GLUT1, GLUT3 Expression and 18FDG-PET/CT in Human Malignant Melanoma: What Relationship Exists? New Insights and Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, Z.; Yousaf, N.; Larkin, J. Melanoma epidemiology, biology and prognosis. EJC Suppl. 2013, 11, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther. 2019, 20, 1366–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, O.; Miller, D.D.; Bhawan, J. Cutaneous malignant melanoma: Update on diagnostic and prognostic biomarkers. Am. J. Dermatopathol. 2014, 36, 363–379. [Google Scholar] [CrossRef] [PubMed]
- Macapinlac, H.A. FDG PET and PET/CT imaging in lymphoma and melanoma. Cancer J. 2004, 10, 262–270. [Google Scholar] [CrossRef]
- Ždralević, M.; Brand, A.; Di Ianni, L.; Dettmer, K.; Reinders, J.; Singer, K.; Peter, K.; Schnell, A.; Bruss, C.; Decking, S.M.; et al. Double genetic disruption of lactate dehydrogenases A and B is required to ablate the “Warburg effect” restricting tumor growth to oxidative metabolism. J. Biol. Chem. 2018, 293, 15947–15961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. Available online: http://www.cebm.net/wp-content/uploads/2014/06/CEBM-Levels-of-Evidence-2.1.pdf (accessed on 27 September 2021).
- Cazzato, G.; Arezzo, F.; Colagrande, A.; Cimmino, A.; Lettini, T.; Sablone, S.; Resta, L.; Ingravallo, G. “Animal-Type Melanoma/Pigmented Epithelioid Melanocytoma”: History and Features of a Controversial Entity. Dermatopathology 2021, 8, 271–276. [Google Scholar] [CrossRef]
- Cazzato, G.; Colagrande, A.; Cimmino, A.; Caporusso, C.; Candance, P.M.V.; Trabucco, S.M.R.; Zingarelli, M.; Lorusso, A.; Marrone, M.; Stellacci, A.; et al. Urological Melanoma: A Comprehensive Review of a Rare Subclass of Mucosal Melanoma with Emphasis on Differential Diagnosis and Therapeutic Approaches. Cancers 2021, 13, 4424. [Google Scholar] [CrossRef]
- Ito, S.; Fukusato, T.; Nemoto, T.; Sekihara, H.; Seyama, Y.; Kubota, S. Coexpression of glucose transporter 1 and matrix metal-loproteinase-2 in human cancers. J. Natl. Cancer Inst. 2002, 94, 1080–1091. [Google Scholar] [CrossRef]
- Chang, S.; Lee, S.; Lee, C.; Kim, J.I.; Kim, Y. Expression of the human erythrocyte glucose transporter in transitional cell carcinoma of the bladder. Urology 2000, 55, 448–452. [Google Scholar] [CrossRef]
- Grover-McKay, M.; Walsh, S.A.; Seftor, E.A.; Thomas, P.A.; Hendrix, M.J. Role for glucose transporter 1 protein in human breast cancer. Pathol. Oncol. Res. 1998, 4, 115–120. [Google Scholar] [CrossRef]
- Kunkel, M.; Moergel, M.; Stockinger, M.; Jeong, J.H.; Fritz, G.; Lehr, H.A.; Whiteside, T.L. Overexpression of GLUT-1 is associated with resistance to radiotherapy and adverse prognosis in squamous cell carcinoma of the oral cavity. Oral Oncol. 2007, 43, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Noguchi, Y.; Satoh, S.; Hayashi, H.; Inayama, Y.; Kitamura, H. Expression of facilitative glucose transporter isoforms in lung carcinomas: Its relation to histologic type, differentiation grade, and tumor stage. Mod. Pathol. 1998, 11, 437–443. [Google Scholar]
- Wachsberger, P.R.; Gressen, E.L.; Bhala, A.; Bobyock, S.B.; Storck, C.; Coss, R.A.; Berd, D.; Leeper, D.B. Variability in glucose transporter-1 levels and hexokinase activity in human melanoma. Melanoma Res. 2002, 12, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Brink, I.; Bissé, E.; Epting, T.; Engelhardt, R. Factors influencing [F-18] 2-fluoro-2-deoxy-D-glucose (F-18 FDG) uptake in melanoma cells: The role of proliferation rate, viability, glucose transporter expression and hexokinase activity. J. Dermatol. 2005, 32, 316–334. [Google Scholar] [CrossRef]
- Parente, P.; Coli, A.; Massi, G.; Mangoni, A.; Fabrizi, M.M.; Bigotti, G. Immunohistochemical expression of the glucose transporters Glut-1 and Glut-3 in human malignant melanomas and benign melanocytic lesions. J. Exp. Clin. Cancer Res. 2008, 27, 34. [Google Scholar] [CrossRef] [Green Version]
- Strobel, K.; Bode, B.; Dummer, R.; Veit-Haibach, P.; Fischer, D.R.; Imhof, L.; Goldinger, S.; Steinert, H.C.; von Schulthess, G.K. Limited value of 18F-FDG PET/CT and S-100B tumour marker in the detection of liver metastases from uveal melanoma compared to liver metastases from cutaneous melanoma. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 1774–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.G.; Lee, J.H.; Lee, W.A.; Han, K.M. Biologic correlation between glucose transporters, hexokinase-II, Ki-67 and FDG uptake in malignant melanoma. Nucl. Med. Biol. 2012, 39, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Airley, R.; Evans, A.; Mobasheri, A.; Hewitt, S.M. Glucose transporter Glut-1 is detectable in peri-necrotic regions in many human tumor types but not normal tissues: Study using tissue microarrays. Ann. Anat. 2010, 192, 133–138. [Google Scholar] [CrossRef]
- Singer, K.; Kastenberger, M.; Gottfried, E.; Hammerschmied, C.G.; Büttner, M.; Aigner, M.; Seliger, B.; Walter, B.; Schlösser, H.; Hartmann, A.; et al. Warburg phenotype in renal cell carcinoma: High expression of glucose-transporter 1 (GLUT-1) correlates with low CD8+ T-cell infiltration in the tumor. Int. J. Cancer 2011, 128, 2085–2095. [Google Scholar] [CrossRef]
- Slominski, A.; Kim, T.K.; Brożyna, A.A.; Janjetovic, Z.; Brooks, D.L.; Schwab, L.P.; Skobowiat, C.; Jóźwicki, W.; Seagroves, T.N. The role of melanogenesis in regulation of melanoma behavior: Melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways. Arch. Biochem. Biophys. 2014, 563, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Gao, T.; Jiang, M.; Wu, L.; Zeng, W.; Zhao, S.; Peng, C.; Chen, X. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma. Oncotarget 2016, 7, 64778–64784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, N.H.; Li, W.Q.; Qureshi, A.A.; Weinstock, M.A.; Cho, E. Epidemiology of Melanoma. In Cutaneous Melanoma: Etiology and Therapy [Internet]; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, Australia, 2017; Chapter 1. Available online: https://www.ncbi.nlm.nih.gov/books/NBK481862/ (accessed on 11 October 2021).
- Seleit, I.; Bakry, O.A.; Al-Sharaky, D.R.; Ragab, R.A.A.; Al-Shiemy, S.A. Evaluation of Hypoxia Inducible Factor-1α and Glucose Transporter-1 Expression in Non Melanoma Skin Cancer: An Immunohistochemical Study. J. Clin. Diagn. Res. 2017, 11, EC09–EC16. [Google Scholar] [CrossRef] [PubMed]
- Důra, M.; Němejcová, K.; Jakša, R.; Bártů, M.; Kodet, O.; Tichá, I.; Michálková, R.; Dundr, P. Expression of Glut-1 in Malignant Melanoma and Melanocytic Nevi: An Immunohistochemical Study of 400 Cases. Pathol. Oncol. Res. 2019, 25, 361–368. [Google Scholar] [CrossRef]
- Ruby, K.N.; Liu, C.L.; Li, Z.; Felty, C.C.; Wells, W.A.; Yan, S. Diagnostic and prognostic value of glucose transporters in mela-nocytic lesions. Melanoma Res. 2019, 29, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Na, K.J.; Choi, H.; Oh, H.R.; Kim, Y.H.; Lee, S.B.; Jung, Y.J.; Koh, J.; Park, S.; Lee, H.J.; Jeon, Y.K.; et al. Reciprocal change in Glucose metabolism of Cancer and Immune Cells mediated by different Glucose Transporters predicts Immunotherapy response. Theranostics 2020, 10, 9579–9590. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.J.; Wienke, A.; Surov, A. Associations between GLUT expression and SUV values derived from FDG-PET in different tumors-A systematic review and meta analysis. PLoS ONE 2019, 14, e0217781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Lu, P.; Zhou, S.; Zhang, L.; Zhao, J.H.; Tang, J.H. Predictive value of glucose transporter-1 and glucose transporter-3 for survival of cancer patients: A meta-analysis. Oncotarget 2017, 8, 13206–13213. [Google Scholar] [CrossRef]
- Reckzeh, E.S.; Karageorgis, G.; Schwalfenberg, M.; Ceballos, J.; Nowacki, J.; Stroet, M.C.M.; Binici, A.; Knauer, L.; Brand, S.; Choidas, A.; et al. Inhibition of Glucose Transporters and Glutaminase Synergistically Impairs Tumor Cell Growth. Cell Chem. Biol. 2019, 26, 1214–1228.e25. [Google Scholar] [CrossRef]
- Asano, T.; Katagiri, H.; Takata, K.; Lin, J.L.; Ishihara, H.; Inukai, K.; Tsukuda, K.; Kikuchi, M.; Hirano, H.; Yazaki, Y.; et al. The role of N-glycosylation of GLUT1 for glucose transport activity. J. Biol. Chem. 1991, 266, 24632–24636. [Google Scholar] [CrossRef]
- Maaßen, T.; Vardanyan, S.; Brosig, A.; Merz, H.; Ranjbar, M.; Kakkassery, V.; Grisanti, S.; Tura, A. Monosomy-3 Alters the Expression Profile of the Glucose Transporters GLUT1-3 in Uveal Melanoma. Int. J. Mol. Sci. 2020, 21, 9345. [Google Scholar] [CrossRef]
Author(s) | Type of Paper | Neoplasm | Procedure | Results |
---|---|---|---|---|
Park et al. [7] | Research article | 19 cases of malignant melanoma | FDG-PET/CT and immunohistochemistry for GLUT1/3 | GLUT1/3 mediate glucose uptake in FDG-PET/CT HK-2 and Ki-67 play no role |
Dura et al. [8] | Original article | 225 cases of MM/175 benign nevus | Immunohistochemistry for GLUT1 | GLUT1 was expressed in 69/225 MM GLUT1 was negative in benign nevus |
Strobel et al. [9] | Research article | 27 liver metastases of 13 patients with uveal melanoma 43 liver metastases of 14 patients with CMM | FDG-PET/CT S100B serum marker Cytology Histology Immunohistochemistry for GLUT1 and S-100 | 46% of liver metastases by UM were negative in FDG- PET/CT All liver metastases by CMM were positive S-100B values were significantly higher in the CM patient group compared with the UM patients No obvious difference for GLUT1 and S-100 protein |
Ruby et al. [10] | Research article | 91 MM 18 metastases of MM 56 benign nevus | Immunohistochemistry for GLUT2/3 | GLUT2 was negative in all melanomas and benign nevi 85.3% expressed either GLUT1 or GLUT3 or both, 39.4% of melanoma cases coexpressed GLUT1 and GLUT3, 17.4% of melanoma cases only expressed GLUT1, 28.4% of melanoma cases only expressed GLUT3 and 14.7% of melanoma cases were negative for both markers |
Seleit et al. [11] | Case–control and retrospective study | 20BCC 20 SCC | Immunohistochemistry for HIF-1-alpha and GLUT1 | HIF-1-alpha has a role in NMSC pathogenesis, GLUT1 is downregulated |
Wachsberger et al. [12] | Original article | 31 MM | Western immunoblot analysis for GLUT1 and HK-2 | 30 MM exhibited a 22-fold variation in levels of GLUT1 and 29 exhibited a nine-fold variation in total cellular Hexokinase-II activity |
Slominski et al. [13] | Original article | 2 cellular lines of MM: amelanotic/melanotic | Cultured cells | Melanogenesis upregulates HIF-1-alpha expression in MM |
Na et al. [14] | Original article | 63 pulmonary squamous cell carcinoma | FDG-PET/CT RNA-seq Immunohistochemistry | GLUT1/3 may be responsible for a different response to immunotherapy |
Yamada et al. [15] | Comparative study | 4 cellular lines of human MM: SK-MEL 23, SK-MEL 24 and G361 and 1 murine: B16 | FDG-PET/CT Immunohistochemistry for HK-2 and GLUT1 | Proliferation rate, cell viability and HK expression were important to mediate FDG uptake |
Parente et al. [16] | Original article | Malignant melanoma/benign nevus | Immunohistochemistry for GLUT1-3 | GLUT1: positive in >90% benign nevus GLUT1: absent in 55% MM GLUT3: present in both (MM and benign nevus) |
Singer et al. [17] | Research article | 249 RCC | Tissue microarray analysis | In RCC an increased expression of GLUT1 correlates with a decreased presence of CD8 + T lymphocytes |
Airley et al. [18] | Research article | Different and various tumors | Tissue microarray analysis and immunohistochemistry for GLUT1 | Glut-1 expression in peri- necrotic regions |
Meyer et al. [19] | Meta-analysis | Different and various tumors | FDG-PET/TC | Overall, only a moderate association was found between GLUT 1/3 expression and SUV values derived from FDG-PET |
Chen et al. [20] | Review | 12 studies about GLUT1 2 studies about GLUT3 | Review with meta-analysis | A combination of GLUTs 1 and 3 might help predict malignancy of cancers and direct effective cancer therapy |
Reckzeh et al. [21] | Original article | Various cellular lines | Various procedures | Glutor, very potent glucose uptake inhibitor |
Su et al. [22] | Research article | Cellular line of MM: A375 | Immunoprecipitation and siRNA | CD147 could downregulate GLUT1 expression by reducing the proliferative rate of MM cells |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazzato, G.; Colagrande, A.; Cimmino, A.; Abbatepaolo, C.; Bellitti, E.; Romita, P.; Lospalluti, L.; Foti, C.; Arezzo, F.; Loizzi, V.; et al. GLUT1, GLUT3 Expression and 18FDG-PET/CT in Human Malignant Melanoma: What Relationship Exists? New Insights and Perspectives. Cells 2021, 10, 3090. https://doi.org/10.3390/cells10113090
Cazzato G, Colagrande A, Cimmino A, Abbatepaolo C, Bellitti E, Romita P, Lospalluti L, Foti C, Arezzo F, Loizzi V, et al. GLUT1, GLUT3 Expression and 18FDG-PET/CT in Human Malignant Melanoma: What Relationship Exists? New Insights and Perspectives. Cells. 2021; 10(11):3090. https://doi.org/10.3390/cells10113090
Chicago/Turabian StyleCazzato, Gerardo, Anna Colagrande, Antonietta Cimmino, Caterina Abbatepaolo, Emilio Bellitti, Paolo Romita, Lucia Lospalluti, Caterina Foti, Francesca Arezzo, Vera Loizzi, and et al. 2021. "GLUT1, GLUT3 Expression and 18FDG-PET/CT in Human Malignant Melanoma: What Relationship Exists? New Insights and Perspectives" Cells 10, no. 11: 3090. https://doi.org/10.3390/cells10113090