The Diverse Calpain Family in Trypanosomatidae: Functional Proteins Devoid of Proteolytic Activity?
Abstract
:1. Introduction
2. Effects of Calpain Inhibitors against Trypanosomatid Parasites
3. Calpain Superfamily Expansion in Trypanosomatid Genomes and Their Gene Expression
4. Are the Trypanososmatids´ Calpains Proteolytically Active or Not?
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- D’Avila-Levy, C.M.; Boucinha, C.; Kostygov, A.; Santos, H.L.C.; Morelli, K.A.; Grybchuk-Ieremenko, A.; Duval, L.; Votýpka, J.; Yurchenko, V.; Grellier, P.; et al. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem. Inst. Oswaldo Cruz 2015, 110, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Neglected Tropical Diseases. World Health Organization. Available online: https://www.who.int/teams/control-of-neglected-tropical-diseases (accessed on 19 November 2020).
- Machado-Silva, A.; Guimarães, P.P.; Tavares, C.A.; Sinisterra, R.D. New perspectives for leishmaniasis chemotherapy over current anti-leishmanial drugs: A patent landscape. Expert Opin. Ther. Pat. 2015, 25, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Molina, J.Á.; Molina, I. Chagas disease. Lancet 2018, 391, 82–94. [Google Scholar] [CrossRef]
- Ennes-Vidal, V.; Menna-Barreto, R.F.S.; Branquinha, M.H.; dos Santos, A.L.S.; d’Avila-Levy, C.M. Why calpain inhibitors are interesting leading compounds to search for new therapeutic options to treat leishmaniasis? Parasitology 2017, 144, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donkor, I.O. An update on the therapeutic potential of calpain inhibitors: A patent review. Expert. Opin. Ther. Pat 2020, 25, 1–17. [Google Scholar] [CrossRef]
- Ono, Y.; Saido, T.C.; Sorimachi, H. Calpain research for drug discovery: Challenges and potential. Nat. Rev. Drug. Discov. 2016, 15, 854–876. [Google Scholar] [CrossRef]
- Ersfeld, K.; Barraclough, H.; Gull, K. Evolutionary relationships and protein domain architecture in an expanded calpain superfamily in kinetoplastid parasites. J. Mol. Evol. 2005, 61, 742–757. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Apagyi, K.; Mcleavy, L.; Ersfeld, K. Expression and cellular localisation of calpain-like proteins in Trypanosoma brucei. Mol. Biochem. Parasitol. 2010, 169, 20–26. [Google Scholar] [CrossRef]
- Ennes-Vidal, V.; Vitório, B.S.; Menna-Barreto, R.F.S.; Pitaluga, A.N.; Gonçalves-da-Silva, S.A.; Branquinha, M.H.; Santos, A.L.S.; d’Avila-Levy, C.M. Calpains of Leishmania braziliensis: Genome analysis, differential expression, and functional analysis. Mem. Inst. Oswaldo Cruz 2019, 114, e190147. [Google Scholar] [CrossRef]
- Ennes-Vidal, V.; Pitaluga, A.N.; Britto, C.F.D.P.D.C.; Branquinha, M.H.; Dos Santos, A.L.S.; Menna-Barreto, R.F.S.; d’Avila-Levy, C.M. Expression and cellular localization of Trypanosoma cruzi calpains. Mem. Inst. Oswaldo Cruz 2020, 115, e200142. [Google Scholar] [CrossRef]
- Andrews, K.T.; Fisher, G.; Skinner-Adams, T.S. Drug repurposing and human parasitic protozoan diseases. Inter. J. Parasitol. Drugs Drug Resist. 2014, 4, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok, A.K.; Koenigbauer, F.M. Incentives to repurpose existing drugs for orphan indications. ACS Med. Chem. Lett. 2015, 6, 828–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannan, K.S.; McKinney, W.P. An Overview of Current Clinical Trials of Agents for the Treatment and Prevention of COVID-19 in the United States. J. Resp. Infect. 2020, 4, 49. [Google Scholar] [CrossRef]
- Branquinha, M.H.; Marinho, F.A.; Sangenito, L.S.; Oliveira, S.S.C.; Gonçalves, K.C.; Ennes-Vidal, V.; D’Avila-Levy, C.M.; Santos, A.L.S. Calpains: Potential targets for alternative chemotherapeutic intervention against human pathogenic trypanosomatids. Curr. Med. Chem. 2013, 20, 3174–3185. [Google Scholar] [CrossRef] [Green Version]
- Rami, A.; Ferger, D.; Krieglstein, J. Blockade of calpain proteolytic activity rescues neurons from glutamate excitotoxicity. Neurosci. Res. 1997, 27, 93–97. [Google Scholar] [CrossRef]
- D’Avila-Levy, C.M.; Marinho, F.A.; Santos, L.O.; Martins, J.L.M.; Santos, A.L.S.; Branquinha, M.H. Antileishmanial activity of MDL28170, a potent calpain inhibitor. Int. J. Antimicrob. Agents 2006, 28, 138–142. [Google Scholar] [CrossRef]
- Marinho, F.A.; Gonçalves, K.C.; Oliveira, S.S.; Gonçalves, D.S.; Matteoli, F.P.; Seabra, S.H.; Oliveira, A.C.S.; Bellio, M.; Oliveira, S.S.; Souto-Padrón, T.; et al. The calpain inhibitor MDL28170 induces the expression of apoptotic markers in Leishmania amazonensis promastigotes. PLoS ONE 2014, 9, e87659. [Google Scholar] [CrossRef] [Green Version]
- Marinho, F.A.; Sangenito, L.S.; Oliveira, S.S.C.; De Arruda, L.B.; D’Avila-Levy, C.M.; Santos, A.L.S. The potent cell permeable calpain inhibitor MDL28170 affects the interaction of Leishmania amazonensis with macrophages and shows anti-amastigotes activity. Parasitol. Int. 2017, 66, 579–583. [Google Scholar] [CrossRef]
- De Souza Araújo, P.S.; de Oliveira, S.S.C.; d’Avila-Levy, C.M.; Dos Santos, A.L.S.; Branquinha, M.H. Susceptibility of promastigotes and intracellular amastigotes from distinct Leishmania species to the calpain inhibitor MDL28170. Parasitol. Res. 2018, 117, 2085–2094. [Google Scholar] [CrossRef]
- Sangenito, L.S.; Ennes-Vidal, V.; Marinho, F.A.; Da Mota, F.F.; Santos, A.L.S.; D’Avila-Levy, C.M.; Branquinha, M.H. Arrested growth of Trypanosoma cruzi by the calpain homologues in epimastigotes forms. Parasitology 2009, 136, 433–441. [Google Scholar] [CrossRef]
- Ennes-Vidal, V.; Menna-Barreto, R.F.S.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M. Effects of the calpain inhibitor MDL28170 on the clinically relevant forms of Trypanosoma cruzi in vitro. J. Antimicrob. Chemother. 2010, 65, 1395–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ennes-Vidal, V.; Menna-Barreto, R.F.; Santos, A.L.; Branquinha, M.H.; d’Avila-Levy, C.M. MDL28170, a calpain inhibitor, affects Trypanosoma cruzi metacyclogenesis, ultrastructure and attachment to Rhodnius prolixus midgut. PLoS ONE 2011, 6, e18371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickerman, K. The evolutionary expansion of the trypanosomatid flagellates. Int. J. Parasitol. 1994, 24, 1317–1331. [Google Scholar] [CrossRef]
- Santos, A.L.S. Protease expression by microorganisms and its relevance to crucial physiological/pathological events. World J. Biol. Chem. 2011, 2, 48–58. [Google Scholar] [CrossRef]
- Oliveira, S.S.; Garcia-Gomes, A.S.; d’Avila-Levy, C.M.; dos Santos, A.L.; Branquinha, M.H. Expression of calpain-like proteins and effects of calpain inhibitors on the growth rate of Angomonas deanei wild type and aposymbiotic strains. BMC Microbiol. 2015, 15, 188. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, S.S.C.; de Souza Gonçalves, D.; Garcia-Gomes, A.d.S.; Gonçalves, I.C.; Seabra, S.H.; Menna-Barreto, R.F.; Lopes, A.H.d.C.S.; d’Avila-Levy, C.M.; dos Santos, A.L.S.; Branquinha, M.H. Susceptibility of Phytomonas serpens to calpain inhibitors in vitro: Interference on the proliferation, ultrastructure, cysteine peptidase expression and interaction with the invertebrate host. Mem. Inst. Oswaldo Cruz. 2017, 112, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.S.C.; Gonçalves, I.C.; Ennes-Vidal, V.; Lopes, A.H.C.S.; Menna-Barreto, R.F.S.; d’Avila-Levy, C.M.; Santos, A.L.S.; Branquinha, M.H. In vitro selection of Phytomonas serpens cells resistant to the calpain inhibitor MDL28170: Alterations in fitness and expression of the major peptidases and efflux pumps. Parasitology 2018, 145, 355–370. [Google Scholar] [CrossRef]
- Galetović, A.; Souza, R.T.M.; Santos, M.R.; Cordero, E.M.; Bastos, I.M.D.; Santana, J.M.; Ruiz, J.C.; Lima, F.M.; Marini, M.M.; Mortara, R.A.; et al. The repetitive cytoskeletal protein H49 of Trypanosoma cruzi is a calpain-like protein located at the flagellum attachment zone. PLoS ONE 2011, 6, e27634. [Google Scholar] [CrossRef] [Green Version]
- Olego-Fernandez, S.; Vaughan, S.; Shaw, M.K.; Gull, K.; Ginger, M.L. Cell morphogenesis of Trypanosoma brucei requires the paralogous, differentially expressed calpain-related proteins CAP5.5 and CAP5.5V. Protist 2009, 160, 576–590. [Google Scholar] [CrossRef]
- Hertz-Fowler, C.; Ersfeld, K.; Gull, K. CAP5.5, a life-cycle-regulated, cytoskeleton-associated protein is a member of a novel family of calpain-related proteins in Trypanosoma brucei. Mol. Biochem. Parasitol. 2001, 116, 25–34. [Google Scholar] [CrossRef]
- Saxena, A.; Worthey, E.A.; Yan, S.; Leland, A.; Stuart, K.D.; Myler, P.J. Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarray analysis. Mol. Biochem. Parasitol. 2003, 129, 103–114. [Google Scholar] [CrossRef]
- Salotra, P.; Duncan, R.C.; Singh, R.; Subba Raju, B.V.; Sreenivas, G.; Nakhasi, H.L. Upregulation of surface proteins in Leishmania donovani isolated from patients of post kala-azar dermal leishmaniasis. Microbes Infect. 2006, 8, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liang, Z.; Demko, V.; Wilson, R.; Johansen, W.; Olsen, O.A.; Shalchian-Tabrizi, K. Massive expansion of the calpain gene family in unicellular eukaryotes. BMC Evol. Biol. 2012, 12, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spadoni, C.; Farkas, A.; Sinka, R.; Tompa, P.; Friedrich, P. Molecular cloning and RNA expression of a novel Drosophila calpain, Calpain, C. Biochem. Biophys. Res. Commun. 2003, 303, 343–349. [Google Scholar] [CrossRef]
- Staniec, D.; Ksiazek, M.; Thøgersen, I.B.; Enghild, J.J.; Sroka, A.; Bryzek, D.; Bogyo, M.; Abrahamson, M.; Potempa, J. Calcium Regulates the Activity and Structural Stability of Tpr, a Bacterial Calpain-like Peptidase. J. Biol. Chem. 2015, 290, 27248–27260. [Google Scholar] [CrossRef] [Green Version]
- Branquinha, M.H.; Vermelho, A.B.; Goldenberg, S.; Bonaldo, M.C. Ubiquity of cysteine- and metalloproteinase activities in a wide range of trypanosomatids. J. Eukaryot. Microbiol. 1996, 43, 131–135. [Google Scholar] [CrossRef]
- Hayes, P.; Varga, V.; Olego-Fernandez, S.; Sunter, J.; Ginger, M.L.; Gull, K. Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology. J. Cell Biol. 2014, 206, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, J.; Dey, R.; Datta, S.C. Calcium dependent thiol protease caldonopain and its specific endogenous inhibitor in Leishmania donovani. Mol. Cell. Biochem. 1993, 126, 9–16. [Google Scholar] [CrossRef]
- Dey, R.; Bhattacharya, J.; Datta, S.C. Calcium-dependent proteolytic activity of a cysteine protease caldonopain is detected during Leishmania infection. Mol. Cell. Biochem. 2006, 281, 27–33. [Google Scholar] [CrossRef]
- D’Avila-Levy, C.M.; Souza, R.F.; Gomes, R.C.; Vermelho, A.B.; Branquinha, M.H. A novel extracellular calcium-dependent cysteine proteinase from Crithidia deanei. Arch. Biochem. Biophys. 2003, 420, 1–8. [Google Scholar] [CrossRef]
- Motta, M.C.; Martins, A.C.; de Souza, S.S.; Catta-Preta, C.M.; Silva, R.; Klein, C.C.; de Almeida, L.G.P.; de Lima Cunha, O.; Ciapina, L.P.; Brocchi, M.; et al. Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family. PLoS ONE 2013, 8, e60209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukeš, J.; Skalický, T.; Týč, J.; Votýpka, J.; Yurchenko, V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014, 195, 115–122. [Google Scholar] [CrossRef] [PubMed]
- D’Avila-Levy, C.M.; Altoé, E.C.F.; Uehara, L.A.; Branquinha, M.H.; Santos, A.L. GP63 function in the interaction of trypanosomatids with the invertebrate host: Facts and prospects. In Proteins and Proteomics of Leishmania and Trypanosoma; Santos, A.L.S., Branquinha, M.H., d’Avila-Levy, C.M., Kneipp, L., Sodré, C., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 74, pp. 223–270. [Google Scholar] [CrossRef]
- Hanna, R.A.; Campbell, R.L.; Davies, P.L. Calcium bound structure of calpain and its mechanism of inhibition by calpastatin. Nature 2008, 456, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.S.; Mykles, D.L. Calpain zymography with casein or fluorescein isothiocyanate casein. Methods Mol. Biol. 2000, 144, 109–116. [Google Scholar] [CrossRef] [PubMed]
Trypanosomatid | Life-Cycle Form | Compound | Observed Effect | Reference |
---|---|---|---|---|
L. amazonensis | promastigotes | MDL28170 | Arrested irreversible growth with an IC50 of 23.3 μM; apoptosis-like death. | [17,18] |
amastigotes | Impaired the interaction with mouse macrophages and decreased amastigotes inside the host cell. | [19] | ||
L. braziliensis | promastigotes | MDL28170 | Arrested irreversible growth with an IC50 of 6.6 μM; increased the gp63 expression; autophagic ultrastructural alterations. | [10,20] |
amastigotes | Impaired the interaction with mouse macrophages and decreased amastigotes inside the host cell. | [20] | ||
L. major, L. mexicana, L. infantum, L. donovani | promastigotes | MDL28170 | Arrested irreversible growth with IC50 values ranging from 4.0 to 9.3 μM. | [20] |
amastigotes | Impaired the interaction with mouse macrophages and decreased amastigotes inside the host cell. | |||
T. cruzi | epimastigotes | MDL28170 | Arrested growth with an IC50 of 34.7 μM; increased cruzipain expression; impaired metacyclogenesis; decreased interaction with the invertebrate host; ultrastructural alterations on reservosomes, Golgi, and plasmatic membrane. | [21,23] |
amastigotes | Decreased amastigotes inside peritoneal mouse macrophages. | [22] | ||
trypomastigotes | Reduced the viability of bloodstream trypomastigotes, presenting an IC50 of 20.4 μM; impaired the interaction with mouse macrophages. | [22] | ||
A. deanei | choanomastigotes | MDL28170 | Arrested the growth with an IC50 of 64.4 μM for the wild type strain and 51.3 μM for the aposymbiotic strain. | [26] |
PD150606 | Arrested the growth with an IC50 of 231.6 and 248.3 μM for the wild type and aposymbiotic strains, respectively. | |||
inhibitor V | Slightly decreased the growth of both strains. | |||
P. serpens | promastigotes | MDL28170 | Arrested the growth with an IC50 of 30.9 µM; ultrastructural alterations of rounding of the parasite cell body, cell shrinkage, loss or shortening of the flagellum, and mitochondrial swelling; increased the expression and activity of cysteine peptidases; promoted microvesicular formation within the flagellar pocket of a resistant strain. | [27,28] |
Trypanosomatid | Life-Cycle Form | Method | Result | Reference |
---|---|---|---|---|
L. donovani | post-kalazar amastigotes | microarray | Upmodulation of one SKCRP | [33] |
L. major | meta- and procyclic promastigotes | microarray | Two upmodulated calpains in metacyclics and one in procyclic forms | [32] |
L. braziliensis | meta- and procyclic promastigotes | qPCR | Five upmodulated calpains in procyclics, one upmodulated in metacyclic forms, and one procyclic-exclusive transcript | [10] |
T. brucei | procyclic and bloodstream trypomastigotes | qPCR | Life-cycle-specific expression of CAP5.5 (procyclics) and its analogous CAP5.5V (bloodstream forms) | [30,31] |
Three upmodulated calpains in procyclics and two in bloodstream trypomastigotes | [9] | |||
T. cruzi | epimastigotes, amastigotes, and trypomastigotes | qPCR | One highly upmodulated calpain in amastigotes; three upmodulated in amastigotes but downmodulated in trypomastigotes; one upmodulated in trypomastigotes; five upmodulated in epimastigotes; two downmodulated in trypomastigotes; and two constitutive calpains | [11] |
Sequence ID | Domain Architectures | Predicted Molecular Masses (kDa) | Identity with Human m-Calpain CysPc |
---|---|---|---|
EPY31064.1 | CysPc | 61.90 | 26.71 |
EPY40095.1 | CysPc | 66.74 | 28.66 |
EPY35473.1 | DUF1935, CysPc | 81.01 | 26.09 |
EPY27608.1 | DUF1935, CysPc | 94.24 | 28.80 |
EPY32139.1 | DUF1935, CysPc | 80.20 | 28.66 |
EPY35937.1 | DUF1935, CysPc | 80.33 | 28.66 |
EPY41780.1 | CysPc, CBSW | 123.76 | 21.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ennes-Vidal, V.; Branquinha, M.H.; dos Santos, A.L.S.; d’Avila-Levy, C.M. The Diverse Calpain Family in Trypanosomatidae: Functional Proteins Devoid of Proteolytic Activity? Cells 2021, 10, 299. https://doi.org/10.3390/cells10020299
Ennes-Vidal V, Branquinha MH, dos Santos ALS, d’Avila-Levy CM. The Diverse Calpain Family in Trypanosomatidae: Functional Proteins Devoid of Proteolytic Activity? Cells. 2021; 10(2):299. https://doi.org/10.3390/cells10020299
Chicago/Turabian StyleEnnes-Vidal, Vítor, Marta Helena Branquinha, André Luis Souza dos Santos, and Claudia Masini d’Avila-Levy. 2021. "The Diverse Calpain Family in Trypanosomatidae: Functional Proteins Devoid of Proteolytic Activity?" Cells 10, no. 2: 299. https://doi.org/10.3390/cells10020299
APA StyleEnnes-Vidal, V., Branquinha, M. H., dos Santos, A. L. S., & d’Avila-Levy, C. M. (2021). The Diverse Calpain Family in Trypanosomatidae: Functional Proteins Devoid of Proteolytic Activity? Cells, 10(2), 299. https://doi.org/10.3390/cells10020299