Eg5 as a Prognostic Biomarker and Potential Therapeutic Target for Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Methods
2.1. Patient Samples
2.2. Quantitative Reverse Transcription-Polymerase Chain Reaction
2.3. Cell Culture and Reagents
2.4. Cell Viability
2.5. Cell-Free Kinesin ATPase End-Point Assay
2.6. Immunofluorescence Staining
2.7. Cell Cycle and Apoptosis Analyses
2.8. Xenograft Animal Studies
2.9. Statistical Analysis
3. Results
3.1. Eg5 Expression and HCC Prognosis
3.2. Eg5 Inhibition Reduced HCC Cell Viability
3.3. Cellular Effects of Eg5 Inhibition in HCC Cells
3.4. Eg5 Inhibition Reduced In Vivo HCC Tumor Growth
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, Y.Y.; Liu, T.H.; Lee, Y.H.; Hsu, C.H.; Cheng, A.L. Modified CLIP with objective liver reserve assessment retains prognosis pre-diction for patients with advanced hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2016, 31, 1336–1341. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Liu, T.-H.; Shao, Y.-Y.; Hsu, C.-H. It takes two to tango: Breakthrough advanced hepatocellular carcinoma treatment that combines anti-angiogenesis and immune checkpoint blockade. J. Formos. Med. Assoc. 2021, 120, 1–4. [Google Scholar] [CrossRef]
- Finn, R.S.; Ikeda, M.; Zhu, A.X.; Sung, M.W.; Baron, A.D.; Kudo, M.; Okusaka, T.; Kobayashi, M.; Kumada, H.; Kaneko, S.; et al. Phase Ib Study of Lenvatinib Plus Pembrolizumab in Patients with Unresectable Hepatocellular Carcinoma. J. Clin. Oncol. 2020, 38, 2960–2970. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Ryoo, B.-Y.; Hsu, C.-H.; Numata, K.; Stein, S.; Verret, W.; Hack, S.P.; Spahn, J.; Liu, B.; Abdullah, H.; et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): An open-label, multicentre, phase 1b study. Lancet Oncol. 2020, 21, 808–820. [Google Scholar] [CrossRef]
- Shao, Y.-Y.; Wu, C.-H.; Lu, L.-C.; Chan, S.-Y.; Ma, Y.-Y.; Yen, F.-C.; Hsu, C.-H.; Cheng, A.-L. Prognosis of patients with advanced hepatocellular carcinoma who failed first-line systemic therapy. J. Hepatol. 2014, 60, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.-Z.; Jeng, Y.-M.; Hu, F.-C.; Pan, H.-W.; Tsao, H.-W.; Lai, P.-L.; Lee, P.-H.; Cheng, A.-L.; Hsu, H.-C. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC. BMC Cancer 2010, 10, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.-Z.; Hsu, H.-C.; Hsu, C.-H.; Yeh, P.-Y.; Huang, C.-Y.F.; Huang, Y.-F.; Chen, T.-J.; Kuo, S.-H.; Hsu, C.; Hu, F.-C.; et al. The Aurora kinase inhibitor VE-465 has anticancer effects in pre-clinical studies of human hepatocellular carcinoma. J. Hepatol. 2009, 50, 518–527. [Google Scholar] [CrossRef]
- Jeng, Y.-M.; Peng, S.-Y.; Lin, C.-Y.; Hsu, H.-C. Overexpression and Amplification of Aurora-A in Hepatocellular Carcinoma. Clin. Cancer Res. 2004, 10, 2065–2071. [Google Scholar] [CrossRef] [Green Version]
- Huszar, D.; Theoclitou, M.-E.; Skolnik, J.; Herbst, R. Kinesin motor proteins as targets for cancer therapy. Cancer Metastasis Rev. 2009, 28, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Sarli, V.; Giannis, A. Targeting the Kinesin Spindle Protein: Basic Principles and Clinical Implications. Clin. Cancer Res. 2008, 14, 7583–7587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, A.; Morse, H.C., 3rd; Godfrey, V.L.; Naeem, R.; Justice, M.J. Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res. 2007, 67, 10138–10147. [Google Scholar] [CrossRef] [Green Version]
- Jin, Q.; Huang, F.; Wang, X.; Zhu, H.; Xian, Y.; Li, J.; Zhang, S.; Ni, Q. High Eg5 expression predicts poor prognosis in breast cancer. Oncotarget 2017, 8, 62208–62216. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Zhu, H.; Wang, X.; Zhang, D.; Xiong, L.; Xu, L.; You, Y. The prognostic role of Eg5 expression in laryngeal squamous cell car-cinoma. Pathology 2016, 48, 214–218. [Google Scholar] [CrossRef]
- Miglarese, M.R.; Carlson, R.O. Development of new cancer therapeutic agents targeting mitosis. Expert Opin. Investig. Drugs 2006, 15, 1411–1425. [Google Scholar] [CrossRef] [PubMed]
- Rath, O.; Kozielski, F. Kinesins and cancer. Nat. Rev. Cancer 2012, 12, 527–539. [Google Scholar] [CrossRef]
- Giantulli, S.; De Iuliis, F.; Taglieri, L.; Carradori, S.; Menichelli, G.; Morrone, S.; Scarpa, S.; Silvestri, I. Growth arrest and apoptosis induced by kinesin Eg5 inhibitor K858 and by its 1,3,4-thiadiazoline analogue in tumor cells. Anti-Cancer Drugs 2018, 29, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, X.; Du, M.; Chen, X.; Ning, X.; Chen, H.; Wang, S.; Liu, J.; Liu, Z.; Li, R.; et al. Eg5 inhibitor YL001 induces mitotic arrest and inhibits tumor prolif-eration. Oncotarget 2017, 8, 42510–42524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.S.; Fan, L.; Van Horn, R.D.; Nakai, R.; Ohta, Y.; Akinaga, S.; Murakata, C.; Yamashita, Y.; Yin, T.; Credille, K.M.; et al. A Novel Eg5 Inhibitor (LY2523355) Causes Mitotic Arrest and Apoptosis in Cancer Cells and Shows Potent Antitumor Activity in Xenograft Tumor Models. Mol. Cancer Ther. 2015, 14, 2463–2472. [Google Scholar] [CrossRef] [Green Version]
- Nakai, R.; Iida, S.-I.; Takahashi, T.; Tsujita, T.; Okamoto, S.; Takada, C.; Akasaka, K.; Ichikawa, S.; Ishida, H.; Kusaka, H.; et al. K858, a Novel Inhibitor of Mitotic Kinesin Eg5 and Antitumor Agent, Induces Cell Death in Cancer Cells. Cancer Res. 2009, 69, 3901–3909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Hsu, C.; Jeng, Y.; Hu, F.; Pan, H.; Wu, Y.; Hsu, H.; Cheng, A. Klotho-beta and fibroblast growth factor 19 expression correlates with early recurrence of resectable hepatocellular carcinoma. Liver Int. 2019, 39, 1682–1691. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.P.; Kang, A.; Cohrs, S.; Selivanova, S.V.; Milicevic Sephton, S.; Betzel, T.; Frey, D.; Wieser, M.; Jaussi, R.; Kammerer, R.A.; et al. Synthesis and evaluation of biphenyl com-pounds as kinesin spindle protein inhibitors. Chem. Biodivers. 2013, 10, 538–555. [Google Scholar] [CrossRef] [PubMed]
- Salmela, A.-L.; Kallio, M.J. Mitosis as an anti-cancer drug target. Chromosoma 2013, 122, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhou, N.; Li, J.; Kong, J.; Guan, X.; Wang, X. Eg5 Overexpression Is Predictive of Poor Prognosis in Hepatocellular Carcinoma Patients. Dis. Markers 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Janssen, A.; Medema, R.H. Mitosis as an anti-cancer target. Oncogene 2011, 30, 2799–2809. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.; Vuky, J.; Elliott, T.; Mead, G.; Arranz, J.A.; Chester, J.; Chowdhury, S.; Dudek, A.Z.; Mueller-Mattheis, V.; Grimm, M.-O.; et al. Phase II study to assess the efficacy, safety and tolerability of the mitotic spindle kinesin inhibitor AZD4877 in patients with recurrent advanced urothelial cancer. Investig. New Drugs 2013, 31, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; Padmanabhan, S.; Stock, W.; Tallman, M.S.; Curt, G.A.; Li, J.; Osmukhina, A.; Wu, K.; Huszar, D.; Borthukar, G.; et al. Phase I/II multicenter study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of AZD4877 in patients with refractory acute myeloid leukemia. Investig. New Drugs 2011, 30, 1107–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.C.; Shah, J.J.; Feng, L.; Manasanch, E.E.; Lu, R.; Morphey, A.; Crumpton, B.; Patel, K.K.; Wang, M.L.; Alexanian, R.; et al. A phase 1 study of filanesib, carfilzomib, and dexamethasone in patients with relapsed and/or refractory multiple myeloma. Blood Cancer J. 2019, 9, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Lorusso, P.M.; Goncalves, P.H.; Casetta, L.; Carter, J.A.; Litwiler, K.; Roseberry, D.; Rush, S.; Schreiber, J.; Simmons, H.M.; Ptaszynski, M.; et al. First-in-human phase 1 study of filanesib (ARRY-520), a kinesin spindle protein inhibitor, in patients with advanced solid tumors. Investig. New Drugs 2015, 33, 440–449. [Google Scholar] [CrossRef]
- Shah, J.J.; Kaufman, J.L.; Zonder, J.A.; Cohen, A.D.; Bensinger, W.I.; Hilder, B.W.; Rush, S.A.; Walker, D.H.; Tunquist, B.J.; Litwiler, K.S.; et al. A Phase 1 and 2 study of Filanesib alone and in combination with low-dose dexamethasone in relapsed/refractory multiple myeloma. Cancer 2017, 123, 4617–4630. [Google Scholar] [CrossRef]
Variables | N (%) | Eg5† | |
---|---|---|---|
Mean ± SD | p | ||
Total | 108 (100) | 8.3 ± 16.0 # | |
Mean age (SD, years) | 54.7 (13.4) # | ||
Gender | 0.887 | ||
Female | 21 (19) | 8.7 ± 10.6 | |
Male | 87 (81) | 8.2 ± 17.1 | |
Hepatitis virus | |||
HBsAg positive | 75 (69) | 8.3 ± 15.6 | 0.964 |
Anti-HCV positive | 31 (29) | 6.9 ± 16.6 | 0.578 |
AJCC stage | 0.573 | ||
I | 46 (43) | 7.5 ± 19.8 | |
II | 32 (30) | 7.0 ± 8.5 | |
III | 30 (28) | 10.9 ± 15.8 | |
Tumor size | 0.835 | ||
>5 cm | 48 (44) | 8.7 ± 19.3 | |
≤5 cm | 60 (56) | 8.0 ± 12.9 | |
Tumor grade | 0.683 | ||
1 | 26 (24) | 10.3 ± 24.4 | |
2 | 51 (47) | 7.0 ± 14.0 | |
3 | 31 (29) | 8.8 ± 9.1 | |
AFP > 400 ng/mL | 40 (37) | 9.4 ± 14.8 | 0.573 |
Child-Pugh status | 0.828 | ||
A | 100 (93) | 8.4 ± 16.4 | |
B | 8 (7) | 7.1 ± 9.7 |
Variables | Overall Survival | Disease-Free Survival | ||||
---|---|---|---|---|---|---|
p | HR | 95% CI | p | HR | 95% CI | |
Eg5 low (vs. high) | <0.001 | 0.377 | 0.214–0.665 | <0.001 | 0.334 | 0.187–0.596 |
Eg5 medium (vs. high) | 0.391 | 0.793 | 0.468–1.346 | 0.352 | 0.773 | 0.449–1.330 |
Age | 0.133 | 1.014 | 0.996–1.033 | 0.594 | 1.005 | 0.988–1.022 |
Male (vs. female) | 0.924 | 0.971 | 0.537–1.759 | 0.286 | 0.732 | 0.412–1.299 |
HBsAg positive | 0.007 | 2.580 | 1.302–5.112 | 0.065 | 1.880 | 0.961–3.675 |
Anti-HCV positive | 0.063 | 1.761 | 0.969–3.201 | 0.188 | 1.498 | 0.821–2.733 |
AJCC stage I (vs. III) | <0.001 | 0.314 | 0.184–0.538 | 0.004 | 0.464 | 0.274–0.784 |
AJCC stage II (vs. III) | <0.001 | 0.305 | 0.168–0.552 | <0.001 | 0.372 | 0.209–0.663 |
AFP > 400 ng/mL | 0.486 | 1.185 | 0.735–1.911 | 0.056 | 1.599 | 0.988–2.589 |
Child B (vs. A) | 0.355 | 1.458 | 0.656–3.237 | 0.306 | 1.531 | 0.677–3.460 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.-Y.; Sun, N.-Y.; Jeng, Y.-M.; Wu, Y.-M.; Hsu, C.; Hsu, C.-H.; Hsu, H.-C.; Cheng, A.-L.; Lin, Z.-Z. Eg5 as a Prognostic Biomarker and Potential Therapeutic Target for Hepatocellular Carcinoma. Cells 2021, 10, 1698. https://doi.org/10.3390/cells10071698
Shao Y-Y, Sun N-Y, Jeng Y-M, Wu Y-M, Hsu C, Hsu C-H, Hsu H-C, Cheng A-L, Lin Z-Z. Eg5 as a Prognostic Biomarker and Potential Therapeutic Target for Hepatocellular Carcinoma. Cells. 2021; 10(7):1698. https://doi.org/10.3390/cells10071698
Chicago/Turabian StyleShao, Yu-Yun, Nai-Yun Sun, Yung-Ming Jeng, Yao-Ming Wu, Chiun Hsu, Chih-Hung Hsu, Hey-Chi Hsu, Ann-Lii Cheng, and Zhong-Zhe Lin. 2021. "Eg5 as a Prognostic Biomarker and Potential Therapeutic Target for Hepatocellular Carcinoma" Cells 10, no. 7: 1698. https://doi.org/10.3390/cells10071698
APA StyleShao, Y. -Y., Sun, N. -Y., Jeng, Y. -M., Wu, Y. -M., Hsu, C., Hsu, C. -H., Hsu, H. -C., Cheng, A. -L., & Lin, Z. -Z. (2021). Eg5 as a Prognostic Biomarker and Potential Therapeutic Target for Hepatocellular Carcinoma. Cells, 10(7), 1698. https://doi.org/10.3390/cells10071698