Strength and Numbers: The Role of Affinity and Avidity in the ‘Quality’ of T Cell Tolerance
Abstract
:1. Introduction
2. TCR Signal Strength: Affinity, Avidity, and Functional Avidity
3. T Cell Anergy
3.1. CD8+ T Cell Anergy
3.1.1. CD8+ T Cells Bearing Antigen Receptors with Affinity for Self-pMHC near the Negative Selection Threshold Are Tolerant at Steady-State but Can Induce Autoimmune Pathology
3.1.2. Strong TCR Signals Can Lead to CD8+ T Cell Anergy or Deletion
3.2. CD4+ T Cell Anergy
3.2.1. A Spectrum of TCR Signals Can Induce CD4+ T Cell Anergy
3.2.2. CD4+ T Cell Anergy Is Induced through Distinct Mechanisms Based on TCR Signal Strength
3.3. T Cell Signal Strength and Anergy: Considerations and Open Questions
4. Regulatory T Cells
4.1. The Avidity of TCR for Self-Peptide Determines nTreg Fate and Function
4.1.1. Thymic nTreg Fate Decisions and Heterogeneity
4.1.2. Self-Reactivity Instructs nTreg Function
4.1.3. The Strength of Peripheral Stimulation of Treg May Influence Their Suppressive Functions
4.2. Self-Reactivity Determines the Ability of Naïve CD4+ T Cells to Differentiate into pTreg
4.3. pTreg Induction Is Dependent on TCR Signal. Quality
4.3.1. Functional Avidity Is a Critical Component of Foxp3 Induction
4.3.2. An Optimal Temporal Window for the Differentiation of pTreg
4.3.3. The Akt/mTOR and the NF-κB Signaling Pathways Integrate TCR Signal Strength for the Induction of Treg
4.4. TCR Signaling and Treg Persistence in the Periphery
4.5. TCR Signaling Shapes Treg Heterogeneity: Considerations and Open Questions
5. Clinical Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Davis, M.M.; Bjorkman, P.J. T-Cell Antigen Receptor Genes and T-Cell Recognition. Nature 1988, 334, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Hogquist, K.A.; Jameson, S.C. The Self-Obsession of T Cells: How TCR Signaling Thresholds Affect Fate “decisions” and Effector Function. Nat. Immunol. 2014, 15, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Klein, L.; Kyewski, B.; Allen, P.M.; Hogquist, K.A. Positive and Negative Selection of the T Cell Repertoire: What Thymocytes See (and Don’t See). Nat. Rev. Immunol. 2014, 14, 377–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.Y.; Fairchild, P.J.; Smith, R.M.; Prowle, J.R.; Kioussis, D.; Wraith, D.C. Low Avidity Recognition of Self-Antigen by T Cells Permits Escape from Central Tolerance. Immunity 1995, 3, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Bouneaud, C.; Kourilsky, P.; Bousso, P. Impact of Negative Selection on the T Cell Repertoire Reactive to a Self-Peptide: A Large Fraction of T Cell Clones Escapes Clonal Deletion. Immunity 2000, 13, 829–840. [Google Scholar] [CrossRef] [Green Version]
- Gallegos, A.M.; Bevan, M.J. Central Tolerance: Good but Imperfect. Immunol. Rev. 2006, 209, 290–296. [Google Scholar] [CrossRef]
- Collado, J.A.P.D.; Guitart, C.M.S.; Ciudad, M.T.M.S.; Alvarez, I.P.D.; Jaraquemada, D.P.D. The Repertoires of Peptides Presented by MHC-II in the Thymus and in Peripheral Tissue: A Clue for Autoimmunity? Front. Immunol. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Calis, J.J.A.; De Boer, R.J.; Keşmir, C. Degenerate T-cell Recognition of Peptides on MHC Molecules Creates Large Holes in the T-cell Repertoire. PLoS Comput. Biol. 2012, 8, e1002412. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Jiang, N.; Ebert, P.J.R.; Kidd, B.A.; Müller, S.; Lund, P.J.; Juang, J.; Adachi, K.; Tse, T.; Birnbaum, M.E.; et al. Clonal Deletion Prunes but Does Not Eliminate Self-Specific Aβ CD8+ T Lymphocytes. Immunity 2015, 42, 929–941. [Google Scholar] [CrossRef] [Green Version]
- Wortel, I.M.N.; Keşmir, C.; de Boer, R.J.; Mandl, J.N.; Textor, J. Is T Cell Negative Selection a Learning Algorithm? Cells 2020, 9, 690. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, J.K.; Franksson, L.; Sundbäck, J.; Michaelsson, J.; Petersson, M.; Achour, A.; Wallin, R.P.A.; Sherman, N.E.; Bergman, T.; Jörnvall, H.; et al. T Cell Tolerance Based on Avidity Thresholds Rather Than Complete Deletion Allows Maintenance of Maximal Repertoire Diversity. J. Immunol. 2000, 165, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ElTanbouly, M.A.; Noelle, R.J. Rethinking Peripheral T Cell Tolerance: Checkpoints across a T Cell’s Journey. Nat. Rev. Immunol. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.S.; Li, Q.-J.; Persaud, S.P.; Campbell, J.D.; Davis, M.M.; Allen, P.M. Distinct CD4+ Helper T Cells Involved in Primary and Secondary Responses to Infection. Proc. Natl. Acad. Sci. USA 2012, 109, 9511–9516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandl, J.N.; Monteiro, J.P.; Vrisekoop, N.; Germain, R.N. T Cell Positive Selection Uses Self-Ligand Binding Strength to Optimize Repertoire Recognition of Foreign Antigens. Immunity 2013, 38, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Persaud, S.P.; Parker, C.R.; Lo, W.-L.; Weber, K.S.; Allen, P.M. Intrinsic CD4+ T Cell Sensitivity and Response to a Pathogen Are Set and Sustained by Avidity for Thymic and Peripheral Complexes of Self Peptide and MHC. Nat. Immunol. 2014, 15, 266–274. [Google Scholar] [CrossRef]
- Fulton, R.B.; Hamilton, S.E.; Xing, Y.; Best, J.A.; Goldrath, A.W.; Hogquist, K.A.; Jameson, S.C. The TCR’s Sensitivity to Self Peptide–MHC Dictates the Ability of Naive CD8+ T Cells to Respond to Foreign Antigens. Nat. Immunol. 2015, 16, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Vrisekoop, N.; Monteiro, J.P.; Mandl, J.N.; Germain, R.N. Revisiting Thymic Positive Selection and the Mature T Cell Repertoire for Antigen. Immunity 2014, 41, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Paprckova, D.; Stepanek, O. Narcissistic T Cells: Reactivity to Self Makes a Difference. FEBS J. 2021, 288, 1778–1788. [Google Scholar] [CrossRef]
- Sood, A.; Lebel, M.-È.; Fournier, M.; Rogers, D.; Mandl, J.N.; Melichar, H.J. Differential Interferon-Gamma Production Potential among Naïve CD4+ T Cells Exists Prior to Antigen Encounter. Immunol. Cell Biol. 2019, 97, 931–940. [Google Scholar] [CrossRef]
- Sood, A.; Lebel, M.; Dong, M.; Fournier, M.; Vobecky, S.J.; Haddad, É.; Delisle, J.; Mandl, J.N.; Vrisekoop, N.; Melichar, H.J. CD5 levels define functionally heterogeneous populations of naïve human CD4+ T cells. Eur. J. Immunol. 2021. [Google Scholar] [CrossRef]
- Bartleson, J.M.; Viehmann Milam, A.A.; Donermeyer, D.L.; Horvath, S.; Xia, Y.; Egawa, T.; Allen, P.M. Strength of Tonic T Cell Receptor Signaling Instructs T Follicular Helper Cell–Fate Decisions. Nat. Immunol. 2020, 21, 1384–1396. [Google Scholar] [CrossRef]
- Dong, M.; Audiger, C.; Adegoke, A.; Lebel, M.-È.; Valbon, S.F.; Anderson, C.C.; Melichar, H.J.; Lesage, S. CD5 Levels Reveal Distinct Basal T-Cell Receptor Signals in T Cells from Non-Obese Diabetic Mice. Immunol. Cell Biol. 2021. [Google Scholar] [CrossRef]
- Rogers, D.; Sood, A.; Wang, H.; van Beek, J.J.P.; Rademaker, T.J.; Artusa, P.; Schneider, C.; Shen, C.; Wong, D.C.; Lebel, M.-È.; et al. Pre-Existing Chromatin Accessibility and Gene Expression Differences among Naïve CD4+ T Cells Influence Effector Potential. bioRxiv 2021. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Yamaguchi, T.; Nomura, T.; Ono, M. Regulatory T Cells and Immune Tolerance. Cell 2008, 133, 775–787. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, R.H. T Cell Anergy. Annu. Rev. Immunol. 2003, 21, 305–334. [Google Scholar] [CrossRef]
- Fife, B.T.; Guleria, I.; Gubbels Bupp, M.; Eagar, T.N.; Tang, Q.; Bour-Jordan, H.; Yagita, H.; Azuma, M.; Sayegh, M.H.; Bluestone, J.A. Insulin-Induced Remission in New-Onset NOD Mice Is Maintained by the PD-1–PD-L1 Pathway. J. Exp. Med. 2006, 203, 2737–2747. [Google Scholar] [CrossRef]
- Pauken, K.E.; Nelson, C.E.; Martinov, T.; Spanier, J.A.; Heffernan, J.R.; Sahli, N.L.; Quarnstrom, C.F.; Osum, K.C.; Schenkel, J.M.; Jenkins, M.K.; et al. Cutting Edge: Identification of Autoreactive CD4+ and CD8+ T Cell Subsets Resistant to PD-1 Pathway Blockade. J. Immunol. 2015, 194, 3551–3555. [Google Scholar] [CrossRef] [Green Version]
- Wyss, L.; Stadinski, B.D.; King, C.G.; Schallenberg, S.; McCarthy, N.I.; Lee, J.Y.; Kretschmer, K.; Terracciano, L.M.; Anderson, G.; Surh, C.D.; et al. Affinity for Self Antigen Selects Treg Cells with Distinct Functional Properties. Nat. Immunol. 2016, 17, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- Owen, D.L.; Mahmud, S.A.; Sjaastad, L.E.; Williams, J.B.; Spanier, J.A.; Simeonov, D.R.; Ruscher, R.; Huang, W.; Proekt, I.; Miller, C.N.; et al. Thymic Regulatory T Cells Arise via Two Distinct Developmental Programs. Nat. Immunol. 2019, 20, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Sprouse, M.L.; Scavuzzo, M.A.; Blum, S.; Shevchenko, I.; Lee, T.; Makedonas, G.; Borowiak, M.; Bettini, M.L.; Bettini, M. High Self-Reactivity Drives T-Bet and Potentiates Treg Function in Tissue-Specific Autoimmunity. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Josefowicz, S.Z.; Lu, L.-F.; Rudensky, A.Y. Regulatory T Cells: Mechanisms of Differentiation and Function. Annu. Rev. Immunol. 2012, 30, 531–564. [Google Scholar] [CrossRef] [PubMed]
- Shevyrev, D.; Tereshchenko, V. Treg Heterogeneity, Function, and Homeostasis. Front. Immunol. 2020, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viganò, S.; Utzschneider, D.T.; Perreau, M.; Pantaleo, G.; Zehn, D.; Harari, A. Functional Avidity: A Measure to Predict the Efficacy of Effector T Cells? Available online: https://www.hindawi.com/journals/jir/2012/153863/ (accessed on 3 February 2021).
- Carrasco-Marin, E.; Shimizu, J.; Kanagawa, O.; Unanue, E.R. The Class II MHC I-Ag7 Molecules from Non-Obese Diabetic Mice Are Poor Peptide Binders. J. Immunol. 1996, 156, 450–458. [Google Scholar]
- Slifka, M.K.; Whitton, J.L. Functional Avidity Maturation of CD8 + T Cells without Selection of Higher Affinity TCR. Nat. Immunol. 2001, 2, 711–717. [Google Scholar] [CrossRef]
- Richer, M.J.; Nolz, J.C.; Harty, J.T. Pathogen-Specific Inflammatory Milieux Tune the Antigen Sensitivity of CD8+ T Cells by Enhancing T Cell Receptor Signaling. Immunity 2013, 38, 140–152. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.K.; Boukhaled, G.M.; Condotta, S.A.; Mazouz, S.; Guthmiller, J.J.; Vijay, R.; Butler, N.S.; Bruneau, J.; Shoukry, N.H.; Krawczyk, C.M.; et al. Interleukin-10 Directly Inhibits CD8+ T Cell Function by Enhancing N-Glycan Branching to Decrease Antigen Sensitivity. Immunity 2018, 48, 299–312.e5. [Google Scholar] [CrossRef]
- Gaud, G.; Lesourne, R.; Love, P.E. Regulatory Mechanisms in T Cell Receptor Signalling. Nat. Rev. Immunol. 2018, 18, 485–497. [Google Scholar] [CrossRef]
- Stefanova, I.; Hemmer, B.; Vergelli, M.; Martin, R.; Biddison, W.E.; Germain, R.N. TCR Ligand Discrimination Is Enforced by Competing ERK Positive and SHP-1 Negative Feedback Pathways. Nat. Immunol. 2003, 4, 248–254. [Google Scholar] [CrossRef]
- Daniels, M.A.; Teixeiro, E.; Gill, J.; Hausmann, B.; Roubaty, D.; Holmberg, K.; Werlen, G.; Holländer, G.A.; Gascoigne, N.R.J.; Palmer, E. Thymic Selection Threshold Defined by Compartmentalization of Ras/MAPK Signalling. Nature 2006, 444, 724–729. [Google Scholar] [CrossRef]
- Gascoigne, N.R.J.; Rybakin, V.; Acuto, O.; Brzostek, J. TCR Signal Strength and T Cell Development. Annu. Rev. Cell Dev. Biol. 2016, 32, 327–348. [Google Scholar] [CrossRef] [Green Version]
- Sloan-Lancaster, J.; Allen, P.M. Altered Peptide Ligand–Induced Partial T Cell Activation: Molecular Mechanisms and Role in T Cell Biology. Annu. Rev. Immunol. 1996, 14, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Enouz, S.; Carrié, L.; Merkler, D.; Bevan, M.J.; Zehn, D. Autoreactive T Cells Bypass Negative Selection and Respond to Self-Antigen Stimulation during Infection. J. Exp. Med. 2012, 209, 1769–1779. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, R.A.; Hathorn, M.M.; Beuneu, H.; Corse, E.; Dustin, M.L.; Altan-Bonnet, G.; Allison, J.P. Distinct Influences of Peptide-MHC Quality and Quantity on in Vivo T-Cell Responses. Proc. Natl. Acad. Sci. USA 2012, 109, 881–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Boorn, J.G.; Le Poole, I.C.; Luiten, R.M. T-Cell Avidity and Tuning: The Flexible Connection Between Tolerance and Autoimmunity. Int. Rev. Immunol. 2006, 25, 235–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsdell, F.; Lantz, T.; Fowlkes, B.J. A Nondeletional Mechanism of Thymic Self Tolerance. Science 1989, 246, 1038–1041. [Google Scholar] [CrossRef]
- Hu, Q.N.; Suen, A.Y.W.; Caviedes, L.M.H.; Baldwin, T.A. Nur77 Regulates Nondeletional Mechanisms of Tolerance in T Cells. J. Immunol. 2017, 199, 3147–3157. [Google Scholar] [CrossRef]
- Zheng, Y.; Zha, Y.; Gajewski, T.F. Molecular Regulation of T-Cell Anergy. EMBO Rep. 2008, 9, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, L.; Lissina, A.; Cole, D.K.; Berg, H.A.V.D.; Price, D.A.; Sewell, A.K. Tricks with Tetramers: How to Get the Most from Multimeric Peptide–MHC. Immunology 2009, 126, 147–164. [Google Scholar] [CrossRef]
- José, E.S.; Borroto, A.; Niedergang, F.; Alcover, A.; Alarcón, B. Triggering the TCR Complex Causes the Downregulation of Nonengaged Receptors by a Signal Transduction-Dependent Mechanism. Immunity 2000, 12, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.L.; McIntosh, C.M.; Williams, J.B.; Wang, Y.; Hollinger, M.K.; Isaad, N.J.; Moon, J.J.; Gajewski, T.F.; Chong, A.S.; Alegre, M.-L. Distinct Graft-Specific TCR Avidity Profiles during Acute Rejection and Tolerance. Cell Rep. 2018, 24, 2112–2126. [Google Scholar] [CrossRef] [Green Version]
- Zehn, D.; Bevan, M.J. T Cells with Low Avidity for a Tissue-Restricted Antigen Routinely Evade Central and Peripheral Tolerance and Cause Autoimmunity. Immunity 2006, 25, 261–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koehli, S.; Naeher, D.; Galati-Fournier, V.; Zehn, D.; Palmer, E. Optimal T-Cell Receptor Affinity for Inducing Autoimmunity. Proc. Natl. Acad. Sci. USA 2014, 111, 17248–17253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Lefrançois, L. Intestinal Epithelial Antigen Induces Mucosal CD8 T Cell Tolerance, Activation, and Inflammatory Response. J. Immunol. 2004, 173, 4324–4330. [Google Scholar] [CrossRef] [Green Version]
- Redmond, W.L.; Sherman, L.A. Peripheral Tolerance of CD8 T Lymphocytes. Immunity 2005, 22, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Redmond, W.L.; Marincek, B.C.; Sherman, L.A. Distinct Requirements for Deletion versus Anergy during CD8 T Cell Peripheral Tolerance in Vivo. J. Immunol. 2005, 174, 2046–2053. [Google Scholar] [CrossRef]
- Smith, T.R.F.; Verdeil, G.; Marquardt, K.; Sherman, L.A. Contribution of TCR Signaling Strength to CD8+ T Cell Peripheral Tolerance Mechanisms. J. Immunol. 2014, 193, 3409–3416. [Google Scholar] [CrossRef] [Green Version]
- Wagle, M.V.; Marchingo, J.M.; Howitt, J.; Tan, S.-S.; Goodnow, C.C.; Parish, I.A. The Ubiquitin Ligase Adaptor NDFIP1 Selectively Enforces a CD8+ T Cell Tolerance Checkpoint to High-Dose Antigen. Cell Rep. 2018, 24, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Nelson, C.E.; Mills, L.J.; McCurtain, J.L.; Thompson, E.A.; Seelig, D.M.; Bhela, S.; Quarnstrom, C.F.; Fife, B.T.; Vezys, V. Reprogramming Responsiveness to Checkpoint Blockade in Dysfunctional CD8 T Cells. Proc. Natl. Acad. Sci. USA 2019, 116, 2640–2645. [Google Scholar] [CrossRef] [Green Version]
- Nelson, C.E.; Thompson, E.A.; Quarnstrom, C.F.; Fraser, K.A.; Seelig, D.M.; Bhela, S.; Burbach, B.J.; Masopust, D.; Vezys, V. Robust Iterative Stimulation with Self-Antigens Overcomes CD8+ T Cell Tolerance to Self- and Tumor Antigens. Cell Rep. 2019, 28, 3092–3104. [Google Scholar] [CrossRef] [Green Version]
- Korb, L.C.; Mirshahidi, S.; Ramyar, K.; Akha, A.A.S.; Sadegh-Nasseri, S. Induction of T Cell Anergy by Low Numbers of Agonist Ligands. J. Immunol. 1999, 162, 6401–6409. [Google Scholar]
- Mirshahidi, S.; Ferris, L.C.K.; Sadegh-Nasseri, S. The Magnitude of TCR Engagement Is a Critical Predictor of T Cell Anergy or Activation. J. Immunol. 2004, 172, 5346–5355. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wang-Zhu, Y.; Gabaglia, C.R.; Kimachi, K.; Grey, H.M. The Stimulation of Low-Affinity, Nontolerized Clones by Heteroclitic Antigen Analogues Causes the Breaking of Tolerance Established to an Immunodominant T Cell Epitope. J. Exp. Med. 1999, 190, 983–994. [Google Scholar] [CrossRef]
- Zinzow-Kramer, W.M.; Weiss, A.; Au-Yeung, B.B. Adaptation by Naïve CD4+ T Cells to Self-Antigen–Dependent TCR Signaling Induces Functional Heterogeneity and Tolerance. Proc. Natl. Acad. Sci. USA 2019, 116, 15160–15169. [Google Scholar] [CrossRef] [Green Version]
- Skokos, D.; Shakhar, G.; Varma, R.; Waite, J.C.; Cameron, T.O.; Lindquist, R.L.; Schwickert, T.; Nussenzweig, M.C.; Dustin, M.L. Peptide-MHC Potency Governs Dynamic Interactions between T Cells and Dendritic Cells in Lymph Nodes. Nat. Immunol. 2007, 8, 835–844. [Google Scholar] [CrossRef]
- Bhakta, N.R.; Oh, D.Y.; Lewis, R.S. Calcium Oscillations Regulate Thymocyte Motility during Positive Selection in the Three-Dimensional Thymic Environment. Nat. Immunol. 2005, 6, 143–151. [Google Scholar] [CrossRef]
- Waite, J.C.; Vardhana, S.; Shaw, P.J.; Jang, J.-E.; McCarl, C.-A.; Cameron, T.O.; Feske, S.; Dustin, M.L. Interference with Ca2+ Release Activated Ca2+ (CRAC) Channel Function Delays T-Cell Arrest in Vivo. Eur. J. Immunol. 2013, 43, 3343–3354. [Google Scholar] [CrossRef] [Green Version]
- Kalekar, L.A.; Mueller, D.L. Relationship between CD4 Tregs and Anergy in Vivo. J. Immunol. 2017, 198, 2527–2533. [Google Scholar] [CrossRef] [Green Version]
- Moran, A.E.; Holzapfel, K.L.; Xing, Y.; Cunningham, N.R.; Maltzman, J.S.; Punt, J.; Hogquist, K.A. T Cell Receptor Signal Strength in Treg and INKT Cell Development Demonstrated by a Novel Fluorescent Reporter Mouse. J. Exp. Med. 2011, 208, 1279–1289. [Google Scholar] [CrossRef]
- Li, M.O.; Rudensky, A.Y. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function. Nat. Rev. Immunol. 2016, 16, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, E.G.; Williams, C.B. Generation and Function of Induced Regulatory T Cells. Front. Immunol. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, C.-S.; Zheng, Y.; Liang, Y.; Fontenot, J.D.; Rudensky, A.Y. An Intersection between the Self-Reactive Regulatory and Nonregulatory T Cell Receptor Repertoires. Nat. Immunol. 2006, 7, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-M.; Bautista, J.L.; Scott-Browne, J.; Mohan, J.F.; Hsieh, C.-S. A Broad Range of Self-Reactivity Drives Thymic Regulatory T Cell Selection to Limit Responses to Self. Immunity 2012, 37, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Feuerer, M.; Jiang, W.; Holler, P.D.; Satpathy, A.; Campbell, C.; Bogue, M.; Mathis, D.; Benoist, C. Enhanced Thymic Selection of FoxP3+ Regulatory T Cells in the NOD Mouse Model of Autoimmune Diabetes. Proc. Natl. Acad. Sci. USA 2007, 104, 18181–18186. [Google Scholar] [CrossRef] [Green Version]
- Atibalentja, D.F.; Byersdorfer, C.A.; Unanue, E.R. Thymus-Blood Protein Interactions Are Highly Effective in Negative Selection and Regulatory T Cell Induction. J. Immunol. 2009, 183, 7909–7918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Relland, L.M.; Mishra, M.K.; Haribhai, D.; Edwards, B.; Ziegelbauer, J.; Williams, C.B. Affinity-Based Selection of Regulatory T Cells Occurs Independent of Agonist-Mediated Induction of Foxp3 Expression. J. Immunol. 2009, 182, 1341–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, D.M.; Picca, C.C.; Oh, S.; Perng, O.A.; Aitken, M.; Erikson, J.; Caton, A.J. How Specificity for Self-Peptides Shapes the Development and Function of Regulatory T Cells. J. Leukoc. Biol. 2010, 88, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Atibalentja, D.F.; Murphy, K.M.; Unanue, E.R. Functional Redundancy between Thymic CD8α+ and Sirpα+ Conventional Dendritic Cells in Presentation of Blood-Derived Lysozyme by MHC Class II Proteins. J. Immunol. 2011, 186, 1421–1431. [Google Scholar] [CrossRef] [Green Version]
- Azzam, H.S.; Grinberg, A.; Lui, K.; Shen, H.; Shores, E.W.; Love, P.E. CD5 Expression Is Developmentally Regulated By T Cell Receptor (TCR) Signals and TCR Avidity. J. Exp. Med. 1998, 188, 2301–2311. [Google Scholar] [CrossRef] [Green Version]
- Martin, B.; Auffray, C.; Delpoux, A.; Pommier, A.; Durand, A.; Charvet, C.; Yakonowsky, P.; de Boysson, H.; Bonilla, N.; Audemard, A.; et al. Highly Self-Reactive Naive CD4 T Cells Are Prone to Differentiate into Regulatory T Cells. Nat. Commun. 2013, 4, 2209. [Google Scholar] [CrossRef] [Green Version]
- Delpoux, A.; Yakonowsky, P.; Durand, A.; Charvet, C.; Valente, M.; Pommier, A.; Bonilla, N.; Martin, B.; Auffray, C.; Lucas, B. TCR Signaling Events Are Required for Maintaining CD4 Regulatory T Cell Numbers and Suppressive Capacities in the Periphery. J. Immunol. 2014, 193, 5914–5923. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Kim, J.; Yi, J.; Kim, D.; Kim, H.-O.; Han, D.; Sprent, J.; Lee, Y.J.; Surh, C.D.; Cho, J.-H. Phenotypic and Functional Changes of Peripheral Ly6C+ T Regulatory Cells Driven by Conventional Effector T Cells. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef]
- Zemmour, D.; Zilionis, R.; Kiner, E.; Klein, A.M.; Mathis, D.; Benoist, C. Single-Cell Gene Expression Reveals a Landscape of Regulatory T Cell Phenotypes Shaped by the TCR. Nat. Immunol. 2018, 19, 291–301. [Google Scholar] [CrossRef]
- Bettini, M.; Blanchfield, L.; Castellaw, A.; Zhang, Q.; Nakayama, M.; Smeltzer, M.P.; Zhang, H.; Hogquist, K.A.; Evavold, B.D.; Vignali, D.A.A. TCR Affinity and Tolerance Mechanisms Converge to Shape T Cell Diabetogenic Potential. J. Immunol. 2014, 193, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Sprouse, M.L.; Shevchenko, I.; Scavuzzo, M.A.; Joseph, F.; Lee, T.; Blum, S.; Borowiak, M.; Bettini, M.L.; Bettini, M. Cutting Edge: Low-Affinity TCRs Support Regulatory T Cell Function in Autoimmunity. J. Immunol. 2018, 200, 909–914. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.K.; Klinger, M.; Benjamin, J.; Xiao, Y.; Erle, D.J.; Littman, D.R.; Killeen, N. Impact of the TCR Signal on Regulatory T Cell Homeostasis, Function, and Trafficking. PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [Green Version]
- Vahl, J.C.; Drees, C.; Heger, K.; Heink, S.; Fischer, J.C.; Nedjic, J.; Ohkura, N.; Morikawa, H.; Poeck, H.; Schallenberg, S.; et al. Continuous T Cell Receptor Signals Maintain a Functional Regulatory T Cell Pool. Immunity 2014, 41, 722–736. [Google Scholar] [CrossRef] [Green Version]
- Levine, A.G.; Arvey, A.; Jin, W.; Rudensky, A.Y. Continuous Requirement for the T Cell Receptor for Regulatory T Cell Function. Nat. Immunol. 2014, 15, 1070–1078. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.M.; Lu, W.; Sindhava, V.J.; Huang, Y.; Burkhardt, J.K.; Yang, E.; Riese, M.J.; Maltzman, J.S.; Jordan, M.S.; Kambayashi, T. Regulatory T Cells Require TCR Signaling for Their Suppressive Function. J. Immunol. 2015, 194, 4362–4370. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Chaudhry, A.; Kas, A.; deRoos, P.; Kim, J.M.; Chu, T.-T.; Corcoran, L.; Treuting, P.; Klein, U.; Rudensky, A.Y. Regulatory T-Cell Suppressor Program Co-Opts Transcription Factor IRF4 to Control T(H)2 Responses. Nature 2009, 458, 351–356. [Google Scholar] [CrossRef]
- Cretney, E.; Xin, A.; Shi, W.; Minnich, M.; Masson, F.; Miasari, M.; Belz, G.T.; Smyth, G.K.; Busslinger, M.; Nutt, S.L.; et al. The Transcription Factors Blimp-1 and IRF4 Jointly Control the Differentiation and Function of Effector Regulatory T Cells. Nat. Immunol. 2011, 12, 304–311. [Google Scholar] [CrossRef]
- Alvisi, G.; Brummelman, J.; Puccio, S.; Mazza, E.M.C.; Tomada, E.P.; Losurdo, A.; Zanon, V.; Peano, C.; Colombo, F.S.; Scarpa, A.; et al. IRF4 Instructs Effector Treg Differentiation and Immune Suppression in Human Cancer. J. Clin. Investig. 2020, 130, 3137–3150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidwell, T.; Liao, Y.; Garnham, A.L.; Vasanthakumar, A.; Gloury, R.; Blume, J.; Teh, P.P.; Chisanga, D.; Thelemann, C.; de Labastida Rivera, F.; et al. Attenuation of TCR-Induced Transcription by Bach2 Controls Regulatory T Cell Differentiation and Homeostasis. Nat. Commun. 2020, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Man, K.; Miasari, M.; Shi, W.; Xin, A.; Henstridge, D.C.; Preston, S.; Pellegrini, M.; Belz, G.T.; Smyth, G.K.; Febbraio, M.A.; et al. The Transcription Factor IRF4 Is Essential for TCR Affinity–Mediated Metabolic Programming and Clonal Expansion of T Cells. Nat. Immunol. 2013, 14, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Yeh, W.-I.; Seay, H.R.; Newby, B.; Posgai, A.L.; Moniz, F.B.; Michels, A.; Mathews, C.E.; Bluestone, J.A.; Brusko, T.M. Avidity and Bystander Suppressive Capacity of Human Regulatory T Cells Expressing De Novo Autoreactive T-Cell Receptors in Type 1 Diabetes. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef]
- Gubser, C.; Schmaler, M.; Rossi, S.W.; Palmer, E. Monoclonal Regulatory T Cells Provide Insights into T Cell Suppression. Sci. Rep. 2016, 6, 25758. [Google Scholar] [CrossRef]
- Tsang, J.Y.S.; Ratnasothy, K.; Li, D.; Chen, Y.; Bucy, R.P.; Lau, K.F.; Smyth, L.; Lombardi, G.; Lechler, R.; Tam, P.K.H. The Potency of Allospecific Tregs Cells Appears to Correlate with T Cell Receptor Functional Avidity. Am. J. Transpl. 2011, 11, 1610–1620. [Google Scholar] [CrossRef]
- Plesa, G.; Zheng, L.; Medvec, A.; Wilson, C.B.; Robles-Oteiza, C.; Liddy, N.; Bennett, A.D.; Gavarret, J.; Vuidepot, A.; Zhao, Y.; et al. TCR Affinity and Specificity Requirements for Human Regulatory T-Cell Function. Blood 2012, 119, 3420–3430. [Google Scholar] [CrossRef]
- Henderson, J.G.; Opejin, A.; Jones, A.; Gross, C.; Hawiger, D. CD5 Instructs Extrathymic Regulatory T Cell Development in Response to Self and Tolerizing Antigens. Immunity 2015, 42, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Guichard, V.; Bonilla, N.; Durand, A.; Audemard-Verger, A.; Guilbert, T.; Martin, B.; Lucas, B.; Auffray, C. Calcium-Mediated Shaping of Naive CD4 T-Cell Phenotype and Function. eLife 2017, 6, e27215. [Google Scholar] [CrossRef]
- Yi, J.; Jung, J.; Hong, S.-W.; Lee, J.Y.; Han, D.; Kim, K.S.; Sprent, J.; Surh, C.D. Unregulated Antigen-Presenting Cell Activation by T Cells Breaks Self Tolerance. Proc. Natl. Acad. Sci. USA 2019, 116, 1007–1016. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.; Bourque, J.; Kuehm, L.; Opejin, A.; Teague, R.M.; Gross, C.; Hawiger, D. Immunomodulatory Functions of BTLA and HVEM Govern Induction of Extrathymic Regulatory T Cells and Tolerance by Dendritic Cells. Immunity 2016, 45, 1066–1077. [Google Scholar] [CrossRef] [Green Version]
- Blaize, G.; Daniels-Treffandier, H.; Aloulou, M.; Rouquié, N.; Yang, C.; Marcellin, M.; Gador, M.; Benamar, M.; Ducatez, M.; Song, K.; et al. CD5 Signalosome Coordinates Antagonist TCR Signals to Control the Generation of Treg Cells Induced by Foreign Antigens. Proc. Natl. Acad. Sci. USA 2020, 117, 12969–12979. [Google Scholar] [CrossRef]
- Chen, Y.H.; Weiner, H.L. Dose-Dependent Activation and Deletion of Antigen-Specific T Cells Following Oral Tolerance. Ann. N. Y. Acad. Sci. 1996, 778, 111–121. [Google Scholar] [CrossRef]
- Friedman, A.; Weiner, H.L. Induction of Anergy or Active Suppression Following Oral Tolerance Is Determined by Antigen Dosage. Proc. Natl. Acad. Sci. USA 1994, 91, 6688–6692. [Google Scholar] [CrossRef] [Green Version]
- Hirahara, K.; Hisatsune, T.; Nishijima, K.; Kato, H.; Shiho, O.; Kaminogawa, S. CD4+ T Cells Anergized by High Dose Feeding Establish Oral Tolerance to Antibody Responses When Transferred in SCID and Nude Mice. J. Immunol. 1995, 154, 6238–6245. [Google Scholar]
- Thorstenson, K.M.; Khoruts, A. Generation of Anergic and Potentially Immunoregulatory CD25+CD4 T Cells In Vivo after Induction of Peripheral Tolerance with Intravenous or Oral Antigen. J. Immunol. 2001, 167, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Kretschmer, K.; Apostolou, I.; Hawiger, D.; Khazaie, K.; Nussenzweig, M.C.; von Boehmer, H. Inducing and Expanding Regulatory T Cell Populations by Foreign Antigen. Nat. Immunol. 2005, 6, 1219–1227. [Google Scholar] [CrossRef]
- Molinero, L.L.; Miller, M.L.; Evaristo, C.; Alegre, M.-L. High TCR Stimuli Prevent Induced Regulatory T Cell Differentiation in a NF-ΚB–Dependent Manner. J. Immunol. 2011, 186, 4609–4617. [Google Scholar] [CrossRef] [Green Version]
- Apostolou, I.; von Boehmer, H. In Vivo Instruction of Suppressor Commitment in Naive T Cells. J. Exp. Med. 2004, 199, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.S.; Kane, L.P.; Morel, P.A. Dominant Role of Antigen Dose in CD4+Foxp3+ Regulatory T Cell Induction and Expansion. J. Immunol. 2009, 183, 4895–4903. [Google Scholar] [CrossRef] [Green Version]
- Gottschalk, R.A.; Corse, E.; Allison, J.P. TCR Ligand Density and Affinity Determine Peripheral Induction of Foxp3 in Vivo. J. Exp. Med. 2010, 207, 1701–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabryšová, L.; Christensen, J.R.; Wu, X.; Kissenpfennig, A.; Malissen, B.; O’Garra, A. Integrated T-Cell Receptor and Costimulatory Signals Determine TGF-β-Dependent Differentiation and Maintenance of Foxp3+ Regulatory T Cells. Eur. J. Immunol. 2011, 41, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Miskov-Zivanov, N.; Turner, M.S.; Kane, L.P.; Morel, P.A.; Faeder, J.R. The Duration of T Cell Stimulation Is a Critical Determinant of Cell Fate and Plasticity. Sci. Signal. 2013, 6, ra97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauer, S.; Bruno, L.; Hertweck, A.; Finlay, D.; Leleu, M.; Spivakov, M.; Knight, Z.A.; Cobb, B.S.; Cantrell, D.; O’Connor, E.; et al. T Cell Receptor Signaling Controls Foxp3 Expression via PI3K, Akt, and MTOR. Proc. Natl. Acad. Sci. USA 2008, 105, 7797–7802. [Google Scholar] [CrossRef] [Green Version]
- Haxhinasto, S.; Mathis, D.; Benoist, C. The AKT–MTOR Axis Regulates de Novo Differentiation of CD4+Foxp3+ Cells. J. Exp. Med. 2008, 205, 565–574. [Google Scholar] [CrossRef]
- Hawse, W.F.; Boggess, W.C.; Morel, P.A. TCR Signal Strength Regulates Akt Substrate Specificity To Induce Alternate Murine Th and T Regulatory Cell Differentiation Programs. J. Immunol. 2017, 199, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Hawse, W.F.; Cattley, R.T. T Cells Transduce T-Cell Receptor Signal Strength by Generating Different Phosphatidylinositols. J. Biol. Chem. 2019, 294, 4793–4805. [Google Scholar] [CrossRef] [Green Version]
- Feldman, S.A.; Assadipour, Y.; Kriley, I.; Goff, S.L.; Rosenberg, S.A. Adoptive Cell Therapy—Tumor-Infiltrating Lymphocytes, T-Cell Receptors, and Chimeric Antigen Receptors. Semin. Oncol. 2015, 42, 626–639. [Google Scholar] [CrossRef]
- McLaughlin, L.; Cruz, C.R.; Bollard, C.M. Adoptive T-Cell Therapies for Refractory/Relapsed Leukemia and Lymphoma: Current Strategies and Recent Advances. Ther. Adv. Hematol. 2015, 6, 295–307. [Google Scholar] [CrossRef]
- Esensten, J.H.; Muller, Y.D.; Bluestone, J.A.; Tang, Q. Regulatory T-Cell Therapy for Autoimmune and Autoinflammatory Diseases: The next Frontier. J. Allergy Clin. Immunol. 2018, 142, 1710–1718. [Google Scholar] [CrossRef] [Green Version]
- Raffin, C.; Vo, L.T.; Bluestone, J.A. T Reg Cell-Based Therapies: Challenges and Perspectives. Nat. Rev. Immunol. 2020, 20, 158–172. [Google Scholar] [CrossRef]
- Eggenhuizen, P.J.; Ng, B.H.; Ooi, J.D. Treg Enhancing Therapies to Treat Autoimmune Diseases. Int. J. Mol. Sci. 2020, 21, 7015. [Google Scholar] [CrossRef]
- Chen, L.; Flies, D.B. Molecular Mechanisms of T Cell Co-Stimulation and Co-Inhibition. Nat. Rev. Immunol. 2013, 13, 227–242. [Google Scholar] [CrossRef]
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer Immunotherapy Comes of Age. Nature 2011, 480, 480–489. [Google Scholar] [CrossRef]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Zhu, Y.; Chen, L. Advances in Targeting Cell Surface Signalling Molecules for Immune Modulation. Nat. Rev. Drug Discov. 2013, 12, 130–146. [Google Scholar] [CrossRef] [Green Version]
- Janakiram, M.; Shah, U.A.; Liu, W.; Zhao, A.; Schoenberg, M.P.; Zang, X. The Third Group of the B7-CD28 Immune Checkpoint Family: HHLA2, TMIGD2, B7x, and B7-H3. Immunol. Rev. 2017, 276, 26–39. [Google Scholar] [CrossRef] [Green Version]
- Ni, L.; Dong, C. New Checkpoints in Cancer Immunotherapy. Immunol. Rev. 2017, 276, 52–65. [Google Scholar] [CrossRef]
- Thallinger, C.; Füreder, T.; Preusser, M.; Heller, G.; Müllauer, L.; Höller, C.; Prosch, H.; Frank, N.; Swierzewski, R.; Berger, W.; et al. Review of Cancer Treatment with Immune Checkpoint Inhibitors. Wien. Klin. Wochenschr. 2018, 130, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Gerber, D.E. Autoimmunity, Checkpoint Inhibitor Therapy and Immune-Related Adverse Events: A Review. Semin. Cancer Biol. 2020, 64, 93–101. [Google Scholar] [CrossRef]
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 Pathway in Tolerance and Autoimmunity. Immunol. Rev. 2010, 236, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, A.; Melson, E.; Chen, W.; Kempegowda, P. Is Immune Checkpoint Inhibitor-Associated Diabetes the Same as Fulminant Type 1 Diabetes Mellitus? Clin. Med. 2020, 20, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Fife, B.T.; Pauken, K.E.; Eagar, T.N.; Obu, T.; Wu, J.; Tang, Q.; Azuma, M.; Krummel, M.F.; Bluestone, J.A. Interactions between PD-1 and PD-L1 Promote Tolerance by Blocking the TCR–Induced Stop Signal. Nat. Immunol. 2009, 10, 1185–1192. [Google Scholar] [CrossRef]
- Sabatino, J.J.; Huang, J.; Zhu, C.; Evavold, B.D. High Prevalence of Low Affinity Peptide–MHC II Tetramer–Negative Effectors during Polyclonal CD4+ T Cell Responses. J. Exp. Med. 2011, 208, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
This, S.; Valbon, S.F.; Lebel, M.-È.; Melichar, H.J. Strength and Numbers: The Role of Affinity and Avidity in the ‘Quality’ of T Cell Tolerance. Cells 2021, 10, 1530. https://doi.org/10.3390/cells10061530
This S, Valbon SF, Lebel M-È, Melichar HJ. Strength and Numbers: The Role of Affinity and Avidity in the ‘Quality’ of T Cell Tolerance. Cells. 2021; 10(6):1530. https://doi.org/10.3390/cells10061530
Chicago/Turabian StyleThis, Sébastien, Stefanie F. Valbon, Marie-Ève Lebel, and Heather J. Melichar. 2021. "Strength and Numbers: The Role of Affinity and Avidity in the ‘Quality’ of T Cell Tolerance" Cells 10, no. 6: 1530. https://doi.org/10.3390/cells10061530
APA StyleThis, S., Valbon, S. F., Lebel, M.-È., & Melichar, H. J. (2021). Strength and Numbers: The Role of Affinity and Avidity in the ‘Quality’ of T Cell Tolerance. Cells, 10(6), 1530. https://doi.org/10.3390/cells10061530