Renin–Angiotensin–Aldosterone System and Immunomodulation: A State-of-the-Art Review
Abstract
:1. Introduction
2. Part 1: Renin–Angiotensin System Blockers and Malignancies
2.1. Pathways Related to RAS
2.2. RAS, Inflammation, Diabetes, and Metabolic Syndrome
2.3. RAS and Tumorigenesis Pathways
2.4. Impact of RASBs Use in Cancer
2.5. RASBs and Survival with Cancer
3. Part 2: Renin–Angiotensin System in Intensive Care Medicine
3.1. RAS in Vasodilatory Shock
3.1.1. RAS Activation in Sepsis
3.1.2. RAS Failure in Sepsis
3.2. RAS to Treat Vasodilatory Shock
3.2.1. AngII Use in Sepsis
3.2.2. RASBs Use in Sepsis
3.3. The Future of RAS in Vasodilatory Shock
4. Part 3: RAS and Transplantation
4.1. RAS and Immunomodulation
4.1.1. Tissue Specificity of AngI
4.1.2. AngII, a Cytokine Which Mediates Infiltration and Immune Activation
4.1.3. Other RAS Components and Immunity
4.2. RAS in Heart Transplantation
4.3. RAS in Kidney Transplantation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACE | angiotensin-converting enzyme |
ACE2 | angiotensin-converting enzyme type 2 |
ACEIs | angiotensin-converting enzyme inhibitors |
AngI | angiotensin I |
AngII | angiotensin II |
Ang 1–7 | angiotensin 1–7 |
Ang 1–9 | angiotensin 1–9 |
ARBs | angiotensin-2 receptor 1 blockers |
AT1R | angiotensin II receptor type 1 |
AT2R | angiotensin II receptor type 2 |
NEP | neprilysin |
NK | natural killer |
RAS | renin–angiotensin system |
ROS | reactive oxygen species |
VEGF | vascular endothelial growth factor |
References
- de Gasparo, M.; Catt, K.J.; Inagami, T.; Wright, J.W.; Unger, T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev. 2000, 52, 415–472. [Google Scholar]
- Paz Ocaranza, M.; Riquelme, J.A.; García, L.; Jalil, J.E.; Chiong, M.; Santos, R.A.S.; Lavandero, S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 2020, 17, 116–129. [Google Scholar] [CrossRef] [Green Version]
- Passos-Silva, D.G.; Verano-Braga, T.; Santos, R.A. Angiotensin-(1–7): Beyond the cardio-renal actions. Clin. Sci. (Lond.) 2013, 124, 443–456. [Google Scholar] [CrossRef] [Green Version]
- Ocaranza, M.P.; Moya, J.; Barrientos, V.; Alzamora, R.; Hevia, D.; Morales, C.; Pinto, M.; Escudero, N.; García, L.; Novoa, U.; et al. Angiotensin-(1–9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis. J. Hypertens. 2014, 32, 771–783. [Google Scholar] [CrossRef]
- Drummond, G.R.; Vinh, A.; Guzik, T.J.; Sobey, C.G. Immune mechanisms of hypertension. Nat. Rev. Immunol. 2019, 19, 517–532. [Google Scholar] [CrossRef]
- Mikolajczyk, T.P.; Guzik, T.J. Adaptive Immunity in Hypertension. Curr. Hypertens. Rep. 2019, 21, 68. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; do Carmo, L.S.; Foss, J.D.; Chen, W.; Harrison, D.G. Sympathetic Enhancement of Memory T-Cell Homing and Hypertension Sensitization. Circ. Res. 2020, 126, 708–721. [Google Scholar] [CrossRef] [Green Version]
- Marvar, P.J.; Harrison, D.G. Stress-dependent hypertension and the role of T lymphocytes. Exp. Physiol. 2012, 97, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.V.; Schooling, C.M.; Leung, G.M. Using genetics to understand the role of antihypertensive drugs modulating angiotensin-converting enzyme in immune function and inflammation. Br. J. Clin. Pharmacol. 2021, 87, 1839–1846. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.Y.; Zhang, Y.L.; Chi, Y.F.; Yan, B.; Zeng, X.J.; Li, H.H.; Liu, Y. Angiotensin II Regulates Th1 T Cell Differentiation Through Angiotensin II Type 1 Receptor-PKA-Mediated Activation of Proteasome. Cell. Physiol. Biochem. 2018, 45, 1366–1376. [Google Scholar] [CrossRef] [PubMed]
- Hunyady, L.; Catt, K.J. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol. Endocrinol. 2006, 20, 953–970. [Google Scholar] [CrossRef]
- Balakumar, P.; Jagadeesh, G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell. Signal. 2014, 26, 2147–2160. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.K.; Griendling, K.K. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 2007, 292, C82–C97. [Google Scholar] [CrossRef]
- Anavekar, N.S.; Solomon, S.D. Angiotensin II receptor blockade and ventricular remodelling. J. Renin Angiotensin Aldosterone Syst. 2005, 6, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Han, G.D.; Miyauchi, N.; Hashimoto, T.; Nakatsue, T.; Fujioka, Y.; Koike, H.; Shimizu, F.; Kawachi, H. Angiotensin II type 1 and type 2 receptors play opposite roles in regulating the barrier function of kidney glomerular capillary wall. Am. J. Pathol. 2007, 170, 1841–1853. [Google Scholar] [CrossRef] [Green Version]
- Niu, M.J.; Yang, J.K.; Lin, S.S.; Ji, X.J.; Guo, L.M. Loss of angiotensin-converting enzyme 2 leads to impaired glucose homeostasis in mice. Endocrine 2008, 34, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.B.; Mori, J.; McLean, B.A.; Basu, R.; Das, S.K.; Ramprasath, T.; Parajuli, N.; Penninger, J.M.; Grant, M.B.; Lopaschuk, G.D.; et al. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes 2016, 65, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppo, M.; Bandinelli, M.; Chiostri, M.; Poggesi, L.; Boddi, M. T-Lymphocyte-Based Renin Angiotensin System in Obesity. Am. J. Med. Sci. 2019, 358, 51–58. [Google Scholar] [CrossRef]
- Bindom, S.M.; Hans, C.P.; Xia, H.; Boulares, A.H.; Lazartigues, E. Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes 2010, 59, 2540–2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osterreicher, C.H.; Taura, K.; De Minicis, S.; Seki, E.; Penz-Osterreicher, M.; Kodama, Y.; Kluwe, J.; Schuster, M.; Oudit, G.Y.; Penninger, J.M.; et al. Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatology 2009, 50, 929–938. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Yang, F.; Shi, T.; Yuan, M.; Xin, Z.; Xie, R.; Li, S.; Li, H.; Yang, J.K. Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis. Sci. Rep. 2016, 6, 21592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz, M.C.; Giani, J.F.; Dominici, F.P. Angiotensin-(1–7) stimulates the phosphorylation of Akt in rat extracardiac tissues in vivo via receptor Mas. Regul. Pept. 2010, 161, 1–7. [Google Scholar] [CrossRef]
- Feltenberger, J.D.; Andrade, J.M.; Paraiso, A.; Barros, L.O.; Filho, A.B.; Sinisterra, R.D.; Sousa, F.B.; Guimaraes, A.L.; de Paula, A.M.; Campagnole-Santos, M.J.; et al. Oral formulation of angiotensin-(1–7) improves lipid metabolism and prevents high-fat diet-induced hepatic steatosis and inflammation in mice. Hypertension 2013, 62, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.H.; Andrade, J.M.; Fernandes, L.R.; Sinisterra, R.D.; Sousa, F.B.; Feltenberger, J.D.; Alvarez-Leite, J.I.; Santos, R.A. Oral Angiotensin-(1–7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-kappaB in rats fed with high-fat diet. Peptides 2013, 46, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.H.; Fernandes, L.R.; Pereira, C.S.; Guimaraes, A.L.; de Paula, A.M.; Campagnole-Santos, M.J.; Alvarez-Leite, J.I.; Bader, M.; Santos, R.A. Increased circulating angiotensin-(1–7) protects white adipose tissue against development of a proinflammatory state stimulated by a high-fat diet. Regul. Pept. 2012, 178, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Lv, X.H.; Li, H.X.; Cao, X.; Zhang, F.; Wang, L.; Yu, M.; Yang, J.K. Angiotensin-(1–7) suppresses oxidative stress and improves glucose uptake via Mas receptor in adipocytes. Acta Diabetol. 2012, 49, 291–299. [Google Scholar] [CrossRef]
- Santos, S.H.; Braga, J.F.; Mario, E.G.; Porto, L.C.; Rodrigues-Machado Mda, G.; Murari, A.; Botion, L.M.; Alenina, N.; Bader, M.; Santos, R.A. Improved lipid and glucose metabolism in transgenic rats with increased circulating angiotensin-(1–7). Arterioscler. Thromb. Vasc. Biol. 2010, 30, 953–961. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.H.; Fernandes, L.R.; Mario, E.G.; Ferreira, A.V.; Porto, L.C.; Alvarez-Leite, J.I.; Botion, L.M.; Bader, M.; Alenina, N.; Santos, R.A. Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes 2008, 57, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Saiki, A.; Ohira, M.; Endo, K.; Koide, N.; Oyama, T.; Murano, T.; Watanabe, H.; Miyashita, Y.; Shirai, K. Circulating angiotensin II is associated with body fat accumulation and insulin resistance in obese subjects with type 2 diabetes mellitus. Metab. Clin. Exp. 2009, 58, 708–713. [Google Scholar] [CrossRef]
- Wei, Y.; Clark, S.E.; Morris, E.M.; Thyfault, J.P.; Uptergrove, G.M.; Whaley-Connell, A.T.; Ferrario, C.M.; Sowers, J.R.; Ibdah, J.A. Angiotensin II-induced non-alcoholic fatty liver disease is mediated by oxidative stress in transgenic TG(mRen2)27(Ren2) rats. J. Hepatol. 2008, 49, 417–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.; Sowers, J.R.; Nistala, R.; Gong, H.; Uptergrove, G.M.; Clark, S.E.; Morris, E.M.; Szary, N.; Manrique, C.; Stump, C.S. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J. Biol. Chem. 2006, 281, 35137–35146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, C.L.; Lin, H.; Chen, J.S.; Fang, T.C. Renin inhibition improves metabolic syndrome, and reduces angiotensin II levels and oxidative stress in visceral fat tissues in fructose-fed rats. PLoS ONE 2017, 12, e0180712. [Google Scholar] [CrossRef] [PubMed]
- Ino, K.; Shibata, K.; Kajiyama, H.; Yamamoto, E.; Nagasaka, T.; Nawa, A.; Nomura, S.; Kikkawa, F. Angiotensin II type 1 receptor expression in ovarian cancer and its correlation with tumour angiogenesis and patient survival. Br. J. Cancer 2006, 94, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Delforce, S.J.; Lumbers, E.R.; Corbisier de Meaultsart, C.; Wang, Y.; Proietto, A.; Otton, G.; Scurry, J.; Verrills, N.M.; Scott, R.J.; Pringle, K.G. Expression of renin-angiotensin system (RAS) components in endometrial cancer. Endocr. Connect. 2017, 6, 9–19. [Google Scholar] [CrossRef]
- Acconcia, F. The Network of Angiotensin Receptors in Breast Cancer. Cells 2020, 9, 1336. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Sasaki, T.; Tsuchida, A.; Chayama, K. Angiotensin II type 1 receptor expression in human pancreatic cancer and growth inhibition by angiotensin II type 1 receptor antagonist. FEBS Lett. 2001, 495, 197–200. [Google Scholar] [CrossRef]
- Fujita, M.; Hayashi, I.; Yamashina, S.; Fukamizu, A.; Itoman, M.; Majima, M. Angiotensin type 1a receptor signaling-dependent induction of vascular endothelial growth factor in stroma is relevant to tumor-associated angiogenesis and tumor growth. Carcinogenesis 2005, 26, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.; Bai, X.; Shu, Y.; Ahmad, O.; Shen, P. Targeting tumor-associated macrophages as an antitumor strategy. Biochem. Pharmacol. 2021, 183, 114354. [Google Scholar] [CrossRef]
- Tharaux, P.L.; Chatziantoniou, C.; Fakhouri, F.; Dussaule, J.C. Angiotensin II activates collagen I gene through a mechanism involving the MAP/ER kinase pathway. Hypertension 2000, 36, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.E.; Xie, X.; Guo, J.; Huang, W.; Chu, W.M.; Huang, S.; Teng, Y.; Wu, G. ARF1 promotes prostate tumorigenesis via targeting oncogenic MAPK signaling. Oncotarget 2016, 7, 39834–39845. [Google Scholar] [CrossRef] [Green Version]
- Greco, S.; Muscella, A.; Elia, M.G.; Salvatore, P.; Storelli, C.; Mazzotta, A.; Manca, C.; Marsigliante, S. Angiotensin II activates extracellular signal regulated kinases via protein kinase C and epidermal growth factor receptor in breast cancer cells. J. Cell. Physiol. 2003, 196, 370–377. [Google Scholar] [CrossRef]
- Uemura, H.; Ishiguro, H.; Nakaigawa, N.; Nagashima, Y.; Miyoshi, Y.; Fujinami, K.; Sakaguchi, A.; Kubota, Y. Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: A possibility of tyrosine kinase inhibitor of growth factor. Mol. Cancer Ther. 2003, 2, 1139–1147. [Google Scholar]
- Fujiyama, S.; Matsubara, H.; Nozawa, Y.; Maruyama, K.; Mori, Y.; Tsutsumi, Y.; Masaki, H.; Uchiyama, Y.; Koyama, Y.; Nose, A.; et al. Angiotensin AT(1) and AT(2) receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF)-mediated EGF receptor transactivation. Circ. Res. 2001, 88, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Anandanadesan, R.; Gong, Q.; Chipitsyna, G.; Witkiewicz, A.; Yeo, C.J.; Arafat, H.A. Angiotensin II induces vascular endothelial growth factor in pancreatic cancer cells through an angiotensin II type 1 receptor and ERK1/2 signaling. J. Gastrointest. Surg. 2008, 12, 57–66. [Google Scholar] [CrossRef]
- Kosugi, M.; Miyajima, A.; Kikuchi, E.; Kosaka, T.; Horiguchi, Y.; Murai, M. Effect of angiotensin II type 1 receptor antagonist on tumor growth and angiogenesis in a xenograft model of human bladder cancer. Hum. Cell 2007, 20, 1–9. [Google Scholar] [CrossRef]
- Fan, F.; Tian, C.; Tao, L.; Wu, H.; Liu, Z.; Shen, C.; Jiang, G.; Lu, Y. Candesartan attenuates angiogenesis in hepatocellular carcinoma via downregulating AT1R/VEGF pathway. Biomed. Pharmacother. 2016, 83, 704–711. [Google Scholar] [CrossRef]
- Suganuma, T.; Ino, K.; Shibata, K.; Kajiyama, H.; Nagasaka, T.; Mizutani, S.; Kikkawa, F. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin. Cancer Res. 2005, 11, 2686–2694. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, H.; Li, X.; Cao, M.; Lu, H.; Meng, Q.; Pang, H.; Li, H.; Nadolny, C.; Dong, X.; et al. Ang II-AT1R increases cell migration through PI3K/AKT and NF-κB pathways in breast cancer. J. Cell. Physiol. 2014, 229, 1855–1862. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.K.; Gibson, W.; Giri, S.; Nath, N.; Donald, C.D. Angiotensin II up-regulates PAX2 oncogene expression and activity in prostate cancer via the angiotensin II type I receptor. Prostate 2009, 69, 1334–1342. [Google Scholar] [CrossRef]
- Kinoshita, J.; Fushida, S.; Harada, S.; Yagi, Y.; Fujita, H.; Kinami, S.; Ninomiya, I.; Fujimura, T.; Kayahara, M.; Yashiro, M.; et al. Local angiotensin II-generation in human gastric cancer: Correlation with tumor progression through the activation of ERK1/2, NF-kappaB and survivin. Int. J. Oncol. 2009, 34, 1573–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohashi, H.; Takagi, H.; Oh, H.; Suzuma, K.; Suzuma, I.; Miyamoto, N.; Uemura, A.; Watanabe, D.; Murakami, T.; Sugaya, T.; et al. Phosphatidylinositol 3-kinase/Akt regulates angiotensin II-induced inhibition of apoptosis in microvascular endothelial cells by governing survivin expression and suppression of caspase-3 activity. Circ. Res. 2004, 94, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, V.P.; Martin, J.D.; Liu, H.; Lacorre, D.A.; Jain, S.R.; Kozin, S.V.; Stylianopoulos, T.; Mousa, A.S.; Han, X.; Adstamongkonkul, P.; et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 2013, 4, 2516. [Google Scholar] [CrossRef] [Green Version]
- Lever, A.F.; Hole, D.J.; Gillis, C.R.; McCallum, I.R.; McInnes, G.T.; MacKinnon, P.L.; Meredith, P.A.; Murray, L.S.; Reid, J.L.; Robertson, J.W. Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet 1998, 352, 179–184. [Google Scholar] [CrossRef]
- Friis, S.; Sørensen, H.T.; Mellemkjaer, L.; McLaughlin, J.K.; Nielsen, G.L.; Blot, W.J.; Olsen, J.H. Angiotensin-converting enzyme inhibitors and the risk of cancer: A population-based cohort study in Denmark. Cancer 2001, 92, 2462–2470. [Google Scholar] [CrossRef]
- Sipahi, I.; Debanne, S.M.; Rowland, D.Y.; Simon, D.I.; Fang, J.C. Angiotensin-receptor blockade and risk of cancer: Meta-analysis of randomised controlled trials. Lancet Oncol. 2010, 11, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Huang, Y.M.; Wang, M.; Hong, X.Z.; Song, X.N.; Zou, X.; Pan, Y.H.; Ling, W.; Zhu, M.H.; Zhang, X.X.; et al. Renin-angiotensin system blockade for the risk of cancer and death. J. Renin Angiotensin Aldosterone Syst. 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Yoon, C.; Yang, H.S.; Jeon, I.; Chang, Y.; Park, S.M. Use of angiotensin-converting-enzyme inhibitors or angiotensin-receptor blockers and cancer risk: A meta-analysis of observational studies. CMAJ 2011, 183, E1073–E1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.N.; Wang, J.H.; Zhu, J.Z.; Lin, J.Q.; Yu, C.H.; Li, Y.M. Angiotensin-converting enzyme inhibitors/angiotensin receptor blockers therapy and colorectal cancer: A systematic review and meta-analysis. Cancer Causes Control. 2015, 26, 1245–1255. [Google Scholar] [CrossRef]
- Cheung, K.S.; Chan, E.W.; Seto, W.K.; Wong, I.C.K.; Leung, W.K. ACE (Angiotensin-Converting Enzyme) Inhibitors/Angiotensin Receptor Blockers Are Associated With Lower Colorectal Cancer Risk: A Territory-Wide Study With Propensity Score Analysis. Hypertension 2020, 76, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Christian, J.B.; Lapane, K.L.; Hume, A.L.; Eaton, C.B.; Weinstock, M.A. Association of ACE inhibitors and angiotensin receptor blockers with keratinocyte cancer prevention in the randomized VATTC trial. J. Natl. Cancer Inst. 2008, 100, 1223–1232. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Xu, X.; Wang, X.; Zheng, X.; Xie, L. Is angiotensin-converting enzyme inhibitors/angiotensin receptor blockers therapy protective against prostate cancer? Oncotarget 2016, 7, 6765–6773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagberg, K.W.; Sahasrabuddhe, V.V.; McGlynn, K.A.; Jick, S.S. Does Angiotensin-Converting Enzyme Inhibitor and β-Blocker Use Reduce the Risk of Primary Liver Cancer? A Case-Control Study Using the U.K. Clinical Practice Research Datalink. Pharmacotherapy 2016, 36, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.F.; Xu, W.G.; Wu, J. Angiotensin receptor blockers and breast cancer risk: A meta-analysis. Panminerva Med. 2017, 59, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Rui, Q.; Zhu, X.; Yu, Z.; Gao, R.; Liu, H. Antihypertensive drug use and breast cancer risk: A meta-analysis of observational studies. Oncotarget 2017, 8, 62545–62560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Xu, P.; Wang, M.; Zheng, Y.; Tian, T.; Yang, S.; Deng, Y.; Wu, Y.; Zhai, Z.; Hao, Q.; et al. Antihypertensive medications are associated with the risk of kidney and bladder cancer: A systematic review and meta-analysis. Aging (Albany N. Y.) 2020, 12, 1545–1562. [Google Scholar] [CrossRef]
- Trifilieff, A.; Da Silva, A.; Gies, J.P. Kinins and respiratory tract diseases. Eur. Respir. J. 1993, 6, 576–587. [Google Scholar] [PubMed]
- Muñoz, M.; Coveñas, R. Involvement of substance P and the NK-1 receptor in human pathology. Amino Acids 2014, 46, 1727–1750. [Google Scholar] [CrossRef]
- Hicks, B.M.; Filion, K.B.; Yin, H.; Sakr, L.; Udell, J.A.; Azoulay, L. Angiotensin converting enzyme inhibitors and risk of lung cancer: Population based cohort study. BMJ 2018, 363, k4209. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.Y.; Lin, C.L.; Lin, C.C.; Hsu, W.H.; Lin, C.D.; Wang, I.K.; Hsu, C.Y.; Kao, C.H. Association between Angiotensin-Converting Enzyme Inhibitors and Lung Cancer-A Nationwide, Population-Based, Propensity Score-Matched Cohort Study. Cancers 2020, 12, 747. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, D.; Colombo, A.; Sandri, M.T.; Lamantia, G.; Colombo, N.; Civelli, M.; Martinelli, G.; Veglia, F.; Fiorentini, C.; Cipolla, C.M. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 2006, 114, 2474–2481. [Google Scholar] [CrossRef] [Green Version]
- Guglin, M.; Krischer, J.; Tamura, R.; Fink, A.; Bello-Matricaria, L.; McCaskill-Stevens, W.; Munster, P.N. Randomized Trial of Lisinopril Versus Carvedilol to Prevent Trastuzumab Cardiotoxicity in Patients with Breast Cancer. J. Am. Coll. Cardiol. 2019, 73, 2859–2868. [Google Scholar] [CrossRef]
- Wittayanukorn, S.; Qian, J.; Westrick, S.C.; Billor, N.; Johnson, B.; Hansen, R.A. Prevention of Trastuzumab and Anthracycline-induced Cardiotoxicity Using Angiotensin-converting Enzyme Inhibitors or β-blockers in Older Adults with Breast Cancer. Am. J. Clin. Oncol. 2018, 41, 909–918. [Google Scholar] [CrossRef]
- Pituskin, E.; Mackey, J.R.; Koshman, S.; Jassal, D.; Pitz, M.; Haykowsky, M.J.; Pagano, J.J.; Chow, K.; Thompson, R.B.; Vos, L.J.; et al. Multidisciplinary Approach to Novel Therapies in Cardio-Oncology Research (MANTICORE 101-Breast): A Randomized Trial for the Prevention of Trastuzumab-Associated Cardiotoxicity. J. Clin. Oncol. 2017, 35, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Moey, M.Y.Y.; Liles, D.K.; Carabello, B.A. Concomitant use of renin-angiotensin-aldosterone system inhibitors prevent trastuzumab-induced cardiotoxicity in HER2+ breast cancer patients: An institutional retrospective study. Cardiooncology 2019, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Gulati, G.; Heck, S.L.; Ree, A.H.; Hoffmann, P.; Schulz-Menger, J.; Fagerland, M.W.; Gravdehaug, B.; von Knobelsdorff-Brenkenhoff, F.; Bratland, Å.; Storås, T.H.; et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): A 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur. Heart J. 2016, 37, 1671–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinter, M.; Kwanten, W.J.; Jain, R.K. Renin-Angiotensin System Inhibitors to Mitigate Cancer Treatment-Related Adverse Events. Clin. Cancer Res. 2018, 24, 3803–3812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, G.; Frithz, G.; Wang, Y.H.; Lindeborg, T. Captopril may reduce biochemical (prostate-specific antigen) failure following radical prostatectomy for clinically localized prostate cancer. Scand. J. Urol. Nephrol. 2009, 43, 32–36. [Google Scholar] [CrossRef]
- Yoshiji, H.; Noguchi, R.; Ikenaka, Y.; Kaji, K.; Aihara, Y.; Yamazaki, M.; Yamao, J.; Toyohara, M.; Mitoro, A.; Sawai, M.; et al. Combination of branched-chain amino acids and angiotensin-converting enzyme inhibitor suppresses the cumulative recurrence of hepatocellular carcinoma: A randomized control trial. Oncol. Rep. 2011, 26, 1547–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, T.; Choi, C.H.; Kim, M.K.; Kim, M.L.; Yun, B.S.; Seong, S.J. The effect of angiotensin system inhibitors (angiotensin-converting enzyme inhibitors or angiotensin receptor blockers) on cancer recurrence and survival: A meta-analysis. Eur. J. Cancer Prev. 2017, 26, 78–85. [Google Scholar] [CrossRef]
- Li, X.Y.; Sun, J.F.; Hu, S.Q. The renin-angiotensin system blockers as adjunctive therapy for cancer: A meta-analysis of survival outcome. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1375–1383. [Google Scholar]
- Morris, Z.S.; Saha, S.; Magnuson, W.J.; Morris, B.A.; Borkenhagen, J.F.; Ching, A.; Hirose, G.; McMurry, V.; Francis, D.M.; Harari, P.M.; et al. Increased tumor response to neoadjuvant therapy among rectal cancer patients taking angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. Cancer 2016, 122, 2487–2495. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, T.; Hashiguchi, Y.; Yagi, T.; Fukushima, Y.; Shimada, R.; Hayama, T.; Tsuchiya, T.; Nozawa, K.; Iinuma, H.; Ishihara, S.; et al. Angiotensin I-converting enzyme inhibitors/angiotensin II receptor blockers may reduce tumor recurrence in left-sided and early colorectal cancers. Int. J. Colorectal Dis. 2019, 34, 1731–1739. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, D.S.; Xin, L.; Zhou, L.Q.; Zhang, H.T.; Liu, L.; Yuan, Y.W.; Li, S.H. The renin-angiotensin system blockers and survival in digestive system malignancies: A systematic review and meta-analysis. Medicine (Baltimore) 2020, 99, e19075. [Google Scholar] [CrossRef]
- Santala, E.E.E.; Murto, M.O.; Artama, M.; Pukkala, E.; Visvanathan, K.; Murtola, T.J. Angiotensin Receptor Blockers Associated with Improved Breast Cancer Survival-A Nationwide Cohort Study from Finland. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2376–2382. [Google Scholar] [CrossRef]
- Alashkham, A.; Paterson, C.; Windsor, P.; Struthers, A.; Rauchhaus, P.; Nabi, G. The Incidence and Risk of Biochemical Recurrence Following Radical Radiotherapy for Prostate Cancer in Men on Angiotensin-Converting Enzyme Inhibitors (ACEIs) or Angiotensin Receptor Blockers (ARBs). Clin. Genitourin. Cancer 2016, 14, 398–405. [Google Scholar] [CrossRef]
- Asgharzadeh, F.; Hashemzehi, M.; Moradi-Marjaneh, R.; Hassanian, S.M.; Ferns, G.A.; Khazaei, M.; Avan, A. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers as therapeutic options in the treatment of renal cancer: A meta-analysis. Life Sci. 2020, 242, 117181. [Google Scholar] [CrossRef]
- Blute, M.L., Jr.; Rushmer, T.J.; Shi, F.; Fuller, B.J.; Abel, E.J.; Jarrard, D.F.; Downs, T.M. Renin-Angiotensin Inhibitors Decrease Recurrence after Transurethral Resection of Bladder Tumor in Patients with Nonmuscle Invasive Bladder Cancer. J. Urol. 2015, 194, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Kinoshita, H.; Fukui, K.; Matsuzaki, T.; Yoshida, K.; Mishima, T.; Yanishi, M.; Komai, Y.; Sugi, M.; Inoue, T.; et al. Prognostic Impact of Renin-Angiotensin Inhibitors in Patients with Bladder Cancer Undergoing Radical Cystectomy. Ann. Surg. Oncol. 2017, 24, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Santala, E.E.E.; Kotsar, A.; Veitonmäki, T.; Tammela, T.L.J.; Murtola, T.J. Risk of urothelial cancer death among people using antihypertensive drugs-a cohort study from Finland. Scand. J. Urol. 2019, 53, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Menter, A.R.; Carroll, N.M.; Sakoda, L.C.; Delate, T.; Hornbrook, M.C.; Jain, R.K.; Kushi, L.H.; Quinn, V.P.; Ritzwoller, D.P. Effect of Angiotensin System Inhibitors on Survival in Patients Receiving Chemotherapy for Advanced Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2017, 18, 189–197.e3. [Google Scholar] [CrossRef] [Green Version]
- Wilop, S.; von Hobe, S.; Crysandt, M.; Esser, A.; Osieka, R.; Jost, E. Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J. Cancer Res. Clin. Oncol. 2009, 135, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Medjebar, S.; Truntzer, C.; Perrichet, A.; Limagne, E.; Fumet, J.D.; Richard, C.; Elkrief, A.; Routy, B.; Rébé, C.; Ghiringhelli, F. Angiotensin-converting enzyme (ACE) inhibitor prescription affects non-small-cell lung cancer (NSCLC) patients response to PD-1/PD-L1 immune checkpoint blockers. Oncoimmunology 2020, 9, 1836766. [Google Scholar] [CrossRef]
- Russell, J.A. Vasopressor therapy in critically ill patients with shock. Intensive Care Med. 2019, 45, 1503–1517. [Google Scholar] [CrossRef] [PubMed]
- Correa, T.D.; Takala, J.; Jakob, S.M. Angiotensin II in septic shock. Crit. Care 2015, 19, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilgenfeldt, U.; Kienapfel, G.; Kellermann, W.; Schott, R.; Schmidt, M. Renin-angiotensin system in sepsis. Clin. Exp. Hypertens. A 1987, 9, 1493–1504. [Google Scholar] [CrossRef]
- Cumming, A.D.; Driedger, A.A.; McDonald, J.W.; Lindsay, R.M.; Solez, K.; Linton, A.L. Vasoactive hormones in the renal response to systemic sepsis. Am. J. Kidney Dis. 1988, 11, 23–32. [Google Scholar] [CrossRef]
- Dunn, C.W.; Horton, J.W. Role of angiotensin II in neonatal sepsis. Circ. Shock 1993, 40, 144–150. [Google Scholar]
- Rolih, C.A.; Ober, K.P. The endocrine response to critical illness. Med. Clin. N. Am. 1995, 79, 211–224. [Google Scholar] [CrossRef]
- Boldt, J.; Papsdorf, M.; Kumle, B.; Piper, S.; Hempelmann, G. Influence of angiotensin-converting enzyme inhibitor enalaprilat on endothelial-derived substances in the critically ill. Crit. Care Med. 1998, 26, 1663–1670. [Google Scholar] [CrossRef]
- Aneman, A.; Bengtsson, J.; Snygg, J.; Holm, M.; Pettersson, A.; Fandriks, L. Differentiation of the peptidergic vasoregulatory response to standardized splanchnic hypoperfusion by acute hypovolaemia or sepsis in anaesthetized pigs. Acta Physiol. Scand. 1999, 166, 293–300. [Google Scholar] [CrossRef]
- Bucher, M.; Ittner, K.P.; Hobbhahn, J.; Taeger, K.; Kurtz, A. Downregulation of angiotensin II type 1 receptors during sepsis. Hypertension 2001, 38, 177–182. [Google Scholar] [CrossRef] [Green Version]
- du Cheyron, D.; Lesage, A.; Daubin, C.; Ramakers, M.; Charbonneau, P. Hyperreninemic hypoaldosteronism: A possible etiological factor of septic shock-induced acute renal failure. Intensive Care Med. 2003, 29, 1703–1709. [Google Scholar] [CrossRef]
- Schrier, R.W.; Wang, W. Acute renal failure and sepsis. N. Engl. J. Med. 2004, 351, 159–169. [Google Scholar] [CrossRef]
- Tamion, F.; Le Cam-Duchez, V.; Menard, J.F.; Girault, C.; Coquerel, A.; Bonmarchand, G. Erythropoietin and renin as biological markers in critically ill patients. Crit. Care 2004, 8, R328–R335. [Google Scholar] [CrossRef] [Green Version]
- Doerschug, K.C.; Delsing, A.S.; Schmidt, G.A.; Ashare, A. Renin-angiotensin system activation correlates with microvascular dysfunction in a prospective cohort study of clinical sepsis. Crit. Care 2010, 14, R24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaller, M.D.; Waeber, B.; Nussberger, J.; Brunner, H.R. Angiotensin II, vasopressin, and sympathetic activity in conscious rats with endotoxemia. Am. J. Physiol. 1985, 249, H1086–H1092. [Google Scholar] [CrossRef] [PubMed]
- Bucher, M.; Hobbhahn, J.; Kurtz, A. Nitric oxide-dependent down-regulation of angiotensin II type 2 receptors during experimental sepsis. Crit. Care Med. 2001, 29, 1750–1755. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005, 436, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Lund, D.D.; Brooks, R.M.; Faraci, F.M.; Heistad, D.D. Role of angiotensin II in endothelial dysfunction induced by lipopolysaccharide in mice. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3726–H3731. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Langenberg, C.; Bellomo, R.; May, C.N. Angiotensin II in experimental hyperdynamic sepsis. Crit. Care 2009, 13, R190. [Google Scholar] [CrossRef] [Green Version]
- May, C.N.; Ishikawa, K.; Wan, L.; Williams, J.; Wellard, R.M.; Pell, G.S.; Jackson, G.D.; Bellomo, R. Renal bioenergetics during early gram-negative mammalian sepsis and angiotensin II infusion. Intensive Care Med. 2012, 38, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Mederle, K.; Schweda, F.; Kattler, V.; Doblinger, E.; Miyata, K.; Hocherl, K.; Oike, Y.; Castrop, H. The angiotensin II AT1 receptor-associated protein Arap1 is involved in sepsis-induced hypotension. Crit. Care 2013, 17, R130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, N.; Gembardt, F.; Supe, S.; Kaestle, S.M.; Nickles, H.; Erfinanda, L.; Lei, X.; Yin, J.; Wang, L.; Mertens, M.; et al. Angiotensin-(1–7) protects from experimental acute lung injury. Crit. Care Med. 2013, 41, e334–e343. [Google Scholar] [CrossRef]
- Basso, N.; Terragno, N.A. History about the discovery of the renin-angiotensin system. Hypertension 2001, 38, 1246–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adembri, C.; Kastamoniti, E.; Bertolozzi, I.; Vanni, S.; Dorigo, W.; Coppo, M.; Pratesi, C.; De Gaudio, A.R.; Gensini, G.F.; Modesti, P.A. Pulmonary injury follows systemic inflammatory reaction in infrarenal aortic surgery. Crit. Care Med. 2004, 32, 1170–1177. [Google Scholar] [CrossRef]
- Zhuo, J.L.; Li, X.C. Novel roles of intracrine angiotensin II and signalling mechanisms in kidney cells. J. Renin Angiotensin Aldosterone Syst. 2007, 8, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Ruiz-Ortega, M.; Lorenzo, O.; Ruperez, M.; Esteban, V.; Egido, J. Inflammation and angiotensin II. Int. J. Biochem. Cell Biol. 2003, 35, 881–900. [Google Scholar] [CrossRef]
- Correa, T.D.; Jeger, V.; Pereira, A.J.; Takala, J.; Djafarzadeh, S.; Jakob, S.M. Angiotensin II in septic shock: Effects on tissue perfusion, organ function, and mitochondrial respiration in a porcine model of fecal peritonitis. Crit. Care Med. 2014, 42, e550–e559. [Google Scholar] [CrossRef] [Green Version]
- Cumming, A.D.; Kline, R.; Linton, A.L. Association between renal and sympathetic responses to nonhypotensive systemic sepsis. Crit. Care Med. 1988, 16, 1132–1137. [Google Scholar] [CrossRef]
- Laesser, M.; Oi, Y.; Ewert, S.; Fandriks, L.; Aneman, A. The angiotensin II receptor blocker candesartan improves survival and mesenteric perfusion in an acute porcine endotoxin model. Acta Anaesthesiol. Scand. 2004, 48, 198–204. [Google Scholar] [CrossRef]
- Nitescu, N.; Grimberg, E.; Guron, G. Low-dose candesartan improves renal blood flow and kidney oxygen tension in rats with endotoxin-induced acute kidney dysfunction. Shock 2008, 30, 166–172. [Google Scholar] [CrossRef]
- Robertson, A.L., Jr.; Khairallah, P.A. Angiotensin II: Rapid localization in nuclei of smooth and cardiac muscle. Science 1971, 172, 1138–1139. [Google Scholar] [CrossRef]
- Sirett, N.E.; McLean, A.S.; Bray, J.J.; Hubbard, J.I. Distribution of angiotensin II receptors in rat brain. Brain Res. 1977, 122, 299–312. [Google Scholar] [CrossRef]
- Peters, J.; Kranzlin, B.; Schaeffer, S.; Zimmer, J.; Resch, S.; Bachmann, S.; Gretz, N.; Hackenthal, E. Presence of renin within intramitochondrial dense bodies of the rat adrenal cortex. Am. J. Physiol. 1996, 271, E439–E450. [Google Scholar] [CrossRef]
- Wanka, H.; Kessler, N.; Ellmer, J.; Endlich, N.; Peters, B.S.; Clausmeyer, S.; Peters, J. Cytosolic renin is targeted to mitochondria and induces apoptosis in H9c2 rat cardiomyoblasts. J. Cell. Mol. Med. 2009, 13, 2926–2937. [Google Scholar] [CrossRef] [Green Version]
- Kimura, S.; Zhang, G.X.; Nishiyama, A.; Shokoji, T.; Yao, L.; Fan, Y.Y.; Rahman, M.; Abe, Y. Mitochondria-derived reactive oxygen species and vascular MAP kinases: Comparison of angiotensin II and diazoxide. Hypertension 2005, 45, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Duprez, D.A. Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation: A clinical review. J. Hypertens. 2006, 24, 983–991. [Google Scholar] [CrossRef]
- Ham, K.R.; Boldt, D.W.; McCurdy, M.T.; Busse, L.W.; Favory, R.; Gong, M.N.; Khanna, A.K.; Chock, S.N.; Zeng, F.; Chawla, L.S.; et al. Sensitivity to angiotensin II dose in patients with vasodilatory shock: A prespecified analysis of the ATHOS-3 trial. Ann. Intensive Care 2019, 9, 63. [Google Scholar] [CrossRef]
- Wang, W.; Falk, S.A.; Jittikanont, S.; Gengaro, P.E.; Edelstein, C.L.; Schrier, R.W. Protective effect of renal denervation on normotensive endotoxemia-induced acute renal failure in mice. Am. J. Physiol. Ren. Physiol. 2002, 283, F583–F587. [Google Scholar] [CrossRef]
- Chawla, L.S.; Busse, L.; Brasha-Mitchell, E.; Davison, D.; Honiq, J.; Alotaibi, Z.; Seneff, M.G. Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): A pilot study. Crit. Care 2014, 18, 534. [Google Scholar] [CrossRef] [Green Version]
- Khanna, A.; English, S.W.; Wang, X.S.; Ham, K.; Tumlin, J.; Szerlip, H.; Busse, L.W.; Altaweel, L.; Albertson, T.E.; Mackey, C.; et al. Angiotensin II for the Treatment of Vasodilatory Shock. N. Engl. J. Med. 2017, 377, 419–430. [Google Scholar] [CrossRef]
- Chawla, L.S.; Chen, S.; Bellomo, R.; Tidmarsh, G.F. Angiotensin converting enzyme defects in shock: Implications for future therapy. Crit. Care 2018, 22, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, M.; Morelli, A.; Ertmer, C.; Broking, K.; Rehberg, S.; Van Aken, H.; Traber, D.L.; Westphal, M. Role of adenosine triphosphate-sensitive potassium channel inhibition in shock states: Physiology and clinical implications. Shock 2007, 28, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, X.; Huang, L.; Lu, N.; Zhou, L.; Wu, G.; Chen, Y. Severe sepsis: Low expression of the renin-angiotensin system is associated with poor prognosis. Exp. Ther. Med. 2014, 7, 1342–1348. [Google Scholar] [CrossRef] [Green Version]
- Chawla, L.S.; Busse, L.W.; Brasha-Mitchell, E.; Alotaibi, Z. The use of angiotensin II in distributive shock. Crit. Care 2016, 20, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martineau, D.; Lamouche, S.; Briand, R.; Yamaguchi, N. Functional involvement of angiotensin AT2 receptor in adrenal catecholamine secretion in vivo. Can. J. Physiol. Pharmacol. 1999, 77, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Wray, G.M.; Coakley, J.H. Severe septic shock unresponsive to noradrenaline. Lancet 1995, 346, 1604. [Google Scholar] [CrossRef]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Scheeren, T.W.L.; Bakker, J.; De Backer, D.; Annane, D.; Asfar, P.; Boerma, E.C.; Cecconi, M.; Dubin, A.; Dunser, M.W.; Duranteau, J.; et al. Current use of vasopressors in septic shock. Ann. Intensive Care 2019, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Khan, Y.A.; Spring, J.; Morales-Castro, D.; McCredie, V.A. Novel Considerations in the Management of Shock. Vasopressors, Fluid Responsiveness, and Blood Pressure Targets. Am. J. Respir. Crit. Care Med. 2019, 199, 1148–1150. [Google Scholar] [CrossRef]
- Cohn, J.N.; Luria, M.H. Studies in Clinical Shock and Hypotension. Ii. Hemodynamic Effects of Norepinephrine and Angiotensin. J. Clin. Investig. 1965, 44, 1494–1504. [Google Scholar] [CrossRef] [Green Version]
- Belle, M.S.; Jaffee, R.J. The Use of Large Doses of Angiotensin in Acute Myocardial Infarction with Shock. J. Lancet 1965, 85, 193–194. [Google Scholar]
- Del Greco, F.; Johnson, D.C. Clinical experience with angiotensin II in the treatment of shock. JAMA 1961, 178, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Derrick, J.R.; Anderson, J.R.; Roland, B.J. Adjunctive use of a biologic pressor agent, angiotensin, in management of shock. Circulation 1962, 25, 263–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonucci, E.; Gleeson, P.J.; Annoni, F.; Agosta, S.; Orlando, S.; Taccone, F.S.; Velissaris, D.; Scolletta, S. Angiotensin II in Refractory Septic Shock. Shock 2017, 47, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.L.; Nielsen, M.S. Administration of angiotensin II in refractory septic shock. Crit. Care Med. 1991, 19, 1084–1086. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, B.J.; Sacha, G.L.; Khanna, A.K. Vasodilatory shock in the ICU and the role of angiotensin II. Curr. Opin. Crit. Care 2018, 24, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Tumlin, J.A.; Murugan, R.; Deane, A.M.; Ostermann, M.; Busse, L.W.; Ham, K.R.; Kashani, K.; Szerlip, H.M.; Prowle, J.R.; Bihorac, A.; et al. Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. Crit. Care Med. 2018, 46, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Sakr, Y.; Sprung, C.L.; Ranieri, V.M.; Reinhart, K.; Gerlach, H.; Moreno, R.; Carlet, J.; Le Gall, J.R.; Payen, D. Sepsis in European intensive care units: Results of the SOAP study. Crit. Care Med. 2006, 34, 344–353. [Google Scholar] [CrossRef]
- Boyd, J.H.; Forbes, J.; Nakada, T.A.; Walley, K.R.; Russell, J.A. Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit. Care Med. 2011, 39, 259–265. [Google Scholar] [CrossRef]
- Acheampong, A.; Vincent, J.L. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit. Care 2015, 19, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, A.; Busse, L.W.; Ostermann, M. Angiotensin in Critical Care. Crit. Care 2018, 22, 69. [Google Scholar] [CrossRef] [Green Version]
- Busse, L.W.; Wang, X.S.; Chalikonda, D.M.; Finkel, K.W.; Khanna, A.K.; Szerlip, H.M.; Yoo, D.; Dana, S.L.; Chawla, L.S. Clinical Experience With IV Angiotensin II Administration: A Systematic Review of Safety. Crit. Care Med. 2017, 45, 1285–1294. [Google Scholar] [CrossRef]
- Senatore, F.; Jagadeesh, G.; Rose, M.; Pillai, V.C.; Hariharan, S.; Liu, Q.; McDowell, T.Y.; Sapru, M.K.; Southworth, M.R.; Stockbridge, N. FDA Approval of Angiotensin II for the Treatment of Hypotension in Adults with Distributive Shock. Am. J. Cardiovasc. Drugs 2019, 19, 11–20. [Google Scholar] [CrossRef]
- Salgado, D.R.; Rocco, J.R.; Silva, E.; Vincent, J.L. Modulation of the renin-angiotensin-aldosterone system in sepsis: A new therapeutic approach? Expert Opin. Ther. Targets 2010, 14, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Correa, T.D.; Filho, R.R.; Assuncao, M.S.; Silva, E.; Lima, A. Vasodilators in Septic Shock Resuscitation: A Clinical Perspective. Shock 2017, 47, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, D.; Pacheco, L.K.; Sordi, R.; Scheschowitsch, K.; Ramos, G.C.; Assreuy, J. Angiotensin II receptor type 1 blockade improves hyporesponsiveness to vasopressors in septic shock. Eur. J. Pharmacol. 2021, 897, 173953. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.T.; Galm, B.P.; Schrank, G.; Hsu, T.C.; Lee, S.H.; Park, J.Y.; Lee, C.C. Effect of Renin-Angiotensin-Aldosterone System Inhibitors on Short-Term Mortality After Sepsis: A Population-Based Cohort Study. Hypertension 2020, 75, 483–491. [Google Scholar] [CrossRef]
- Lavoie, J.L.; Sigmund, C.D. Minireview: Overview of the renin-angiotensin system--an endocrine and paracrine system. Endocrinology 2003, 144, 2179–2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walley, K.R. Sepsis-induced myocardial dysfunction. Curr. Opin. Crit. Care 2018, 24, 292–299. [Google Scholar] [CrossRef]
- Squara, P.; Hollenberg, S.; Payen, D. Reconsidering Vasopressors for Cardiogenic Shock: Everything Should Be Made as Simple as Possible, but Not Simpler. Chest 2019, 156, 392–401. [Google Scholar] [CrossRef] [Green Version]
- Orfanos, S.E.; Chen, X.L.; Ryan, J.W.; Chung, A.Y.; Burch, S.E.; Catravas, J.D. Assay of pulmonary microvascular endothelial angiotensin-converting enzyme in vivo: Comparison of three probes. Toxicol. Appl. Pharmacol. 1994, 124, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Cziraki, A.; Horvath, I.; Rubin, J.W.; Theodorakis, M.; Catravas, J.D. Quantification of pulmonary capillary endothelium-bound angiotensin converting enzyme inhibition in man. Gen. Pharmacol. 2000, 35, 213–218. [Google Scholar] [CrossRef]
- Orfanos, S.E.; Armaganidis, A.; Glynos, C.; Psevdi, E.; Kaltsas, P.; Sarafidou, P.; Catravas, J.D.; Dafni, U.G.; Langleben, D.; Roussos, C. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in acute lung injury. Circulation 2000, 102, 2011–2018. [Google Scholar] [CrossRef] [Green Version]
- Pérez De Lema, G.; De Wit, C.; Cohen, C.D.; Nieto, E.; Molina, A.; Banas, B.; Luckow, B.; Vicente, A.B.; Mampaso, F.; Schlöndorff, D. Angiotensin inhibition reduces glomerular damage and renal chemokine expression in MRL/lpr mice. J. Pharmacol. Exp. Ther. 2003, 307, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R. Proinflammatory effects of oxidative stress in chronic kidney disease: Role of additional angiotensin II blockade. Am. J. Physiol. Ren. Physiol. 2003, 284, F863–F869. [Google Scholar] [CrossRef] [Green Version]
- Hisada, Y.; Sugaya, T.; Tanaka, S.; Suzuki, Y.; Ra, C.; Kimura, K.; Fukamizu, A. An essential role of angiotensin II receptor type 1a in recipient kidney, not in transplanted peripheral blood leukocytes, in progressive immune-mediated renal injury. Lab. Investig. J. Tech. Methods Pathol. 2001, 81, 1243–1251. [Google Scholar] [CrossRef] [Green Version]
- Navar, L.G.; Kobori, H.; Prieto, M.C.; Gonzalez-Villalobos, R.A. Intratubular renin-angiotensin system in hypertension. Hypertension 2011, 57, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Jurewicz, M.; McDermott, D.H.; Sechler, J.M.; Tinckam, K.; Takakura, A.; Carpenter, C.B.; Milford, E.; Abdi, R. Human T and natural killer cells possess a functional renin-angiotensin system: Further mechanisms of angiotensin II-induced inflammation. J. Am. Soc. Nephrol. JASN 2007, 18, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Oberbarnscheidt, M.H.; Zecher, D.; Lakkis, F.G. The innate immune system in transplantation. Semin. Immunol. 2011, 23, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Neilson, E.G. The nephritogenic T lymphocyte response in interstitial nephritis. Semin. Nephrol. 1993, 13, 496–502. [Google Scholar]
- Suzuki, Y.; Ruiz-Ortega, M.; Gomez-Guerrero, C.; Tomino, Y.; Egido, J. Angiotensin II, the immune system and renal diseases: Another road for RAS? Nephrol. Dial. Transplant. 2003, 18, 1423–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Iturbe, B.; Pons, H.; Quiroz, Y.; Gordon, K.; Rincón, J.; Chávez, M.; Parra, G.; Herrera-Acosta, J.; Gómez-Garre, D.; Largo, R.; et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int. 2001, 59, 2222–2232. [Google Scholar] [CrossRef] [Green Version]
- Zambidis, E.T.; Park, T.S.; Yu, W.; Tam, A.; Levine, M.; Yuan, X.; Pryzhkova, M.; Péault, B. Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 2008, 112, 3601–3614. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.Z.; Billet, S.; Lin, C.; Okwan-Duodu, D.; Chen, X.; Lukacher, A.E.; Bernstein, K.E. The carboxypeptidase ACE shapes the MHC class I peptide repertoire. Nat. Immunol. 2011, 12, 1078–1085. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.C.; Pickering, R.J.; Tsorotes, D.; Koitka, A.; Sheehy, K.; Bernardi, S.; Toffoli, B.; Nguyen-Huu, T.P.; Head, G.A.; Fu, Y.; et al. Genetic Ace2 deficiency accentuates vascular inflammation and atherosclerosis in the ApoE knockout mouse. Circ. Res. 2010, 107, 888–897. [Google Scholar] [CrossRef] [Green Version]
- Al-Maghrebi, M.; Benter, I.F.; Diz, D.I. Endogenous angiotensin-(1–7) reduces cardiac ischemia-induced dysfunction in diabetic hypertensive rats. Pharmacol. Res. 2009, 59, 263–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silveira, K.D.; Coelho, F.M.; Vieira, A.T.; Sachs, D.; Barroso, L.C.; Costa, V.V.; Bretas, T.L.; Bader, M.; de Sousa, L.P.; da Silva, T.A.; et al. Anti-inflammatory effects of the activation of the angiotensin-(1–7) receptor, MAS, in experimental models of arthritis. J. Immunol. (Baltim. Md. 1950) 2010, 185, 5569–5576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowley, S.D.; Rudemiller, N.P. Immunologic Effects of the Renin-Angiotensin System. J. Am. Soc. Nephrol. JASN 2017, 28, 1350–1361. [Google Scholar] [CrossRef] [Green Version]
- Sampson, A.K.; Irvine, J.C.; Shihata, W.A.; Dragoljevic, D.; Lumsden, N.; Huet, O.; Barnes, T.; Unger, T.; Steckelings, U.M.; Jennings, G.L.; et al. Compound 21, a selective agonist of angiotensin AT2 receptors, prevents endothelial inflammation and leukocyte adhesion in vitro and in vivo. Br. J. Pharmacol. 2016, 173, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Mori, D.N.; Kreisel, D.; Fullerton, J.N.; Gilroy, D.W.; Goldstein, D.R. Inflammatory triggers of acute rejection of organ allografts. Immunol. Rev. 2014, 258, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Fearon, W.F.; Okada, K.; Kobashigawa, J.A.; Kobayashi, Y.; Luikart, H.; Sana, S.; Daun, T.; Chmura, S.A.; Sinha, S.; Cohen, G.; et al. Angiotensin-Converting Enzyme Inhibition Early After Heart Transplantation. J. Am. Coll. Cardiol. 2017, 69, 2832–2841. [Google Scholar] [CrossRef]
- Fildes, J.E.; Walker, A.H.; Keevil, B.; Hutchinson, I.V.; Leonard, C.T.; Yonan, N. The effects of ACE inhibition on serum angiotensin II concentration following cardiac transplantation. Transplant. Proc. 2005, 37, 4525–4527. [Google Scholar] [CrossRef]
- Lorenz, J.N. Chymase: The other ACE? Am. J. Physiol. Ren. Physiol. 2010, 298, F35–F36. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, J.J.; Kopecky, C.; Antlanger, M.; Domenig, O.; Kaltenecker, C.C.; Werzowa, J.; Hecking, M.; Mahr, S.; Grömmer, M.; Wallner, C.; et al. Effects of angiotensin-converting-enzyme inhibitor therapy on the regulation of the plasma and cardiac tissue renin-angiotensin system in heart transplant patients. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2017, 36, 355–365. [Google Scholar] [CrossRef]
- Urata, H.; Healy, B.; Stewart, R.W.; Bumpus, F.M.; Husain, A. Angiotensin II-forming pathways in normal and failing human hearts. Circ. Res. 1990, 66, 883–890. [Google Scholar] [CrossRef] [Green Version]
- McMurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure. N. Eng. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovarik, J.J.; Kaltenecker, C.C.; Kopecky, C.; Domenig, O.; Antlanger, M.; Werzowa, J.; Eskandary, F.; Kain, R.; Poglitsch, M.; Schmaldienst, S.; et al. Intrarenal Renin-Angiotensin-System Dysregulation after Kidney Transplantation. Sci. Rep. 2019, 9, 9762. [Google Scholar] [CrossRef]
- Toto, R.D. Transplantation: The role of RAAS blockade in kidney transplantation. Nat. Rev. Nephrol. 2016, 12, 129–131. [Google Scholar] [CrossRef] [Green Version]
- Heinze, G.; Mitterbauer, C.; Regele, H.; Kramar, R.; Winkelmayer, W.C.; Curhan, G.C.; Oberbauer, R. Angiotensin-converting enzyme inhibitor or angiotensin II type 1 receptor antagonist therapy is associated with prolonged patient and graft survival after renal transplantation. J. Am. Soc. Nephrol. JASN 2006, 17, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Philipp, T.; Martinez, F.; Geiger, H.; Moulin, B.; Mourad, G.; Schmieder, R.; Lièvre, M.; Heemann, U.; Legendre, C. Candesartan improves blood pressure control and reduces proteinuria in renal transplant recipients: Results from SECRET. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transplant. Assoc.-Eur. Ren. Assoc. 2010, 25, 967–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoll, G.A.; Fergusson, D.; Chassé, M.; Hebert, P.; Wells, G.; Tibbles, L.A.; Treleaven, D.; Holland, D.; White, C.; Muirhead, N.; et al. Ramipril versus placebo in kidney transplant patients with proteinuria: A multicentre, double-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2016, 4, 318–326. [Google Scholar] [CrossRef]
Authors | Date | Number of Studies | Type of Studies | Number of Patients | Results |
---|---|---|---|---|---|
Sipahi et al. [55] | 2010 | 9 | Randomized controlled trials. Condition studied was cardiovascular (hypertension, heart failure, myocardial infarction, etc.) | - 61,590 patients from five trials had data on new cancer occurrence - 68,402 patients from five trials had data on common types of solid organ cancers - 93,515 patients from eight trials had data on cancer deaths | - Significantly increased risk of new cancer occurrence: (7.2% vs. 6.0%, RR 1.08, 95% CI 1.01–1.15; p = 0.016). - No statistically significant difference in cancer deaths (1.8% vs. 1.6%, RR 1.07, 0.97–1.18; p = 0.183). |
Yoon et al. [57] | 2011 | 28 | Observational: - Cohort n = 12 (Two of the cohort studies shared a study population were used only in the subgroup analyses) - Nested case–control n = 6 - Conventional case–control n = 10 | - 3,611,694 patients included in the cohort studies, among them 26,912 were RABs users. - All but 2 of the 16 case–control studies reported the number of cases (n = 27,987) and controls (n = 119,879). 2043 (7.3%) among the cases and 9470 (7.9%) among the controls were RABs users. | - No significant association between the use of RABs and the overall risk of cancer: RR 0.96, 95% CI 0.90–1.03. - Decreased risk of cancer when authors restricted the analyses to cohort and nested case–control studies: RR 0.90, 95% CI 0.83–0.97; or to studies with long-term follow-up of more than five years: RR 0.89, 95% CI 0.83–0.96. |
Shen et al. [56] | 2016 | 31 | - 14 randomized trials - 17 observational studies | - 3,957,725 participants, among them 35,329 were ARB/ACEIs users. | - Decrease incidence of cancer in RABs users in the observational studies (RR 0.82, 95% CI 0.73–0.93) but not in the randomized controlled trials (RR 1.00, 95% CI 0.92–1.08). - Significant reduction of mortality with ARB/ACEIs in the observational studies (RR 0.71, 95% CI 0.55–0.93) but not in the randomized controlled trials (RR 0.99, 95% CI 0.89–1.09). |
Authors | Date | Type of Trial | Type of Cancer | Number of Patients | Results for Length of Treatment | Results for Risk of Cancer |
---|---|---|---|---|---|---|
Dai et al. [58] | 2015 | Meta-analysis of six observational studies | CRC | 113,048 individuals | - | Decreased risk of CRC in RABs users compared to non-users: RR 0.94 95% CI 0.89–0.98, p = 0.006. |
Cheung et al. [59] | 2020 | Retrospective cohort study | CRC | 187,897 patients, 30,856 (16.4%) were RABs users | - | Lower risk of CRC that developed <3 years after index colonoscopy (HR, 0.78 (95% CI, 0.64–0.96)), but not CRC that developed >3 years (adjusted hazard ratio, 1.18 (95% CI, 0.88–1.57)). |
Christian et al. [60] | 2008 | Prospective randomized study | Keratinocyte | 1051 individuals | - | Significantly reduction of risks of BCC (IRR = 0.61, 95% CI = 0.50 to 0.76) and SCC (IRR = 0.67, 95% CI = 0.52 to 0.87). |
Mao et al. [61] | 2016 | Meta-analysis of nine cohort studies | Prostate | 20,267 patients | - | Using RABs inhibitors reduced the risk of prostate cancer: RR 0.92, 95% CI 0.87–0.98. |
Hagberg et al. [62] | 2016 | Nested case-control study | Liver | 490 cases with hypertension and liver cancer, 1909 controls | No significant difference in risk by duration of use. | No association between use of RABs and the risk of liver cancer: OR 1.13 95% CI 0.79–1.60. |
Xie et al. [65] | 2020 | Meta-analysis of 31 trials: 18 case-control studies and 13 cohort studies. | Kidney and bladder cancer | 3,352,264 patients | - | Significant association between the risk of kidney cancer and ACEIs use RR 1.24, 95% CI 1.04–1.48, as ARBs use: RR 1.29, 95% CI:1.22–1.37. Increase risk of bladder cancer with ARBs use: RR 1.07, 95% CI 1.03–1.11. |
Qian et al. [63] | 2017 | Meta-analysis of eight studies | Breast | 1,994,880 individuals | - | No association between ARBs use and the risk of breast cancer: OR 0.93; 95% CI: 0.81–1.06. |
Ni et al. [64] | 2017 | Meta-analysis of 21 studies: 9 prospective cohort studies and 12 case-control studies | Breast | 3,116,266 participants | Reduced breast cancer risk for RABs use ≥10 years: RR 0.80, 95% CI: 0.67–0.95. | ACEIs/ARBs use was not significantly associated with breast cancer risk: RR 0.99 95% CI: 0.93–1.05. |
Hicks et al. [68] | 2018 | Population-based cohort study (UK) | Lung | 992,061 patients | HR gradually increased with longer durations of use: - after five years of use: HR 1.22, 1.06 to 1.40. - after more than 10 years of use: HR 1.31, 1.08 to 1.59. | Increased risk of lung cancer with ACEISs use (incidence rate 1.6 v 1.2 per 1000 person years; HR 1.14, 95% CI 1.01 to 1.29), compared with use of ARBs. |
Lin et al. [69] | 2020 | Population-based, propensity score-matched cohort study | Lung | 22,384 ACEIs and 22,384 ARBs users | Significantly higher risk in patients who received more than 540 defined daily doses of ACEIs per year: HR 1.80; 95% CI 1.43–2.27 | Increased risk of lung cancer with ACEIs use HR = 1.36 95% CI = 1.11–1.67, compared with use of ARBs. |
Authors | Date | Type of Trial | Type of Cancer | Number of Patients | Results |
---|---|---|---|---|---|
Song et al. [79] | 2016 | Meta-analysis from 11 studies: 9 retrospective and 2 prospective hospital-based cohort | Overall: urinary tract, prostate, breast, CRC, hepatocellular, pancreatic, NSCLC | - 4964 patients - 750 RABs users and 4214 nonusers | - Significant improvement in use of RABs on DFS: HR 0.60; 95% CI 0.41–0.87; p = 0.007, and overall survival: HR 0.75; 95% CI 0.57–0.99; p = 0.04. - DFS improvement was applied to both low stage (I/II) HR 0.56; 95% CI 0.32–0.96; p = 0.04; and high stage (III/IV): HR 0.59; 95% CI 0.37–0.94; p = 0.03. |
Li et al. [80] | 2017 | Meta-analysis from 7 retrospective trials | Advanced cancers: NSCLC, pancreatic, gastric cancer, breast, renal | - 2436 patients - 378 in the chemotherapeutic agents RABs groups | - Significant reduction in overall mortality in favor of chemotherapeutic agents in combination with RABs agents: HR 0.80, 95% CI: 0.69–0.92. - Significant decrease in the risk of disease progression in favor of chemotherapeutic agents in combination with RABs regimens: HR 0.79, 95% CI: 0.66–0.94. |
Morris et al. [81] | 2015 | Retrospective study in 2 centers | CRC treated with neoadjuvant radiation | - 301 patients - 74 taking RABs | - Multivariate analyses identified RABS use as a strong predictor of pathologic complete response: OR 4.02; 95% CI 2.06–7.82; p < 0.001. |
Ozawa et al. [82] | 2019 | Retrospective, monocentric | CRC stage I-III | - 461 patients | - The Kaplan-Meier curves showed a trend toward improved RFS in RABs users (p = 0.063). - In subgroup analyses, RFS was significantly better in RABs users in the patients with left-sided CRC (p = 0.030) and those with stage I CRC (p = 0.009). |
Zhou et al. [83] | 2020 | Meta-analysis from 13:12 cohort and 1 randomised controlled study | Digestive system malignancies: CRC, pancreatic, liver, gastric | - | - Use of RABs resulted in a significant improvement in overall survival: HR 0.79; 95% CI 0.70–0.89; p < 0.0001. - Two studies evaluated the dose–response and showed that higher doses of RABS lead to better survival: 1–364 defined daily doses: OR 0.89, 95% CI 0.78–1.01, p = 0.076; ≥365 defined daily doses: OR 0.54, 95% CI: 0.24–1.24, p = 0.148. |
Santala et al. [84] | 2020 | Nationwide cohort study (Finland) | Breast | - 73,170 women | - In prediagnostic use, only ARBs were associated with decreased risk of breast cancer death: HR: 0.76, 95% CI: 0.69–0.82. In postdiagnostic use, there were a dose dependent increase of breast cancer survival for both ARBs: HR 0.69, 95% CI: 0.63–0.75; and ACEIs: HR 0.92, 95% CI 0.86–0.98. |
Menter et al. [90] | 2017 | Retrospective cohort study | Advanced NSCLC | - 1813 patients - 351 received RABs | - In propensity score matched cohort analysis, concomitant RABs use increase survival for patients receiving carboplatin and paclitaxel: HR 0.73, 95% CI 0.61–0.88, and for patients receiving carboplatin and paclitaxel with bevacizumab: HR 0.79, 95% CI 0.51–1.21. |
Wilop et al. [91] | 2009 | Retrospective cohort study | Advanced NSCLC treated by first-line platinum-based chemotherapy | - 287 patients - 52 (18.1%) received RABs | - Increase of median survival in RABs users: 11.7 vs. 8.6 months, HR 0.56, p = 0.03. |
Medjebar et al. [92] | 2020 | Retrospective cohort study | NSCLC treated with PD-1/PD-L1 immune checkpoint blockers. | - 178 patients - 22 (13.1%) received RABs | - Shorter median progression-free survival in ACEIs users compared to the control group: 1.97 vs. 2.56 months: HR 1.8, CI 95% 1.1–2.8, p = 0.01. - ACE inhibitors group had less M1 macrophages, activated mast cells, NK cells and memory activated T cells, thus suggesting an immunosuppressed state. |
Santala et al. [89] | 2019 | Nationwide cohort study (Finland) | Bladder cancer and upper tract urothelial carcinomas | - 15,145 patients - 8393 using ACEIs/ARBs. | - ARBs use before diagnosis w risk of bladder cancer death: HR = 0.80, CI 0.70–0.92. The association was dose-dependent. No association with ACEIs use. - Post-diagnostic use of ARBs was similarly associated with better survival: HR 0.81, CI = 0.71–0.92. |
Asgharzadeh et al. [86] | 2020 | Meta-analysis from nine studies | Renal cancer | - | - Significantly lower mortality with RABs use: HR 0.723, 95% CI 0.568–0.921, p = 0.009. - Higher mortality in ACEIs users: HR 1.352, 95% CI 0.917–1.991, p = 0.128. - Decreased of mortality in ARBs users: HR 0.818, 95% CI 0.691–0.969, p = 0.02. |
Alashkham et al. [85] | 2016 | Retrospective cohort study | Prostate cancer after radical radiotherapy with adjuvant/neoadjuvant hormone treatment | 558 patients | - In a propensity score analysis, there were a significant reduction of incidence of biochemical recurrence in hypertensive men taking ACEIs/ARBs than in non-hypertensive men not taking RABs: RR 0.74; 95% CI 0.64–0.86; p < 0.001, or in hypertensive men taking other anti-hypertensive drugs: RR 0.78; 95% CI 0.67–0.91; p < 0.001. |
Yoshida et al. [88] | 2017 | Retrospective cohort study | Bladder cancer after radical cystectomy | 269 patients | - Significant increase in 5-year cancer-specific survival rates in patients who receive RABs (79.0 and 66.4%, p = 0.011) - In the multivariable analyses, RABs use was an independent prognostic factor for cancer-specific survival: HR 0.47, p = 0.036; and for overall survival (HR 0.36, p = 0.022). |
Blute et al. [87] | 2015 | Retrospective cohort study | Bladder cancer after initial transurethral resection | 340 patients | - Significantly reduction of tumor recurrence in multivariate analysis with RABs therapy: HR 0.61, 95% CI 0.45–0.84, p = 0.005. - After exclusion of non-invasive bladder cancer, adjunction of RABs to bacillus Calmette-Guérin therapy increase the recurrence-free-survival: HR 0.45, 95% CI 0.21–0.98, p = 0.04. |
Authors | Date | Type of Trial | Anti-Cancer Therapy/Intervention | Number of Patients | Results |
---|---|---|---|---|---|
Gulati et al. [75] | 2016 | Randomized, placebo-controlled, double-blind trial | Anthracycline ± trastuzumab and radiation Cansartan, metoprolol, placebo | 130 women | - Significant reduction of LEVF decrease (evaluated by MRI), with candesartan: the decline of LVEF was 2.6% (95% CI 1.5–3.8) in the placebo group and 0.8 (95% CI 0.4–1.9) in the candesartan group; p = 0.026. No effect of metoprolol on the overall decline in LVEF was observed. |
Pituskin et al. [73] | 2016 | Randomized, placebo-controlled trial | Trastuzumab Perindopril, bisoprolol, placebo (1:1:1) | 94 women | - Trastuzumab-mediated decline in LVEF was attenuated in bisoprolol-treated patients (−1 ± 5%) relative to the perindopril (−3 ± 4%) and placebo (−5 ± 5%) groups (p = 0.001) - Perindopril and bisoprolol use were independent predictors of maintained LVEF on multivariable analysis. - Ventricular remodeling, the primary outcome, was not prevented by these pharmacotherapies. |
Guglin et al. [71] | 2019 | Randomized, double-blind, multicenter, placebo-controlled trial | - Trastuzumab, Anthracyclines - lisinopril, carvedilol, or placebo (1:1:1) | 468 women, age 51 ± 10.7 years | - Cardiotoxicity-free survival was longer on lisinopril: HR 0.53; 95% CI 0.30–0.94; p = 0.015; than on placebo. - Reduction of the event rate for patients receiving anthracyclines in the lisinopril (37%) than in the placebo group (47%). |
Wittayanukorn et al. [72] | 2018 | Retrospective cohort study | Trastuzumab and anthracycline | 6542 women (66 years-old and above): 508 (7.7%) exposed to RABs | - RABs use reduced cardiotoxicity: HR 0.77, 95% CI 0.62–0.95; and all-cause mortality: HR 0.79, 95% CI 0.70–0.90, compared with the nonexposed group. - Dose-dependent interaction: starting of RABs therapy ≤6 months after the initiation of trastuzumab/anthracyclines and having exposed duration ≥6 months were also associated with decreased risk of cardiotoxicity and all-cause mortality. |
Moey et al. [74] | 2019 | Retrospective cohort study | Trastuzumab | 127 women | - 13 (11%) developed cardiotoxicity resulting in discontinuation of trastuzumab. - Patients who received RABs were less likely to developed cardiotoxicity, defined by a reduction of more than 15% of LEVF: OR 0.24, 95% CI 0.05–1.11, p = 0.06. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laghlam, D.; Jozwiak, M.; Nguyen, L.S. Renin–Angiotensin–Aldosterone System and Immunomodulation: A State-of-the-Art Review. Cells 2021, 10, 1767. https://doi.org/10.3390/cells10071767
Laghlam D, Jozwiak M, Nguyen LS. Renin–Angiotensin–Aldosterone System and Immunomodulation: A State-of-the-Art Review. Cells. 2021; 10(7):1767. https://doi.org/10.3390/cells10071767
Chicago/Turabian StyleLaghlam, Driss, Mathieu Jozwiak, and Lee S. Nguyen. 2021. "Renin–Angiotensin–Aldosterone System and Immunomodulation: A State-of-the-Art Review" Cells 10, no. 7: 1767. https://doi.org/10.3390/cells10071767
APA StyleLaghlam, D., Jozwiak, M., & Nguyen, L. S. (2021). Renin–Angiotensin–Aldosterone System and Immunomodulation: A State-of-the-Art Review. Cells, 10(7), 1767. https://doi.org/10.3390/cells10071767