Historical Perspective of the G Protein-Coupled Receptor Kinase Family
Abstract
:1. Introduction
2. Discovery of Rhodopsin Kinase
3. Discovery of the β-Adrenergic Receptor Kinase (βARK)
4. The GRK Family
5. Role of GRKs in Desensitization
6. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lefkowitz, R.J. A brief history of G-protein coupled receptors (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2013, 52, 6366–6378. [Google Scholar] [CrossRef]
- Lefkowitz, R.J. Rodbell and Gilman win 1994 Nobel prize for Physiology and Medicine. Trends Pharmacol. Sci. 1994, 15, 442–444. [Google Scholar] [CrossRef]
- Kühn, H.; Dreyer, W.J. Light dependent phosphorylation of rhodopsin by ATP. FEBS Lett. 1972, 20, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bownds, D.; Dawes, J.; Miller, J.; Stahlman, M. Phosphorylation of frog photoreceptor membranes induced by light. Nat. New Biol. 1972, 237, 125–127. [Google Scholar] [CrossRef]
- Frank, R.N.; Cavanagh, H.D.; Kenyon, K.R. Light-stimulated phosphorylation of bovine visual pigments by adenosine triphosphate. J. Biol. Chem. 1973, 248, 596–609. [Google Scholar] [CrossRef]
- Weller, M.; Virmaux, N.; Mandel, P. Light-stimulated phosphorylation of rhodopsin in the retina: The presence of a protein kinase that is specific for photobleached rhodopsin. Proc. Natl. Acad. Sci. USA 1975, 72, 381–385. [Google Scholar] [CrossRef] [Green Version]
- Shichi, H.; Somers, R.L. Light-dependent phosphorylation of rhodopsin. Purification and properties of rhodopsin kinase. J. Biol. Chem. 1978, 253, 7040–7046. [Google Scholar] [CrossRef]
- Palczewski, K.; McDowell, J.H.; Hargrave, P.A. Purification and characterization of rhodopsin kinase. J. Biol. Chem. 1988, 263, 14067–14072. [Google Scholar] [CrossRef]
- Stadel, J.M.; Nambi, P.; Lavin, T.N.; Heald, S.L.; Caron, M.G.; Lefkowitz, R.J. Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase. Structural alterations in the beta-adrenergic receptor revealed by photoaffinity labeling. J. Biol. Chem. 1982, 257, 9242–9245. [Google Scholar] [CrossRef]
- Stadel, J.M.; Nambi, P.; Shorr, R.G.; Sawyer, D.F.; Caron, M.G.; Lefkowitz, R.J. Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the beta-adrenergic receptor. Proc. Natl. Acad. Sci. USA 1983, 80, 3173–3177. [Google Scholar] [CrossRef] [Green Version]
- Sibley, D.R.; Peters, J.R.; Nambi, P.; Caron, M.G.; Lefkowitz, R.J. Desensitization of turkey erythrocyte adenylate cyclase. Beta-adrenergic receptor phosphorylation is correlated with attenuation of adenylate cyclase activity. J. Biol. Chem. 1984, 259, 9742–9749. [Google Scholar] [CrossRef]
- Shorr, R.G.; Lefkowitz, R.J.; Caron, M.G. Purification of the beta-adrenergic receptor. Identification of the hormone binding subunit. J. Biol. Chem. 1981, 256, 5820–5826. [Google Scholar] [CrossRef]
- Shorr, R.G.; Strohsacker, M.W.; Lavin, T.N.; Lefkowitz, R.J.; Caron, M.G. The β1-adrenergic receptor of the turkey erythrocyte. Molecular heterogeneity revealed by purification and photoaffinity labeling. J. Biol. Chem. 1982, 257, 12341–12350. [Google Scholar] [CrossRef]
- Benovic, J.L.; Shorr, R.G.; Caron, M.G.; Lefkowitz, R.J. The mammalian β2-adrenergic receptor: Purification and characterization. Biochemistry 1984, 23, 4510–4518. [Google Scholar] [CrossRef] [PubMed]
- Cerione, R.A.; Strulovici, B.; Benovic, J.L.; Lefkowitz, R.J.; Caron, M.G. The pure beta-adrenergic receptor: A single polypeptide confers catecholamine responsiveness to an adenylate cyclase system. Nature 1983, 306, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Cerione, R.A.; Codina, J.; Benovic, J.L.; Lefkowitz, R.J.; Birnbaumer, L.; Caron, M.G. The mammalian β2-adrenergic receptor: Reconstitution of functional interactions between the pure receptor and the pure stimulatory nucleotide binding protein (Ns) of the adenylate cyclase system. Biochemistry 1984, 23, 4519–4525. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.F.; Kobilka, B.K.; Strader, D.J.; Benovic, J.L.; Dohlman, H.G.; Frielle, T.; Bolanowski, M.A.; Bennett, C.D.; Rands, E.; Diehl, R.E.; et al. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 1986, 321, 75–79. [Google Scholar] [CrossRef]
- Benovic, J.L.; Pike, L.J.; Cerione, R.A.; Staniszewski, C.; Yoshimasa, T.; Codina, J.; Birnbaumer, L.; Caron, M.G.; Lefkowitz, R.J. Phosphorylation of the mammalian beta-adrenergic receptor by cyclic AMP-dependent protein kinase: Regulation of the rate of receptor phosphorylation and dephosphorylation by agonist occupancy and effects on coupling of the receptor to the stimulatory guanine nucleotide regulatory protein. J. Biol. Chem. 1985, 260, 7094–7101. [Google Scholar] [PubMed]
- Pitcher, J.; Lohse, M.J.; Codina, J.; Caron, M.G.; Lefkowitz, R.J. Desensitization of the isolated beta 2-adrenergic receptor by beta-adrenergic receptor kinase, cAMP-dependent protein kinase, and protein kinase C occurs via distinct molecular mechanisms. Biochemistry 1992, 31, 3193–3197. [Google Scholar] [CrossRef]
- Strasser, R.H.; Sibley, D.R.; Lefkowitz, R.J. A novel catecholamine-activated cyclic 3’,5’-phosphate independent pathway for beta-adrenergic receptor phosphorylation in wild-type and mutant S49 lymphoma cells: Mechanism of homologous desensitization of adenylate cyclase. Biochemistry 1986, 25, 1371–1377. [Google Scholar] [CrossRef]
- Benovic, J.L.; Strasser, R.H.; Caron, M.G.; Lefkowitz, R.J. Beta-adrenergic receptor kinase: Identification of a novel protein kinase which phosphorylates the agonist-occupied form of the receptor. Proc. Natl. Acad. Sci. USA 1986, 83, 2797–2801. [Google Scholar] [CrossRef] [Green Version]
- Lefkowitz, R.J.; Benovic, J.L.; Kobilka, B.K.; Caron, M.G. Receptors and rhodopsin: Shedding new light on an old subject. Trends Pharmacol. Sci. 1986, 7, 444–448. [Google Scholar] [CrossRef]
- Benovic, J.L.; Mayor, F., Jr.; Somers, R.L.; Caron, M.G.; Lefkowitz, R.J. Light- dependent phosphorylation of rhodopsin by beta-adrenergic receptor kinase. Nature 1986, 322, 867–872. [Google Scholar]
- Strasser, R.H.; Benovic, J.L.; Caron, M.G.; Lefkowitz, R.J. Beta-agonist- and prostaglandin E1-induced translocation of the beta-adrenergic receptor kinase: Evidence that the kinase may act on multiple adenylate cyclase-coupled receptors. Proc. Natl. Acad. Sci. USA 1986, 83, 6362–6366. [Google Scholar] [CrossRef] [Green Version]
- Mayor, F., Jr.; Benovic, J.L.; Caron, M.G.; Lefkowitz, R.J. Somatostatin induces translocation of the beta-adrenergic receptor kinase and desensitizes somatostatin receptors in S49 lymphoma cells. J. Biol. Chem. 1987, 262, 6468–6471. [Google Scholar] [CrossRef]
- Benovic, J.L.; Regan, J.R.; Matsui, H.; Mayor, F., Jr.; Cotecchia, S.; Leeb-Lundberg, L.M.F.; Caron, M.G.; Lefkowitz, R.J. Agonist-dependent phosphorylation of the alpha-2-adrenergic receptor by the beta-adrenergic receptor kinase. J. Biol. Chem. 1987, 262, 17251–17253. [Google Scholar] [CrossRef]
- Benovic, J.L.; Mayor, F., Jr.; Staniszewski, C.; Lefkowitz, R.J.; Caron, M.G. Purification and characterization of the beta-adrenergic receptor kinase. J. Biol. Chem. 1987, 262, 9026–9032. [Google Scholar] [CrossRef]
- Benovic, J.L.; DeBlasi, A.; Stone, W.C.; Caron, M.G.; Lefkowitz, R.J. Primary structure of the beta-adrenergic receptor kinase delineates a potential multigene family of receptor specific kinases. Science 1989, 246, 235–240. [Google Scholar] [CrossRef]
- Benovic, J.L.; Onorato, J.J.; Arriza, J.L.; Stone, W.C.; Lohse, M.; Jenkins, N.; Gilbert, D.J.; Copeland, N.G.; Caron, M.G.; Lefkowitz, R.J. Cloning, expression and chromosomal localization of beta-adrenergic receptor kinase 2: A new member of the receptor kinase family. J. Biol. Chem. 1991, 266, 14939–14946. [Google Scholar] [CrossRef]
- Lorenz, W.; Inglese, J.; Palczewski, K.; Onorato, J.J.; Caron, M.G.; Lefkowitz, R.J. The receptor kinase family: Primary structure of rhodopsin kinase reveals similarities to the beta-adrenergic receptor kinase. Proc. Natl. Acad. Sci. USA 1991, 88, 8715–8719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inglese, J.; Glickman, J.F.; Lorenz, W.; Caron, M.G.; Lefkowitz, R.J. Isoprenylation of a protein kinase. Requirement of farnesylation/alpha-carboxyl methylation for full enzymatic activity of rhodopsin kinase. J. Biol. Chem. 1992, 267, 1422–1425. [Google Scholar] [CrossRef]
- Ambrose, C.; James, M.; Barnes, G.; Lin, C.; Bates, G.; Altherr, M.; Duyao, M.; Groot, N.; Church, D.; Wasmuth, J.J.; et al. A novel G protein-coupled receptor kinase gene cloned from 4p16. 3 Hum. Mol. Genet. 1992, 1, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Premont, R.T.; Macrae, A.D.; Stoffel, R.H.; Chung, N.; Pitcher, J.A.; Ambrose, C.; Inglese, J.; MacDonald, M.E.; Lefkowitz, R.J. Characterization of the G protein-coupled receptor kinase GRK4. Identification of four splice variants. J. Biol. Chem. 1996, 271, 6403–6410. [Google Scholar] [CrossRef] [Green Version]
- Kunapuli, P.; Benovic, J.L. Cloning and expression of GRK5: A member of the G protein-coupled receptor kinase family. Proc. Natl. Acad. Sci. USA 1993, 90, 5588–5592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Premont, R.T.; Koch, W.J.; Inglese, J.; Lefkowitz, R.J. Identification, purification, and characterization of GRK5, a member of the family of G protein-coupled receptor kinases. J. Biol. Chem. 1994, 269, 6832–6841. [Google Scholar] [CrossRef]
- Cassill, J.A.; Whitney, M.; Joazeiro, C.A.; Becker, A.; Zuker, C.S. Isolation of Drosophila genes encoding G protein-coupled receptor kinases. Proc. Natl. Acad. Sci. USA 1991, 88, 11067–11070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benovic, J.L.; Gomez, J. Molecular cloning and expression of GRK6: A new member of the G protein-coupled receptor kinase family. J. Biol. Chem. 1993, 268, 19521–19527. [Google Scholar] [CrossRef]
- Haribabu, B.; Snyderman, R. Identification of additional members of human G-protein-coupled receptor kinase multigene family. Proc. Natl. Acad. Sci. USA 1993, 90, 9398–9402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, E.R.; Raman, D.; Shirakawa, S.; Ducceschi, M.H.; Bertram, P.T.; Wong, F.; Kraft, T.W.; Osawa, S. The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas. Mol. Vis. 1998, 4, 27. [Google Scholar]
- Hisatomi, O.; Matsuda, S.; Satoh, T.; Kotaka, S.; Imanishi, Y.; Tokunaga, F. A novel subtype of G-protein-coupled receptor kinase, GRK7, in teleost cone photoreceptors. FEBS Lett. 1998, 424, 159–164. [Google Scholar] [CrossRef]
- Kühn, H. Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochemistry 1978, 17, 4389–4395. [Google Scholar] [CrossRef]
- Kühn, H.; Hall, S.W.; Wilden, U. Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett. 1984, 176, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Pfister, C.; Chabre, M.; Plouet, J.; Tuyen, V.V.; De Kozak, Y.; Faure, J.P.; Kühn, H. Retinal S antigen identified as the 48K protein regulating light-dependent phosphodiesterase in rods. Science 1985, 228, 891–893. [Google Scholar] [CrossRef]
- Wilden, U.; Hall, S.W.; Kühn, H. Phosphodiseterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc. Natl. Acad. Sci. USA 1986, 83, 1174–1178. [Google Scholar] [CrossRef] [Green Version]
- Benovic, J.L.; Kuhn, H.; Weyand, I.; Codina, J.; Caron, M.G.; Lefkowitz, R.J. Functional desensitization of the isolated beta-adrenergic receptor by the β-adrenergic receptor kinase: Potential role of an analog of the retinal protein arrestin (48 kDa protein). Proc. Natl. Acad. Sci. USA 1987, 84, 8879–8882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohse, M.J.; Benovic, J.L.; Codina, J.; Caron, M.G.; Lefkowitz, R.J. Beta-arrestin: A protein that regulates beta-adrenergic receptor function. Science 1990, 248, 1547–1550. [Google Scholar] [CrossRef]
- Krupnick, J.G.; Benovic, J.L. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 289–319. [Google Scholar] [CrossRef]
- Black, J.B.; Premont, R.T.; Daaka, Y. Feedback regulation of G protein-coupled receptor signaling by GRKs and arrestins. Semin. Cell Dev. Biol. 2016, 50, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, S.S.; Downey, W.E., 3rd; Colapietro, A.M.; Barak, L.S.; Ménard, L.; Caron, M.G. Role of β-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 1996, 271, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Goodman, O.B., Jr.; Krupnick, J.G.; Santini, F.; Gurevich, V.V.; Penn, R.B.; Gagnon, A.W.; Keen, J.H.; Benovic, J.L. β-arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 1996, 383, 447–450. [Google Scholar] [CrossRef]
- Shukla, A.K.; Xiao, K.; Lefkowitz, R.J. Emerging paradigms of beta-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem. Sci. 2011, 36, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Peterson, Y.K.; Luttrell, L.M. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol. Rev. 2017, 69, 256–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitcher, J.A.; Freedman, N.J.; Lefkowitz, R.J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 1998, 67, 653–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Premont, R.T.; Gainetdinov, R.R. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu. Rev. Physiol. 2007, 69, 511–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, E.V.; Tesmer, J.J.; Mushegian, A.; Gurevich, V.V. G protein-coupled receptor kinases: More than just kinases and not only for GPCRs. Pharmacol. Ther. 2012, 133, 40–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hullmann, J.; Traynham, C.J.; Coleman, R.C.; Koch, W.J. The expanding GRK interactome: Implications in cardiovascular disease and potential for therapeutic development. Pharmacol. Res. 2016, 110, 52–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogués, L.; Reglero, C.; Rivas, V.; Neves, M.; Penela, P.; Mayor, F., Jr. G-protein-coupled receptor kinase 2 as a potential modulator of the hallmarks of cancer. Mol. Pharmacol. 2017, 91, 220–228. [Google Scholar]
- Komolov, K.E.; Benovic, J.L. G protein-coupled receptor kinases: Past, present and future. Cell. Signal. 2018, 41, 17–24. [Google Scholar] [CrossRef]
- Lodowski, D.T.; Pitcher, J.A.; Capel, W.D.; Lefkowitz, R.J.; Tesmer, J.J.G. Keeping G proteins at bay: A complex between G protein-coupled receptor kinase 2 and Gβγ. Science 2003, 300, 1256–1262. [Google Scholar] [CrossRef]
- Tesmer, V.M.; Kawano, T.; Shankaranarayanan, A.; Kozasa, T.; Tesmer, J.J. Snapshot of activated G proteins at the membrane: The Gαq-GRK2-Gβγ complex. Science 2005, 310, 1686–1690. [Google Scholar] [CrossRef]
- Lodowski, D.T.; Tesmer, V.M.; Benovic, J.L.; Tesmer, J.J.G. Crystal structure of G protein-coupled receptor kinase 6 defines the conserved molecular features of the GRK family. J. Biol. Chem. 2006, 281, 16785–16793. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Wang, B.; Maeda, T.; Palczewski, K.; Tesmer, J.J. Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation. J. Biol. Chem. 2008, 283, 14053–14062. [Google Scholar] [CrossRef] [Green Version]
- Komolov, K.E.; Bhardwaj, A.; Benovic, J.L. Atomic structure of GRK5 reveals distinct structural features novel for G protein-coupled receptor kinases. J. Biol. Chem. 2015, 290, 20629–20647. [Google Scholar] [CrossRef] [Green Version]
- Homan, K.T.; Waldschmidt, H.V.; Glukhova, A.; Cannavo, A.; Song, J.; Cheung, J.Y.; Koch, W.J.; Larsen, S.D.; Tesmer, J.J.G. Crystal structure of G protein-coupled receptor kinase 5 in complex with a rationally designed inhibitor. J. Biol. Chem. 2015, 290, 20649–20659. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.J.; Parthasarathy, G.; Darke, P.L.; Diehl, R.E.; Ford, R.E.; Hall, D.L.; Johnson, S.A.; Reid, J.C.; Rickert, K.W.; Shipman, J.M.; et al. Structure and function of the hypertension variant A486V of G protein-coupled receptor kinase 4. J. Biol. Chem. 2015, 290, 23060–23073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homan, K.T.; Tesmer, J.J. Structural insights into G protein-coupled receptor kinase function. Curr. Opin. Cell Biol. 2014, 27, 25–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komolov, K.E.; Du, Y.; Duc, N.M.; Betz, R.M.; Rodrigues, J.P.G.L.M.; Leib, R.D.; Patra, D.; Skiniotis, G.; Adams, C.M.; Dror, R.O.; et al. Structural and functional analysis of a β2-adrenergic receptor complex with GRK5. Cell 2017, 169, 407–412. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Gao, X.; Goswami, D.; Hou, L.; Pal, K.; Yin, Y.; Zhao, G.; Ernst, O.P.; Griffin, P.; Melcher, K.; et al. Molecular assembly of rhodopsin with G protein-coupled receptor kinases. Cell Res. 2017, 27, 728–747. [Google Scholar] [CrossRef]
- Komolov, K.E.; Sulon, S.M.; Bhardwaj, A.; van Keulen, S.C.; Duc, N.M.; Laurinavichyute, D.K.; Lou, H.J.; Turk, B.E.; Chung, K.Y.; Dror, R.O.; et al. Structure of a GRK5-calmodulin complex reveals molecular mechanism of GRK activation and substrate targeting. Mol. Cell 2021, 81, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Palczewski, K.; Buczyłko, J.; Kaplan, M.W.; Polans, A.S.; Crabb, J.W. Mechanism of rhodopsin kinase activation. J. Biol. Chem. 1991, 266, 12949–12955. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Dion, S.B.; Kim, C.M.; Benovic, J.L. Beta-adrenergic receptor kinase: Agonist-dependent receptor binding promotes kinase activation. J. Biol. Chem. 1993, 268, 7825–7831. [Google Scholar] [CrossRef]
- Penela, P.; Ribas, C.; Sánchez-Madrid, F.; Mayor, F., Jr. G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub. Cell. Mol. Life Sci. 2019, 76, 4423–4446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobles, K.N.; Xiao, K.; Ahn, S.; Shukla, A.K.; Lam, C.M.; Rajagopal, S.; Strachan, R.T.; Huang, T.Y.; Bressler, E.A.; Hara, M.R.; et al. Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal. 2011, 4, ra51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latorraca, N.R.; Masureel, M.; Hollingsworth, S.A.; Heydenreich, F.M.; Suomivuori, C.M.; Brinton, C.; Townshend, R.J.L.; Bouvier, M.; Kobilka, B.K.; Dror, R.O. How GPCR phosphorylation patterns orchestrate arrestin-mediated signaling. Cell 2020, 183, 1813–1825. [Google Scholar] [CrossRef] [PubMed]
GRK1 | GRK2 | GRK3 | GRK4 | GRK5 | GRK6 | GRK7 | |
---|---|---|---|---|---|---|---|
GRK1 | 100 | 52 | 52 | 66 | 69 | 68 | 66 |
GRK2 | 33.4 | 100 | 92 | 54 | 54 | 55 | 53 |
GRK3 | 33.5 | 84.0 | 100 | 53 | 53 | 55 | 53 |
GRK4 | 47.7 | 36.4 | 36.5 | 100 | 81 | 79 | 65 |
GRK5 | 47.8 | 37.2 | 37.1 | 68.0 | 100 | 84 | 65 |
GRK6 | 48.2 | 38.7 | 38.9 | 66.6 | 72.3 | 100 | 66 |
GRK7 | 47.6 | 31.2 | 32.2 | 47.9 | 45.9 | 46.5 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benovic, J.L. Historical Perspective of the G Protein-Coupled Receptor Kinase Family. Cells 2021, 10, 555. https://doi.org/10.3390/cells10030555
Benovic JL. Historical Perspective of the G Protein-Coupled Receptor Kinase Family. Cells. 2021; 10(3):555. https://doi.org/10.3390/cells10030555
Chicago/Turabian StyleBenovic, Jeffrey L. 2021. "Historical Perspective of the G Protein-Coupled Receptor Kinase Family" Cells 10, no. 3: 555. https://doi.org/10.3390/cells10030555
APA StyleBenovic, J. L. (2021). Historical Perspective of the G Protein-Coupled Receptor Kinase Family. Cells, 10(3), 555. https://doi.org/10.3390/cells10030555