressing Underreplication. Cells, 10(11), 2809. https://doi.org/10.3390/cells10112809