MSC Manufacturing for Academic Clinical Trials: From a Clinical-Grade to a Full GMP-Compliant Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Staff
2.2. Premises and Equipment
2.3. Raw Materials
2.4. Starting Material: Bone Marrow Collection
2.5. Manufacturing Process
2.6. Quality Controls
2.7. Release of MSC Products
2.8. Thawing of MSC Products
2.9. Media Simulations to Demonstrate Asepsis
3. Results
3.1. Process Validation
3.1.1. Fresh Culture
3.1.2. Holding Step (Freezing at the Second Passage)
3.1.3. Short-Term Stability of MSC Products after Thawing
3.1.4. Short-Term Stability of Fresh MSC Products
3.1.5. Stability Program
3.1.6. MSC Manufacturing
3.1.7. Cost Increase with GMP Manufacturing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATMP | Advanced therapeutic medicinal product |
BM | Bone marrow |
CBT | Cord blood transplantation |
DMSO | Dimethyl sulfoxide |
DT | Doubling time |
EBMT | European Group for Blood and Marrow Transplantation |
EP | European pharmacopeia |
FBS | Fetal bovine serum |
FDA | Food and drug administration |
FIFO | First-in first-out |
GMP | Good manufacturing practice |
GVHD | Graft versus host disease |
HCT | Hematopoietic cell transplantation |
HPL | Human platelet lysate |
HSA | Human serum albumin |
IDO | Indolamine oxidase |
IFNγ | Interferon gamma |
ISBT | International society of blood transfusion |
ISCT | International Society of Cellular Therapy |
IQ | Installation qualification |
IV | Intravenous |
LTCG | Laboratory of Cell and Gene Therapy |
MLR | Mixed Lymphocyte Reaction |
MSC | Mesenchymal stem/stromal cells |
NaCl | Sodium chloride |
NAT | Nucleic amplification technique |
OQ | Operational qualification |
PBMC | Peripheral blood mononuclear cells |
PDL | Population doubling level |
PDL-1 | Programmed death ligand 1 |
PQ | Performance qualification |
QA | Quality assurance |
QC | Quality control |
QP | Qualified person |
SCM | Serum-containing media |
SFM | Serum-free media |
SOP | Standard operating procedure |
TSE | Transmission of spongiform encephalopathy |
URS | User-specific specifications |
References
- Grégoire, C.; Lechanteur, C.; Briquet, A.; Baudoux, É.; Baron, F.; Louis, E.; Beguin, Y. Review article: Mesenchymal stromal cell therapy for inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2016, 45, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Olmo, D.; Schwartz, D.A. Cumulative Evidence That Mesenchymal Stem Cells Promote Healing of Perianal Fistulas of Patients with Crohn’s Disease—Going from Bench to Bedside. Gastroenterology 2015, 149, 853–857. [Google Scholar] [CrossRef]
- Panes, J.; Garcia-Olmo, D.; Van, A.G.; Colombel, J.F.; Reinisch, W.; Baumgart, D.C.; Dignass, A.; Nachury, M.; Ferrante, M.; Kazemi-Shirazi, L.; et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: A phase 3 randomised, double-blind controlled trial. Lancet 2016, 388, 1281–1290. [Google Scholar] [CrossRef]
- Munneke, J.M.; Spruit, M.J.; Cornelissen, A.S.; Hoeven, V.V.; Voermans, C.; Hazenberg, M.D. The Potential of Mesenchymal Stromal Cells as Treatment for Severe Steroid-Refractory Acute Graft-Versus-Host Disease: A Critical Review of the Literature. Transplantation 2016, 100, 2309–2314. [Google Scholar] [CrossRef]
- Wang, L.-T.; Ting, C.-H.; Yen, M.-L.; Liu, K.-J.; Sytwu, H.-K.; Wu, K.K.; Yen, B.L. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: Review of current clinical trials. J. Biomed. Sci. 2016, 23, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Ding, Z.; Han, C.; Shi, H.; Cui, L.; Lin, R. Efficacy of Mesenchymal Stromal Cells for Fistula Treatment of Crohn’s Disease: A Systematic Review and Meta-Analysis. Dig. Dis. Sci. 2017, 62, 851–860. [Google Scholar] [CrossRef]
- Hashmi, S.; Ahmed, M.; Murad, M.H.; Litzow, M.R.; Adams, R.H.; Ball, L.M.; Prasad, V.K.; Kebriaei, P.; Ringden, O. Survival after mesenchymal stromal cell therapy in steroid-refractory acute graft-versus-host disease: Systematic review and meta-analysis. Lancet Haematol. 2016, 3, e45–e52. [Google Scholar] [CrossRef]
- Fisher, S.; Cutler, A.; Doree, C.; Brunskill, S.J.; Stanworth, S.J.; Navarrete, C.; Girdlestone, J. Mesenchymal stromal cells as treatment or prophylaxis for acute or chronic graft-versus-host disease in haematopoietic stem cell transplant (HSCT) recipients with a haematological condition. Cochrane Datab. Syst. Rev. 2019, 1, CD009768. [Google Scholar] [CrossRef]
- Lechanteur, C.; Briquet, A.; Giet, O.; Delloye, O.; Baudoux, E.; Beguin, Y. Clinical-scale expansion of mesenchymal stromal cells: A large banking experience. J. Transl. Med. 2016, 14, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detry, O.; Vandermeulen, M.; Delbouille, M.-H.; Somja, J.; Bletard, N.; Briquet, A.; Lechanteur, C.; Giet, O.; Baudoux, E.; Hannon, M.; et al. Infusion of mesenchymal stromal cells after deceased liver transplantation: A phase I–II, open-label, clinical study. J. Hepatol. 2017, 67, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Erpicum, P.; Weekers, L.; Detry, O.; Bonvoisin, C.; Delbouille, M.-H.; Grégoire, C.; Baudoux, E.; Briquet, A.; Lechanteur, C.; Maggipinto, G.; et al. Infusion of third-party mesenchymal stromal cells after kidney transplantation: A phase I-II, open-label, clinical study. Kidney Int. 2019, 95, 693–707. [Google Scholar] [CrossRef]
- Servais, S.; Baron, F.; Lechanteur, C.; Baudoux, E.; Briquet, A.; Selleslag, D.; Maertens, J.A.; Poire, X.; Schroyens, W.; Graux, C.; et al. Multipotent Mesenchymal Stromal Cells for Poor Graft Function after Allogeneic Hematopoietic Cell Transplantation:a Multicenter Prospective Study. Blood 2019, 134, 37. [Google Scholar] [CrossRef]
- Servais, S.; Baron, F.; Lechanteur, C.; Seidel, L.; Selleslag, D.; Maertens, J.; Baudoux, E.; Zachée, P.; Van Gelder, M.; Noens, L.; et al. Infusion of bone marrow derived multipotent mesenchymal stromal cells for the treatment of steroid-refractory acute graft-versus-host disease: A multicenter prospective study. Oncotarget 2018, 9, 20590–20604. [Google Scholar] [CrossRef] [Green Version]
- Gregoire, C.; Briquet, A.; Pirenne, C.; Lechanteur, C.; Louis, E.; Beguin, Y. Allogeneic mesenchymal stromal cells for refractory luminal Crohn’s disease: A phase I–II study. Dig. Liver Dis. 2018, 50, 1251–1255. [Google Scholar] [CrossRef]
- Baron, F.; Lechanteur, C.; Willems, E.; Bruck, F.; Baudoux, E.; Seidel, L.; Vanbellinghen, J.-F.; Hafraoui, K.; Lejeune, M.; Gothot, A.; et al. Cotransplantation of Mesenchymal Stem Cells Might Prevent Death from Graft-versus-Host Disease (GVHD) without Abrogating Graft-versus-Tumor Effects after HLA-Mismatched Allogeneic Transplantation following Nonmyeloablative Conditioning. Biol. Blood Marrow Transplant. 2010, 16, 838–847. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Guidelines on Good Manufacturing Practice Specific to Advanced Therapy Medicinal Products; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Karnieli, O.; Friedner, O.M.; Allickson, J.G.; Zhang, N.; Jung, S.; Fiorentini, D.; Abraham, E.; Eaker, S.S.; Yong, T.K.; Chan, A.; et al. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 2017, 19, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Sensebé, L.; Gadelorge, M.; Fleury-Cappellesso, S. Production of mesenchymal stromal/stem cells according to good manufacturing practices: A review. Stem Cell Res. Ther. 2013, 4, 66. [Google Scholar] [CrossRef] [Green Version]
- Torre, M.L.; Lucarelli, E.; Guidi, S.; Ferrari, M.; Alessandri, G.; DE Girolamo, L.; Pessina, A.; Ferrero, I.; Gruppo Italiano Staminali Mesenchimali (GISM). Ex Vivo Expanded Mesenchymal Stromal Cell Minimal Quality Requirements for Clinical Application. Stem Cells Dev. 2015, 24, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Panchalingam, K.M.; Jung, S.; Rosenberg, L.; Behie, L.A. Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: A review. Stem Cell Res. Ther. 2015, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelrazik, H.; Spaggiari, G.M.; Chiossone, L.; Moretta, L. Mesenchymal stem cells expanded in human platelet lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function. Eur. J. Immunol. 2011, 41, 3281–3290. [Google Scholar] [CrossRef] [PubMed]
- Becherucci, V.; Piccini, L.; Casamassima, S.; Bisin, S.; Gori, V.; Gentile, F.; Ceccantini, R.; De Rienzo, E.; Bindi, B.; Pavan, P.; et al. Human platelet lysate in mesenchymal stromal cell expansion according to a GMP grade protocol: A cell factory experience. Stem Cell Res. Ther. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wuchter, P.; Bieback, K.; Schrezenmeier, H.; Bornhäuser, M.; Müller, L.P.; Bönig, H.; Wagner, W.; Meisel, R.; Pavel, P.; Tonn, T.; et al. Standardization of Good Manufacturing Practice–compliant production of bone marrow–derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 2015, 17, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Schallmoser, K.; Henschler, R.; Gabriel, C.; Koh, M.B.C.; Burnouf, T. Production and Quality Requirements of Human Platelet Lysate: A Position Statement from the Working Party on Cellular Therapies of the International Society of Blood Transfusion. Trends Biotechnol. 2020, 38, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Galipeau, J.; Sensébé, L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell 2018, 22, 824–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campeau, P.; Rafei, M.; Boivin, M.-N.; Sun, Y.; Grabowski, G.A.; Galipeau, J. Characterization of Gaucher disease bone marrow mesenchymal stromal cells reveals an altered inflammatory secretome. Blood 2009, 114, 3181–3190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Galipeau, J.; Krampera, M.; Barrett, J.; Dazzi, F.; Deans, R.J.; DeBruijn, J.; Dominici, M.; Fibbe, W.E.; Gee, A.P.; Gimble, J.M.; et al. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 2016, 18, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galipeau, J.; Krampera, M. The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria. Cytotherapy 2015, 17, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Bloom, D.D.; Centanni, J.M.; Bhatia, N.; Emler, C.A.; Drier, D.; Leverson, G.E.; McKenna, D.H.; Gee, A.P.; Lindblad, R.; Hei, D.J.; et al. A reproducible immunopotency assay to measure mesenchymal stromal cell–mediated T-cell suppression. Cytotherapy 2015, 17, 140–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketterl, N.; Brachtl, G.; Schuh, C.; Bieback, K.; Schallmoser, K.; Reinisch, A.; Strunk, D. A robust potency assay highlights significant donor variation of human mesenchymal stem/progenitor cell immune modulatory capacity and extended radio-resistance. Stem Cell Res. Ther. 2015, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Oliver-Vila, I.; Ramírez-Moncayo, C.; Grau-Vorster, M.; Marín-Gallén, S.; Caminal, M.; Vives, J. Optimisation of a potency assay for the assessment of immunomodulative potential of clinical grade multipotent mesenchymal stromal cells. Cytotechnology 2018, 70, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Grau-Vorster, M.; Rodríguez, L.; Del Mazo-Barbara, A.; Mirabel, C.; Blanco, M.; Codinach, M.; Gómez, S.G.; Querol, S.; García-López, J.; Vives, J. Compliance with Good Manufacturing Practice in the Assessment of Immunomodulation Potential of Clinical Grade Multipotent Mesenchymal Stromal Cells Derived from Wharton’s Jelly. Cells 2019, 8, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimbrel, E.A.; Kouris, N.A.; Yavanian, G.J.; Chu, J.; Qin, Y.; Chan, A.; Singh, R.P.; McCurdy, D.; Gordon, L.; Levinson, R.D.; et al. Mesenchymal Stem Cell Population Derived from Human Pluripotent Stem Cells Displays Potent Immunomodulatory and Therapeutic Properties. Stem Cells Dev. 2014, 23, 1611–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, H.S.; Yi, T.; Cho, Y.K.; Kim, W.C.; Song, S.U.; Jeon, M.-S. Mesenchymal Stem Cell Lines Isolated by Different Isolation Methods Show Variations in the Regulation of Graft-versus-host Disease. Immune Netw. 2013, 13, 133–140. [Google Scholar] [CrossRef]
- von Bahr, L.; Sundberg, B.; Lönnies, L.; Sander, B.; Karbach, H.; Hägglund, H.; Ljungman, P.; Gustafsson, B.; Karlsson, H.; Le Blanc, K.; et al. Long-Term Complications, Immunologic Effects, and Role of Passage for Outcome in Mesenchymal Stromal Cell Therapy. Biol. Blood Marrow Transplant. 2012, 18, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Wolf, C.D.; van de Bovenkamp, M.; Hoefnagel, M. Regulatory perspective on in vitro potency assays for human mesenchymal stromal cells used in immunotherapy. Cytotherapy 2017, 19, 784–797. [Google Scholar] [CrossRef]
- Guan, Q.; Li, Y.; Shpiruk, T.; Bhagwat, S.; Wall, D.A. Inducible indoleamine 2,3-dioxygenase 1 and programmed death ligand 1 expression as the potency marker for mesenchymal stromal cells. Cytotherapy 2018, 20, 639–649. [Google Scholar] [CrossRef]
- Harrison, R.P.; Medcalf, N.; Rafiq, Q. Cell therapy-processing economics: Small-scale microfactories as a stepping stone toward large-scale macrofactories. Regen. Med. 2018, 13, 159–173. [Google Scholar] [CrossRef] [Green Version]
Class | A | B | C | D | |
---|---|---|---|---|---|
Non-viable monitoring (particles) | |||||
Frequency | |||||
Clinical process | NA | NA | Half-yearly | ||
GMP process | In operation weekly | In operation bimonthly | |||
Specifications (*) | |||||
At rest | ≥0.5 µm | 3520 | 3520 | 352,000 | 3,520,000 |
≥5 µm | 20 | 29 | 2900 | 29,000 | |
In operation | ≥0.5 µm | 3520 | 352,000 | 3,520,000 | NA |
≥5 µm | 20 | 2900 | 29,000 | NA | |
Viable monitoring (bacterial CFU) | |||||
Frequency | |||||
Clinical process | NA | NA | Monthly | ||
GMP process | In operation weekly | In operation bimonthly | |||
Specifications | |||||
Air sampling (CFU/m3) | <1 | 10 | 100 | 200 | |
Sedimentation (CFU/4H) | <1 | 5 | 50 | 100 | |
Contact plate (CFU/plate) | <1 | 5 | 25 | 50 |
Clinical Process | GMP Process | ||
---|---|---|---|
Reference | Quality Control | ||
Initiation | 2 at ≤ −150 °C | 2 at ≤ −150°C | |
Passage 2 | 2 at ≤ −150 °C | 2 at 2–8 °C (supernatant) | 2 at 2–8 °C (supernatant) |
2 at ≤ −150 °C (viable cells) | 2 at ≤ −150 °C (viable cells) | ||
Harvest | 2 at ≤ −150 °C | 4 at 2–8 °C (supernatant) | 4 at 2–8 °C (supernatant) |
2 at ≤ 150 °C (viable cells) | 2 at ≤ −150 °C (viable cells) |
Test | Method | Release Criteria | |||
---|---|---|---|---|---|
First Common Step | Final Release Frozen Product | Provisional Release Fresh Product | Final Release Fresh Product | ||
Sterility | E.P. 2.6.27 | Culture negative at the limit of detection | Culture negative at the limit of detection | NA | Culture negative at the limit of detection |
Mycoplasma | E.P. 2.6.7 | Absence | Absence | NA | Absence |
Endotoxin | E. P. 2.6.14 | <2.5 UI/mL | <2.5 UI/mL | NA | <2.5 UI/mL |
Identity | Phenotype by FACS | CD90 > 80% CD105 > 80% CD73 > 80% | CD90 > 95% CD105 > 95% CD73 > 95% | CD90 > 95% CD105 > 95% CD73 > 95% | NA |
Purity | Phenotype by FACS | CD14 < 2% CD34 < 2% CD45 < 2% CD3 < 1% Total < 2% | CD14 < 2% CD34 < 2% CD45 < 2% CD3 < 1% Total < 2% | CD14 < 2% CD34 < 2% CD45 < 2% CD3 < 1% Total < 2% | NA |
Karyotype | Cell culture | Absence of clonal chromosomal structure and/or number abnormalities | Absence of clonal chromosomal structure and/or number abnormalities | NA | Absence of clonal chromosomal structure and/or number abnormalities |
Viability | Nucleocounter | NA | ≥80% | ≥80% | NA |
Potency | MLR by FACS | NA | >25% Inhibition of the proliferation of activated PBMCs | NA | >25% Inhibition of the proliferation of activated PBMCs |
Morphology | Microscopic observation | NA | Fibroblastic | Fibroblastic | NA |
Cell aggregate | Nucleocounter | NA | <25% | NA | NA |
Visual inspection | European Pharmacopoeia 2.9.20 | NA | Absence of visible particle | Absence of visible particle | NA |
Freezing temperature curve | Control of the freezing temperature curve | NA | Conform to the programmed temperature curve | NA | NA |
Test | Specification | Results | Conformity | |
---|---|---|---|---|
Recovery (%) | 60% 69% | 69% | Compliant | |
Viability (%) | 60% 76% | 76% | Compliant | |
Sterility | Sterile | Sterile | Compliant | |
Endotoxin | <2.5 UI/mL | <0.15 UI/mL | Compliant | |
Mycoplasma | Absent | OK | Compliant | |
Identity | CD90 | >95% | 98.3% | Compliant |
CD105 | >95% | 99.5% | Compliant | |
CD73 | >95% | 96.7% | Compliant | |
Purity | CD14 | <2% | 0% | Compliant |
CD34 | <2% | 0% | Compliant | |
CD45 | <2% | 0.05% | Compliant | |
CD3 | <1% | 0% | Compliant | |
Total | <2% | 0.05% | Compliant | |
Morphology | Fibroblastic | Fibroblastic | Compliant | |
Proliferation rate | >1 | 1.44 | Compliant | |
Potency | >25% | 63.5% | Compliant |
Batch Number | P0 (Cells × 106) | P1 (Cells × 106) | P2 (Cells × 106) | Unfrozen Seeded Cells (×106) | Harvested Cells (×106) | PDL (P1-Harvest) | N-Frozen Aliquots at P2 | Frozen Cells/Aliquot (×106) | N Thawed Bags | Post-Thaw Cells (×106) | Post-Thaw Harvested Cells (×106) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 167.0 | 21.2 | 113.4 | 63.8 | 331.0 | 4.81 | |||||
1 | 49.7 | 1 | 30.8 | 103.8 | |||||||
2 | 1330.0 | 525.0 | 823.5 | 204.0 | 1500.0 | 4.89 | |||||
4 | 106.0 168.0 168.0 168.0 | 3 | 102.0 159.0 122.0 | 449.0 411.0 416.0 | |||||||
3 | 209.6 | 51.0 | 335.5 | 102.0 | 970.0 | 5.91 | |||||
2 | 112.5 112.5 | 2 | 92.5 103.8 | 795.0 867.0 | |||||||
4 | 323.0 | 154.8 | 932.5 | 204.0 | 1552.6 | 6.04 | |||||
13 | 2 × 136.0 1 × 147.0 10 × 30.0 | 1 2 | 106.0 25.1; 27.7 | 618.0 123.0; 154.5 | |||||||
5 | 176.4 | 40.8 | 220.0 | 6 | 33.7 | 1 | 20.3 | 93.3 | |||
6 | 688.8 | 207.2 | 1727.0 | 21 | 3 × 190.0 6 × 45.0 2 × 190.0 10 × 40.0 | 1 | 19.6 | 100.2 | |||
7 | 402.6 | 86.7 | 580.0 | 204.0 | 1463.5 | 5.60 | |||||
4 | 1 × 86.0 3 × 89.0 | ||||||||||
Mean | 444.0 | 155.2 | 674.6 | 155.5 | 1163.0 | 5.45 |
Manufacturing Costs (*) | Clinical-Grade | GMP-Grade (Fold) |
Staff (manufacturing and QC) (28%) | 1 | 3.6 |
Reagents and disposables (49%) | 1 | 1.9 |
Externalized QC (sterility, mycoplasma, endotoxin) (11%) | 1 | 5.3 |
Internal QC (phenotype, karyotype, potency) | 1 | 1 |
Global process (staff, manufacturing and QC) | 1 (2633 EUR/bag) | 2.5 (6647 EUR/bag **) |
Extra Costs (*) | Clinical-Grade | GMP-Grade |
Equipment | 1 | 1.5 |
Environmental monitoring (routine only, not in operation) | 1 | 7.9 |
QA staff | 1 | 2 |
Externalized QC method validation | 0 | EUR ~17,000 |
Media simulations | 0 | EUR ~4000/run (EUR 12,000/validation and EUR 8000/year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lechanteur, C.; Briquet, A.; Bettonville, V.; Baudoux, E.; Beguin, Y. MSC Manufacturing for Academic Clinical Trials: From a Clinical-Grade to a Full GMP-Compliant Process. Cells 2021, 10, 1320. https://doi.org/10.3390/cells10061320
Lechanteur C, Briquet A, Bettonville V, Baudoux E, Beguin Y. MSC Manufacturing for Academic Clinical Trials: From a Clinical-Grade to a Full GMP-Compliant Process. Cells. 2021; 10(6):1320. https://doi.org/10.3390/cells10061320
Chicago/Turabian StyleLechanteur, Chantal, Alexandra Briquet, Virginie Bettonville, Etienne Baudoux, and Yves Beguin. 2021. "MSC Manufacturing for Academic Clinical Trials: From a Clinical-Grade to a Full GMP-Compliant Process" Cells 10, no. 6: 1320. https://doi.org/10.3390/cells10061320
APA StyleLechanteur, C., Briquet, A., Bettonville, V., Baudoux, E., & Beguin, Y. (2021). MSC Manufacturing for Academic Clinical Trials: From a Clinical-Grade to a Full GMP-Compliant Process. Cells, 10(6), 1320. https://doi.org/10.3390/cells10061320