The Startling Role of Mismatch Repair in Trinucleotide Repeat Expansions
Abstract
:1. Microsatellites and Mismatch Repair
2. Trinucleotide Repeat Expansions and Human Disorders
- All of them have been shown to form stable secondary structures in vitro, and this unusual feature was proposed to trigger the expansion process [30,31]. CAG and CTG trinucleotide repeats are able to form imperfect hairpins, CGG triplet repeats fold into hairpins or G-quadruplex, and GAA repeats have the ability to form triple helices, containing both Watson–Crick and Hoogsteen bonds. At the present time, the possibility that these secondary structures also form in living cells is still a matter of debate [32].
- Unlike other microsatellites that generally increase or decrease their length by one repeated motif, trinucleotide repeat expansions behave differently. They expand from a few triplets at a time, like in Huntington’s disease, to hundreds or even thousands of triplets in one single generation, like in myotonic dystrophies 1 and 2. Expansions (or contractions) of more than one repeat unit may happen in other microsatellites, but they are rare and never reach the length alterations seen with trinucleotide repeats.
- The instability of a given trinucleotide repeat is highly dependent on its orientation during replication. This was first demonstrated in Escherichia coli [35] and soon after confirmed in yeast [36,37]. When a CAG/CTG repeat tract was replicated in such a way that the CTG sequence was on the lagging-strand template, frequent contractions were observed and almost never expansions. However, when the CAG sequence was on the lagging-strand template, the general instability was reduced and some expansions were visible (although contractions remained predominant). This was explained by a more frequent formation of secondary structures on the lagging-strand template and by the observation that CTG hairpins are more stable than CAG hairpins [38].
3. A Tale of Yeast, Mice, and Men
3.1. Early Yeast Experiments
3.2. Trinucleotide Repeat Expansions in Mice Are Mismatch-Repair Dependent
3.3. Genetic Drivers of Trinucleotide Repeat Expansions in Humans
4. Slipped-Stranded DNA, Trinucleotide Repeats, and Mismatch Repair Proteins
5. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richard, G.-F.; Kerrest, A.; Dujon, B. Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes. Microbiol. Mol. Biol. Rev. 2008, 72, 686–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Human Genome Sequencing Consortium. Initial Sequencing and Analysis of the Human Genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [Green Version]
- Henderson, S.T.; Petes, T.D. Instability of Simple Sequence DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 1992, 12, 2749–2757. [Google Scholar] [CrossRef] [Green Version]
- Lynch, M.; Sung, W.; Morris, K.; Coffey, N.; Landry, C.R.; Dopman, E.B.; Dickinson, W.J.; Okamoto, K.; Kulkarni, S.; Hartl, D.L.; et al. A Genome-Wide View of the Spectrum of Spontaneous Mutations in Yeast. Proc. Natl. Acad. Sci. USA 2008, 105, 9272–9277. [Google Scholar] [CrossRef] [Green Version]
- Strand, M.; Prolla, T.A.; Liskay, R.M.; Petes, T.D. Destabilization of Tracts of Simple Repetitive DNA in Yeast by Mutations Affecting DNA Mismatch Repair. Nature 1993, 365, 274–276. [Google Scholar] [CrossRef]
- Harfe, B.D.; Jinks-Robertson, S. Sequence Composition and Context Effects on the Generation and Repair of Frameshift Intermediates in Mononucleotide Runs in Saccharomyces cerevisiae. Genetics 2000, 156, 571–578. [Google Scholar]
- Tran, H.T.; Keen, J.D.; Kricker, M.; Resnick, M.A.; Gordenin, D.A. Hypermutability of Homonucleotide Runs in Mismatch Repair and DNA Polymerase Proofreading Yeast Mutants. Mol. Cell. Biol. 1997, 17, 2859–2865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchner, J.M.; Tran, H.; Resnick, M.A. A DNA Polymerase e Mutant That Specifically Causes +1 Frameshift Mutations within Homonucleotide Runs in Yeast. Genetics 2000, 155, 1623–1632. [Google Scholar] [PubMed]
- Wierdl, M.; Dominska, M.; Petes, T.D. Microsatellite Instability in Yeast: Dependence on the Length of the Microsatellite. Genetics 1997, 146, 769–779. [Google Scholar] [CrossRef]
- Petes, T.D.; Greenwell, P.W.; Dominska, M. Stabilization of Microsatellite Sequences by Variant Repeats in the Yeast Saccharomyces cerevisiae. Genetics 1997, 146, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Sia, E.A.; Kokoska, R.J.; Dominska, M.; Greenwell, P.; Petes, T.D. Microsatellite Instability in Yeast: Dependance on Repeat Unit Size and DNA Mismatch Repair Genes. Mol. Cell. Biol. 1997, 17, 2851–2858. [Google Scholar] [CrossRef] [Green Version]
- Mansour, A.A.; Tornier, C.; Lehmann, E.; Darmon, M.; Fleck, O. Control of GT Repeat Stability in Schizosaccharomyces pombe by Mismatch Repair Factors. Genetics 2001, 158, 77–85. [Google Scholar]
- Fishel, R.; Lescoe, M.K.; Rao, M.R.S.; Copeland, N.G.; Jenkins, N.A.; Garber, J.; Kane, M.; Kolodner, R. The Human Mutator Gene Homolog MSH2 and Its Association with Hereditary Nonpolyposis Colon Cancer. Cell 1993, 75, 1027–1038. [Google Scholar] [CrossRef]
- Markowitz, S.; Wang, J.; Myeroff, L.; Parsons, R.; Sun, L.; Lutterbaugh, J.; Fan, R.S.; Zborowska, E.; Kinzler, K.W.; Vogelstein, B.; et al. Inactivation of the Type II TGF-b Receptor in Colon Cancer Cells with Microsatellite Instability. Science 1995, 268, 1336–1338. [Google Scholar] [CrossRef]
- Souza, R.F.; Appel, R.; Yin, J.; Wang, S.; Smolinski, K.N.; Abraham, J.M.; Zou, T.-T.; Shi, Y.-Q.; Lei, J.; Cottrell, J.; et al. Microsatellite Instability in the Insulin-like Growth Factor II Receptor Gene in Gastrointestinal Tumours. Nat. Genet. 1996, 14, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Rampino, N.; Yamamoto, H.; Ionov, Y.; Li, Y.; Sawai, H.; Reed, J.C.; Perucho, M. Somatic Frameshift Mutations in the BAX Gene in Colon Cancers of the Microsatellite Mutator Phenotype. Science 1997, 275, 967–969. [Google Scholar] [CrossRef]
- Verkerk, A.J.M.H.; Pieretti, M.; Sutcliffe, J.S.; Fu, Y.-H.; Kuhl, D.P.A.; Pizzuti, A.; Reined, O.; Richards, S.; Victoria, M.F.; Zhang, F.; et al. Identification of a Gene (FMR-1) Containing a CGG Repeat Coincident with a Breakpoint Cluster Region Exhibiting Length Variation in Fragile X Syndrome. Cell 1991, 65, 905–914. [Google Scholar] [CrossRef]
- The Huntington’s Disease Collaborative Research Group. A Novel Gene Containing a Trinucleotide Repeat That Is Expanded and Unstable on Huntington’s Disease Chromosomes. Cell 1993, 72, 971–983. [Google Scholar] [CrossRef]
- Brook, J.D.; McCurrach, M.E.; Harley, H.G.; Buckler, A.J.; Church, D.; Aburatani, H.; Hunter, K.; Stanton, V.P.; Thirion, J.P.; Hudson, T.; et al. Molecular Basis of Myotonic Dystrophy: Expansion of a Trinucleotide (CTG) Repeat at the 3′ End of a Transcript Encoding a Protein Kinase Family Member. Cell 1992, 68, 799–808. [Google Scholar] [CrossRef]
- Campuzano, V.; Montermini, L.; Moltò, M.D.; Pianese, L.; Cossée, M.; Cavalcanti, F.; Monros, E.; Rodius, F.; Duclos, F.; Monticelli, A.; et al. Friedreich’s Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion. Science 1996, 271, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Liquori, C.L.; Ricker, K.; Moseley, M.L.; Jacobsen, J.F.; Kress, W.; Naylor, S.L.; Day, J.W.; Ranum, L.P.W. Myotonic Dystrophy Type 2 Caused by a CCTG Expansion in Intron 1 of ZNF9. Science 2001, 293, 864–867. [Google Scholar] [CrossRef] [Green Version]
- DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.A.; Gilmer, H.F.; Adamson, J.; et al. Expanded GGGGCC Hexanucleotide Repeat in Non-Coding Region of C9ORF72 Causes Chromosome 9p-Linked Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Neuron 2011, 72, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Pearson, C.E.; Edamura, K.N.; Cleary, J.D. Repeat Instability: Mechanisms of Dynamic Mutations. Nat. Rev. Genet. 2005, 6, 729–742. [Google Scholar] [CrossRef]
- Mirkin, S.M. Expandable DNA Repeats and Human Disease. Nature 2007, 447, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Mirkin, S.M. DNA Structures, Repeat Expansions and Human Hereditary Disorders. Curr. Opin. Struct. Biol. 2006, 16, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Lenzmeier, B.A.; Freudenreich, C.H. Trinucleotide Repeat Instability: A Hairpin Curve at the Crossroads of Replication, Recombination, and Repair. Cytogenet. Genome Res. 2003, 100, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.E.; Freudenreich, C.H. Structure-Forming Repeats and Their Impact on Genome Stability. Curr. Opin. Genet. Dev. 2021, 67, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Usdin, K.; House, N.C.; Freudenreich, C.H. Repeat Instability during DNA Repair: Insights from Model Systems. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 142–167. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, V.C.; Dion, V. Modifiers of CAG/CTG Repeat Instability: Insights from Mammalian Models. J. Huntington’s Dis. 2021, 10, 123–148. [Google Scholar] [CrossRef] [PubMed]
- McMurray, C.T. DNA Secondary Structure: A Common and Causative Factor for Expansion in Human Disease. Proc. Natl. Acad. Sci. USA 1999, 96, 1823–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gacy, A.M.; Goellner, G.; Juranic, N.; Macura, S.; McMurray, C.T. Trinucleotide Repeats That Expand in Human Disease Form Hairpin Structures in Vitro. Cell 1995, 81, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Poggi, L.; Richard, G.-F. Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiol. Mol. Biol. Rev. 2021, 85, e00110-20. [Google Scholar] [CrossRef]
- O’Hoy, K.L.; Tsilfidis, C.; Mahadevan, M.S.; Neville, C.E.; Barcelo, J.; Hunter, A.G.; Korneluk, R.G. Reduction in Size of the Myotonic Dystrophy Trinucleotide Repeat Mutation during Transmission. Science 1993, 259, 809–812. [Google Scholar] [CrossRef]
- Shelbourne, P.; Winqvist, R.; Kunert, E.; Davies, J.; Leisti, J.; Thiele, H.; Bachmann, H.; Buxton, J.; Williamson, B.; Johnson, K. Unstable DNA May Be Responsible for the Incomplete Penetrance of the Myotonic Dystrophy Phenotype. Hum. Mol. Genet. 1992, 1, 467–473. [Google Scholar] [CrossRef]
- Kang, S.; Jaworski, A.; Ohshima, K.; Wells, R.D. Expansion and Deletion of CTG Repeats from Human Disease Genes Are Determined by the Direction of Replication in E. coli. Nat. Genet. 1995, 10, 213–217. [Google Scholar] [CrossRef]
- Maurer, D.J.; O’Callaghan, B.L.; Livingston, D.M. Orientation Dependence of Trinucleotide CAG Repeat Instability in Saccharomyces cerevisiae. Mol. Cell. Biol. 1996, 16, 6617–6622. [Google Scholar] [CrossRef] [Green Version]
- Freudenreich, C.H.; Stavenhagen, J.B.; Zakian, V.A. Stability of a CTG/CAG Trinucleotide Repeat in Yeast Is Dependent on Its Orientation in the Genome. Mol. Cell. Biol. 1997, 17, 2090–2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitas, M. Trinucleotide Repeats Associated with Human Diseases. Nucleic Acids Res. 1997, 25, 2245–2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweitzer, J.K.; Livingston, D.M. Destabilization of CAG Trinucleotide Repeat Tracts by Mismatch Repair Mutations in Yeast. Hum. Mol. Genet. 1997, 6, 349–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miret, J.J.; Pessoa-Brandao, L.; Lahue, R.S. Instability of CAG and CTG Trinucleotide Repeats in Saccharomyces cerevisiae. Mol. Cell. Biol. 1997, 17, 3382–3387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miret, J.J.; Pessoa-Brandão, L.; Lahue, R.S. Orientation-Dependent and Sequence-Specific Expansions of CTG/CAG Trinucleotide Repeats in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1998, 95, 12438–12443. [Google Scholar] [CrossRef] [Green Version]
- Kantartzis, A.; Williams, G.M.; Balakrishnan, L.; Roberts, R.L.; Surtees, J.A.; Bambara, R.A. Msh2-Msh3 Interferes with Okazaki Fragment Processing to Promote Trinucleotide Repeat Expansions. Cell Rep. 2012, 2, 216–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, G.M.; Surtees, J.A. MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo. Genetics 2015, 200, 737–754. [Google Scholar] [CrossRef] [Green Version]
- Jiricny, J. The Multifaceted Mismatch-Repair System. Nat. Rev. Mol. Cell Biol. 2006, 7, 335–346. [Google Scholar] [CrossRef]
- Larrea, A.A.; Lujan, S.A.; Kunkel, T.A. SnapShot: DNA Mismatch Repair. Cell 2010, 141, 730. [Google Scholar] [CrossRef] [Green Version]
- Viterbo, D.; Michoud, G.; Mosbach, V.; Dujon, B.; Richard, G.-F. Replication Stalling and Heteroduplex Formation within CAG/CTG Trinucleotide Repeats by Mismatch Repair. DNA Repair 2016, 42, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Richard, G.-F.; Dujon, B.; Haber, J.E. Double-Strand Break Repair Can Lead to High Frequencies of Deletions within Short CAG/CTG Trinucleotide Repeats. Mol. Gen. Genet. 1999, 261, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Shishkin, A.A.; Voineagu, I.; Matera, R.; Cherng, N.; Chernet, B.T.; Krasilnikova, M.M.; Narayanan, V.; Lobachev, K.S.; Mirkin, S.M. Large-Scale Expansions of Friedreich’s Ataxia GAA Repeats in Yeast. Mol. Cell 2009, 35, 82–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.M.; Narayanan, V.; Mieczkowski, P.A.; Petes, T.D.; Krasilnikova, M.M.; Mirkin, S.M.; Lobachev, K.S. Chromosome Fragility at GAA Tracts in Yeast Depends on Repeat Orientation and Requires Mismatch Repair. EMBO J. 2008, 27, 2896–2906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourdon, G.; Radvanyi, F.; Lia, A.-S.; Duros, C.; Blanche, M.; Abitbol, M.; Junien, C.; Hofmann-Radvanyi, H. Moderate Intergenerational and Somatic Instability of a 55-CTG Repeat in Transgenic Mice. Nat. Genet. 1997, 15, 190–192. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Pereira, M.; Foiry, L.; Nicole, A.; Huguet, A.; Junien, C.; Munnich, A.; Gourdon, G. CTG Trinucleotide Repeat “Big Jumps”: Large Expansions, Small Mice. PLoS Genet. 2007, 3, e52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleary, J.D.; Tome, S.; Lopez Castel, A.; Panigrahi, G.B.; Foiry, L.; Hagerman, K.A.; Sroka, H.; Chitayat, D.; Gourdon, G.; Pearson, C.E. Tissue- and Age-Specific DNA Replication Patterns at the CTG/CAG-Expanded Human Myotonic Dystrophy Type 1 Locus. Nat. Struct. Mol. Biol. 2010, 17, 1079–1087. [Google Scholar] [CrossRef]
- Manley, K.; Shirley, T.L.; Flaherty, L.; Messer, A. Msh2 Deficiency Prevents in Vivo Somatic Instability of the CAG Repeat in Huntington Disease Transgenic Mice. Nat. Genet. 1999, 23, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Savouret, C.; Brisson, E.; Essers, J.; Kanaar, R.; Pastink, A.; Te Riele, H.; Junien, C.; Gourdon, G. CTG Repeat Instability and Size Variation Timing in DNA Repair-Deficient Mice. EMBO J. 2003, 22, 2264–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savouret, C.; Garcia-Cordier, C.; Megret, J.; Te Riele, H.; Junien, C.; Gourdon, G. MSH2-Dependent Germinal CTG Repeat Expansions Are Produced Continuously in Spermatogonia from DM1 Transgenic Mice. Mol. Cell. Biol. 2004, 24, 629–637. [Google Scholar] [CrossRef] [Green Version]
- Foiry, L.; Dong, L.; Savouret, C.; Hubert, L.; Te Riele, H.; Junien, C.; Gourdon, G. Msh3 Is a Limiting Factor in the Formation of Intergenerational CTG Expansions in DM1 Transgenic Mice. Hum. Genet. 2006, 119, 520–526. [Google Scholar] [CrossRef]
- Tome, S.; Holt, I.; Edelmann, W.; Morris, G.E.; Munnich, A.; Pearson, C.E.; Gourdon, G. MSH2 ATPase Domain Mutation Affects CTG*CAG Repeat Instability in Transgenic Mice. PLoS Genet. 2009, 5, e1000482. [Google Scholar] [CrossRef]
- Tian, L.; Hou, C.; Tian, K.; Holcomb, N.C.; Gu, L.; Li, G.M. Mismatch Recognition Protein MutSbeta Does Not Hijack (CAG)n Hairpin Repair in Vitro. J. Biol. Chem. 2009, 284, 20452–20456. [Google Scholar] [CrossRef] [Green Version]
- Tome, S.; Manley, K.; Simard, J.P.; Clark, G.W.; Slean, M.M.; Swami, M.; Shelbourne, P.F.; Tillier, E.R.; Monckton, D.G.; Messer, A.; et al. MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington’s Disease Mice. PLoS Genet. 2013, 9, e1003280. [Google Scholar] [CrossRef] [Green Version]
- Tome, S.; Simard, J.P.; Slean, M.M.; Holt, I.; Morris, G.E.; Wojciechowicz, K.; Te Riele, H.; Pearson, C.E. Tissue-Specific Mismatch Repair Protein Expression: MSH3 Is Higher than MSH6 in Multiple Mouse Tissues. DNA Repair 2013, 12, 46–52. [Google Scholar] [CrossRef]
- Pinto, R.M.; Dragileva, E.; Kirby, A.; Lloret, A.; Lopez, E.; Claire, J., St.; Panigrahi, G.B.; Hou, C.; Holloway, K.; Gillis, T.; et al. Mismatch Repair Genes Mlh1 and Mlh3 Modify CAG Instability in Huntington’s Disease Mice: Genome-Wide and Candidate Approaches. PLoS Genet. 2013, 9, e1003930. [Google Scholar] [CrossRef]
- Monckton, D.G.; Coolbaugh, M.I.; Ashizawa, K.T.; Siciliano, M.J.; Caskey, C.T. Hypermutable Myotonic Dystrophy CTG Repeats in Transgenic Mice. Nat. Genet. 1997, 15, 193–196. [Google Scholar] [CrossRef]
- Gomes-Pereira, M.; Fortune, M.T.; Ingram, L.; McAbney, J.P.; Monckton, D.G. Pms2 Is a Genetic Enhancer of Trinucleotide CAG.CTG Repeat Somatic Mosaicism: Implications for the Mechanism of Triplet Repeat Expansion. Hum. Mol. Genet. 2004, 13, 1815–1825. [Google Scholar] [CrossRef]
- Entezam, A.; Usdin, K. ATR Protects the Genome against CGG.CCG-Repeat Expansion in Fragile X Premutation Mice. Nucleic Acids Res. 2008, 36, 1050–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokanga, R.A.; Zhao, X.N.; Usdin, K. The Mismatch Repair Protein MSH2 Is Rate Limiting for Repeat Expansion in a Fragile X Premutation Mouse Model. Hum. Mutat. 2014, 35, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-N.; Kumari, D.; Gupta, S.; Wu, D.; Evanitsky, M.; Yang, W.; Usdin, K. Mutsβ Generates Both Expansions and Contractions in a Mouse Model of the Fragile X-Associated Disorders. Hum. Mol. Genet. 2015, 24, 7087–7096. [Google Scholar] [CrossRef] [Green Version]
- Hayward, B.E.; Steinbach, P.J.; Usdin, K. A Point Mutation in the Nuclease Domain of MLH3 Eliminates Repeat Expansions in a Mouse Stem Cell Model of the Fragile X-Related Disorders. Nucleic Acids Res. 2020, 48, 7856–7863. [Google Scholar] [CrossRef]
- Miller, C.J.; Kim, G.-Y.; Zhao, X.; Usdin, K. All Three Mammalian MutL Complexes Are Required for Repeat Expansion in a Mouse Cell Model of the Fragile X-Related Disorders. PLoS Genet. 2020, 16, e1008902. [Google Scholar] [CrossRef] [PubMed]
- Ezzatizadeh, V.; Pinto, R.M.; Sandi, C.; Sandi, M.; Al-Mahdawi, S.; Te Riele, H.; Pook, M.A. The Mismatch Repair System Protects against Intergenerational GAA Repeat Instability in a Friedreich Ataxia Mouse Model. Neurobiol. Dis. 2012, 46, 165–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goellner, G.M.; Tester, D.; Thibodeau, S.; Almqvist, E.; Goldberg, Y.P.; Hayden, M.R.; McMurray, C.T. Different Mechanisms Underlie DNA Instability in Huntington Disease and Colorectal Cancer. Am. J. Hum. Genet. 1997, 60, 879–890. [Google Scholar]
- Gibbs, M.; Collick, A.; Kelly, R.G.; Jeffreys, A.J. A Tetranucleotide Repeat Mouse Minisatellite Displaying Substantial Somatic Instability during Early Preimplantation Development. Genomics 1993, 17, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Dib, C.; Faure, S.; Fizames, C.; Samson, D.; Drouot, N.; Vignal, A.; Millasseau, P.; Marc, S.; Hazan, J.; Seboun, E.; et al. A Comprehensive Genetic Map of the Human Genome Based on 5264 Sequences. Nature 1996, 380, 152–154. [Google Scholar] [CrossRef]
- Lee, J.-M.; Wheeler, V.C.; Chao, M.J.; Vonsattel, J.P.G.; Pinto, R.M.; Lucente, D.; Abu-Elneel, K.; Ramos, E.M.; Mysore, J.S.; Gillis, T.; et al. Identification of Genetic Factors That Modify Clinical Onset of Huntington’s Disease. Cell 2015, 162, 516–526. [Google Scholar] [CrossRef] [Green Version]
- Moss, D.J.H.; Pardiñas, A.F.; Langbehn, D.; Lo, K.; Leavitt, B.R.; Roos, R.; Durr, A.; Mead, S.; Coleman, A.; Santos, R.D.; et al. Identification of Genetic Variants Associated with Huntington’s Disease Progression: A Genome-Wide Association Study. Lancet Neurol. 2017, 16, 701–711. [Google Scholar] [CrossRef]
- Flower, M.; Lomeikaite, V.; Ciosi, M.; Cumming, S.; Morales, F.; Lo, K.; Hensman Moss, D.; Jones, L.; Holmans, P.; Monckton, D.G.; et al. MSH3 Modifies Somatic Instability and Disease Severity in Huntington’s and Myotonic Dystrophy Type 1. Brain 2019, 142, 1876–1886. [Google Scholar] [CrossRef]
- Morales, F.; Vásquez, M.; Santamaría, C.; Cuenca, P.; Corrales, E.; Monckton, D.G. A Polymorphism in the MSH3 Mismatch Repair Gene Is Associated with the Levels of Somatic Instability of the Expanded CTG Repeat in the Blood DNA of Myotonic Dystrophy Type 1 Patients. DNA Repair 2016, 40, 57–66. [Google Scholar] [CrossRef]
- Halabi, A.; Fuselier, K.T.B.; Grabczyk, E. GAA•TTC Repeat Expansion in Human Cells Is Mediated by Mismatch Repair Complex MutLγ and Depends upon the Endonuclease Domain in MLH3 Isoform One. Nucleic Acids Res. 2018, 46, 4022–4032. [Google Scholar] [CrossRef]
- Du, J.; Campau, E.; Soragni, E.; Ku, S.; Puckett, J.W.; Dervan, P.B.; Gottesfeld, J.M. Role of Mismatch Repair Enzymes in GAA·TTC Triplet-Repeat Expansion in Friedreich Ataxia Induced Pluripotent Stem Cells. J. Biol. Chem. 2012, 287, 29861–29872. [Google Scholar] [CrossRef] [Green Version]
- Lahue, R.S. New Developments in Huntington’s Disease and Other Triplet Repeat Diseases: DNA Repair Turns to the Dark Side. Neuronal Signal. 2020, 4, NS20200010. [Google Scholar] [CrossRef] [PubMed]
- Pearson, C.E.; Ewel, A.; Acharya, S.; Fishel, R.A.; Sinden, R.R. Human MSH2 Binds to Trinucleotide Repeat DNA Structures Associated with Neurodegenerative Diseases. Hum. Mol. Genet. 1997, 6, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panigrahi, G.B.; Lau, R.; Montgomery, S.E.; Leonard, M.R.; Pearson, C.E. Slipped (CTG)•(CAG) Repeats Can Be Correctly Repaired, Escape Repair or Undergo Error-Prone Repair. Nat. Struct. Mol. Biol. 2005, 12, 654–662. [Google Scholar] [CrossRef]
- Panigrahi, G.B.; Slean, M.M.; Simard, J.P.; Gileadi, O.; Pearson, C.E. Isolated Short CTG/CAG DNA Slip-Outs Are Repaired Efficiently by HMutSbeta, but Clustered Slip-Outs Are Poorly Repaired. Proc. Natl. Acad. Sci. USA 2010, 107, 12593–12598. [Google Scholar] [CrossRef] [Green Version]
- Panigrahi, G.B.; Slean, M.M.; Simard, J.P.; Pearson, C.E. Human Mismatch Repair Protein HMutLα Is Required to Repair Short Slipped-DNAs of Trinucleotide Repeats. J. Biol. Chem. 2012, 287, 41844–41850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pluciennik, A.; Burdett, V.; Baitinger, C.; Iyer, R.R.; Shi, K.; Modrich, P. Extrahelical (CAG)/(CTG) Triplet Repeat Elements Support Proliferating Cell Nuclear Antigen Loading and MutLalpha Endonuclease Activation. Proc. Natl. Acad. Sci. USA 2013, 110, 12277–12282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, B.A.; Yang, Z.; Lai, M.; Gajek, M.; Badger, J.D., 2nd; Hayes, J.J.; Edelmann, W.; Kucherlapati, R.; Wilson, T.M.; McMurray, C.T. (CAG)n-Hairpin DNA Binds to Msh2-Msh3 and Changes Properties of Mismatch Recognition. Nat. Struct. Mol. Biol. 2005, 12, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Slean, M.M.; Panigrahi, G.B.; Castel, A.L.; Pearson, A.B.; Tomkinson, A.E.; Pearson, C.E. Absence of MutSβ Leads to the Formation of Slipped-DNA for CTG/CAG Contractions at Primate Replication Forks. DNA Repair 2016, 42, 107–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.H.M.; Pearson, C.E. Disease-Associated Repeat Instability and Mismatch Repair. DNA Repair 2016, 38, 117–126. [Google Scholar] [CrossRef]
- Kadyrova, L.Y.; Gujar, V.; Burdett, V.; Modrich, P.L.; Kadyrov, F.A. Human MutLγ, the MLH1–MLH3 Heterodimer, Is an Endonuclease That Promotes DNA Expansion. Proc. Natl. Acad. Sci. USA 2020, 117, 3535–3542. [Google Scholar] [CrossRef] [Green Version]
- Su, X.A.; Freudenreich, C.H. Cytosine Deamination and Base Excision Repair Cause R-Loop–Induced CAG Repeat Fragility and Instability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2017, 114, E8392–E8401. [Google Scholar] [CrossRef] [Green Version]
- Rayssiguier, C.; Thaler, D.S.; Radman, M. The Barrier to Recombination between Escherichia coli and Salmonella typhimurium Is Disrupted in Mismatch-Repair Mutants. Nature 1989, 342, 396–401. [Google Scholar] [CrossRef]
- Schmidt, K.H.; Abbott, C.M.; Leach, D.R. Two Opposing Effects of Mismatch Repair on CTG Repeat Instability in Escherichia coli. Mol. Microbiol. 2000, 35, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, S.; Fuchs, R.P.P.; Bichara, M. Expansion of CTG Repeats from Human Disease Genes Is Dependent upon Replication Mechanisms in Escherichia coli: The Effect of Long Patch Mismatch Repair Revisited. J. Mol. Biol. 1998, 279, 1101–1110. [Google Scholar] [CrossRef]
- Jaworski, A.; Rosche, W.A.; Gellibolian, R.; Kang, S.; Shimizu, M.; Bowater, R.P.; Sinden, R.R.; Wells, R.D. Mismatch Repair in Escherichia coli Enhances Instability of (CTG)n Triplet Repeats from Human Hereditary Diseases. Proc. Natl. Acad. Sci. USA 1995, 92, 11019–11023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, G.-F.; Goellner, G.M.; McMurray, C.T.; Haber, J.E. Recombination-Induced CAG Trinucleotide Repeat Expansions in Yeast Involve the MRE11/RAD50/XRS2 Complex. EMBO J. 2000, 19, 2381–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, G.-F.; Cyncynatus, C.; Dujon, B. Contractions and Expansions of CAG/CTG Trinucleotide Repeats Occur during Ectopic Gene Conversion in Yeast, by a MUS81-Independent Mechanism. J. Mol. Biol. 2003, 326, 769–782. [Google Scholar] [CrossRef]
- Richard, G.-F.; Pâques, F. Mini- and Micro-satellite Expansions: The Recombination Connection. EMBO Rep. 2000, 1, 122–126. [Google Scholar] [CrossRef] [PubMed]
Genotype | Nbr of Triplets | CAG Orientation | CTG Orientation | Reference |
---|---|---|---|---|
WT | 25 | 5 × 10−7 | 1 × 10−5 | [41] |
msh2Δ | 25 | 3 × 10−8 (↓17×) | 9 × 10−6 (=) | |
WT | 25 | 1 × 10−6 | 3 × 10−5 | [42] |
msh3Δ | 25 | 2.4 × 10−7 (↓5×) | 1 × 10−6 (↓30×) | |
msh6Δ | 25 | 2.4 × 10−6 (↑2×) | 1.5 × 10−4 (↑5×) | |
WT | 47–59 | 4.2–7.8 × 10−1 | ND | [43] |
msh3Δ | 47–59 | 1.7–5 × 10−2 (↓15–25×) (1) | ND | |
WT | 30–34 | ND | 4.3–4.7 × 10−1 | |
msh3Δ | 30–34 | ND | 0.8–1.2 × 10−1 (↓4–5×) (1) |
Parental Genotype | CAG/CTG Expansions | CAG/CTG Contractions | Transmission | Reference |
---|---|---|---|---|
msh2−/− | ↓ | ↑ | unspecified | [54] |
msh3−/− | ↓ | ↑ | ♂ and ♀ | [56] |
msh6−/− | = | = | ♂ | [56] |
msh6−/− | ↓ | ↑ | ♀ | [56] |
mlh1−/− | ↓ | = | unspecified | [61] |
pms2−/− | ↓ | ↑ | unspecified | [63] |
mlh3−/− | ↓ | = | unspecified | [61] |
Parental genotype | CGG/CCG expansions | CGG/CCG contractions | Transmission | Reference |
msh2−/− | ↓ | ↑ | ♂ and ♀ | [65] |
msh3−/− | ↓ | ↑ | ♂ and ♀ | [66] |
pms2−/− | ↓ | ↑ | unspecified | [68] |
pms1−/− | ↓ | = | unspecified | [68] |
mlh3−/− | ↓ | ↑ | unspecified | [68] |
Parental genotype | GAA/TTC expansions | GAA/TTC contractions | Transmission | Reference |
msh2−/− | = | ↑ | unspecified | [69] |
msh3−/− | = | ↑ | unspecified | [69] |
msh6−/− | ↑ | = | unspecified | [69] |
pms2−/− | ↑ | ↓ | unspecified | [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richard, G.-F. The Startling Role of Mismatch Repair in Trinucleotide Repeat Expansions. Cells 2021, 10, 1019. https://doi.org/10.3390/cells10051019
Richard G-F. The Startling Role of Mismatch Repair in Trinucleotide Repeat Expansions. Cells. 2021; 10(5):1019. https://doi.org/10.3390/cells10051019
Chicago/Turabian StyleRichard, Guy-Franck. 2021. "The Startling Role of Mismatch Repair in Trinucleotide Repeat Expansions" Cells 10, no. 5: 1019. https://doi.org/10.3390/cells10051019