Post Orgasmic Illness Syndrome (POIS) and Delayed Onset Muscle Soreness (DOMS): Do They Have Anything in Common?
Abstract
:1. Introduction
2. Repetitive Eccentric Contractions and Acute Compression Proprioceptive Axonopathy
3. Acute Stress Response, Polyamines and the Opioid System
4. Activated NMDARs and Low Grade Neuroinflammation
5. The Repeated Bout Effect
6. Ontogenetic Relevance
7. Testing This Hypothesis and Possible Interventions
8. Cellular Mechanism of the Critical Primary Injury
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Reisman, Y. Clinical experience with post-orgasmic illness syndrome (POIS) patients-characteristics and possible treatment modality. Int. J. Impot. Res. 2020. [Google Scholar] [CrossRef]
- Waldinger, M.D. Post orgasmic illness syndrome (POIS). Transl. Urol. 2016, 5, 602–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, N.; Xi, G.; Li, H.; Yin, J. Postorgasmic illness syndrome (POIS) in a Chinese man: No proof for IgE-mediated allergy to semen. J. Sex. Med. 2015, 12, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.M.T.; Bala, A.; Gabrielson, A.T.; Hellstrom, W.J.G. Post-Orgasmic Illness Syndrome: A Review. Sex. Med. Rev. 2018, 6, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Waldinger, M.D.; Meinardi, M.M.; Zwinderman, A.H.; Schweitzer, D.H. Postorgasmic Illness Syndrome (POIS) in 45 Dutch caucasian males: Clinical characteristics and evidence for an immunogenic pathogenesis (Part 1). J. Sex. Med. 2011, 8, 1164–1170. [Google Scholar] [CrossRef]
- Abdessater, M.; Elias, S.; Mikhael, E.; Alhammadi, A.; Beley, S. Post orgasmic illness syndrome: What do we know till now? Basic Clin. 2019, 29, 13. [Google Scholar] [CrossRef] [Green Version]
- Waldinger, M.D.; Meinardi, M.M.; Schweitzer, D.H. Hyposensitization therapy with autologous semen in two Dutch caucasian males: Beneficial effects in Postorgasmic Illness Syndrome (POIS.; Part 2). J. Sex. Med. 2011, 8, 1171–1176. [Google Scholar] [CrossRef]
- Kim, T.B.; Shim, Y.S.; Lee, S.M.; Son, E.S.; Shim, J.W.; Lee, S.P. Intralymphatic Immunotherapy with Autologous Semen in a Korean Man with Post-Orgasmic Illness Syndrome. Sex. Med. 2018, 6, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Puerta Suarez, J.; Cardona Maya, W. Postorgasmic illness syndrome: Semen allergy in men. Actas Urol. Esp. 2013, 37, 593. [Google Scholar] [CrossRef]
- Ashby, J.; Goldmeier, D. Postorgasm illness syndrome—A spectrum of illnesses. J. Sex. Med. 2010, 7, 1976–1981. [Google Scholar] [CrossRef]
- Bignami, B.; Honore, T.; Turmel, N.; Haddad, R.; Weglinski, L.; Le Breton, F.; Amarenco, G. Post-orgasmic illness syndrome. Prog. Urol. 2017, 27, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Sonkodi, B.; Berkes, I.; Koltai, E. Have We Looked in the Wrong Direction for More than 100 Years? Delayed Onset Muscle Soreness Is, in Fact, Neural Microdamage Rather than Muscle Damage. Antioxidants 2020, 9, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarkson, P.M.; Nosaka, K.; Braun, B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med. Sci. Sports Exerc. 1992, 24, 512–520. [Google Scholar] [CrossRef]
- Newham, D.J. The consequences of eccentric contractions and their relationship to delayed onset muscle pain. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 57, 353–359. [Google Scholar] [CrossRef]
- Mizumura, K.; Taguchi, T. Delayed onset muscle soreness: Involvement of neurotrophic factors. J. Physiol. Sci. 2016, 66, 43–52. [Google Scholar] [CrossRef]
- Cheung, K.; Hume, P.; Maxwell, L. Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Med. 2003, 33, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.H.; Lukacs, V.; de Nooij, J.C.; Zaytseva, D.; Criddle, C.R.; Francisco, A.; Jessell, T.M.; Wilkinson, K.A.; Patapoutian, A. Piezo2 is the principal mechanotransduction channel for proprioception. Nat. Neurosci. 2015, 18, 1756–1762. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yuan, M.; Ma, Z.; Wen, J.; Wang, X.; Zhao, M.; Liu, J.; Zhang, X.; Zhao, S.; Guo, L. Significance of piezo-type mechanosensitive ion channel component 2 in premature ejaculation: An animal study. Andrology 2020, 8, 1347–1359. [Google Scholar] [CrossRef]
- Nosaka, K. Muscle Soreness and Damage and the Repeated-Bout Effect; Edith Cowan University: Joondalup, Australia, 2011. [Google Scholar]
- Weerakkody, N.S.; Whitehead, N.P.; Canny, B.J.; Gregory, J.E.; Proske, U. Large-fiber mechanoreceptors contribute to muscle soreness after eccentric exercise. J. Pain 2001, 2, 209–219. [Google Scholar] [CrossRef]
- Weerakkody, N.S.; Percival, P.; Hickey, M.W.; Morgan, D.L.; Gregory, J.E.; Canny, B.J.; Proske, U. Effects of local pressure and vibration on muscle pain from eccentric exercise and hypertonic saline. Pain 2003, 105, 425–435. [Google Scholar] [CrossRef]
- Proske, U.; Gandevia, S.C. The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 2012, 92, 1651–1697. [Google Scholar] [CrossRef] [PubMed]
- Sonkodi, B. Delayed Onset Muscle Soreness (DOMS): The Repeated Bout Effect and Chemotherapy-Induced Axonopathy May Help Explain the Dying-Back Mechanism in Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Brain Sci. 2021, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.J.; Liu, G.K.; Xiao, W.H.; Jin, H.W.; Siau, C. Terminal arbor degeneration--a novel lesion produced by the antineoplastic agent paclitaxel. Eur. J. Neurosci. 2011, 33, 1667–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonkodi, B.; Bardoni, R.; Hangody, L.; Radák, Z.; Berkes, I. Does Compression Sensory Axonopathy in the Proximal Tibia Contribute to Noncontact Anterior Cruciate Ligament Injury in a Causative Way?—A New Theory for the Injury Mechanism. Life 2021, 11, 443. [Google Scholar] [CrossRef]
- Hart, B.L.; Melese-D‘Hospital, P.Y. Penile mechanisms and the role of the striated penile muscles in penile reflexes. Physiol. Behav. 1983, 31, 807–813. [Google Scholar] [CrossRef]
- Peikert, K.; May, C.A. Muscle spindles in the human bulbospongiosus and ischiocavernosus muscles. Muscle Nerve 2015, 52, 55–62. [Google Scholar] [CrossRef]
- Peikert, K.; Platzek, I.; Bessede, T.; May, C.A. The male bulbospongiosus muscle and its relation to the external anal sphincter. J. Urol. 2015, 193, 1433–1440. [Google Scholar] [CrossRef]
- Lucio, R.A.L.; Cruz, Y.; Pichardo, A.I.; Fuentes-Morales, M.R.; Fuentes-Farias, A.L.; Molina-Ceron, M.L.; Gutierrez-Ospina, G. The physiology and ecophysiology of ejaculation. Trop. Subtrop. Agroecosyst. 2011, 15, S113–S127. [Google Scholar]
- Tanahashi, M.; Karicheti, V.; Thor, K.B.; Marson, L. Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R737–R747. [Google Scholar] [CrossRef] [Green Version]
- Sachs, B.D.; Garinello, L.D. Spinal pacemaker controlling sexual reflexes in male rats. Brain Res. 1979, 171, 152–156. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Zhang, M.; Yin, H.; Li, Q.; Bai, W.; Xu, T. Acellular dermal matrix in premature ejaculation: A preliminary study. Medicine 2018, 97, e13135. [Google Scholar] [CrossRef] [PubMed]
- Yiee, J.H.; Baskin, L.S. Penile embryology and anatomy. Sci. World J. 2010, 10, 1174–1179. [Google Scholar] [CrossRef] [PubMed]
- Li, W.P.; Jiang, H.; Liu, Y.; Wu, B.J.; Chen, G. Electrophysiology research on the spinal nerve source of rabbit penis cutaneous sensation. Zhonghua Nan Ke Xue 2007, 13, 312–314. [Google Scholar]
- Wolf, S.L.; Knutsson, E. Effects of skin cooling on stretch reflex activity in triceps surae of the decerebrate cat. Exp. Neurol. 1975, 49, 22–34. [Google Scholar] [CrossRef]
- Berger, J.M.; Singh, P.; Khrimian, L.; Morgan, D.A.; Chowdhury, S.; Arteaga-Solis, E.; Horvath, T.L.; Domingos, A.I.; Marsland, A.L.; Yadav, V.K.; et al. Mediation of the Acute Stress Response by the Skeleton. Cell Metab. 2019, 30, 890–902.e898. [Google Scholar] [CrossRef]
- Filippi, S.; Vignozzi, L.; Vannelli, G.B.; Ledda, F.; Forti, G.; Maggi, M. Role of oxytocin in the ejaculatory process. J. Endocrinol. Investig. 2003, 26, 82–86. [Google Scholar]
- Love, T.M. The impact of oxytocin on stress: The role of sex. Curr. Opin. Behav. Sci. 2018, 23, 136–142. [Google Scholar] [CrossRef]
- Stanley, J.; Peake, J.M.; Buchheit, M. Cardiac parasympathetic reactivation following exercise: Implications for training prescription. Sports Med. 2013, 43, 1259–1277. [Google Scholar] [CrossRef]
- Skatchkov, S.N.; Woodbury-Farina, M.A.; Eaton, M. The role of glia in stress: Polyamines and brain disorders. Psychiatr. Clin. N. Am. 2014, 37, 653–678. [Google Scholar] [CrossRef] [Green Version]
- Radovanovic, D.; Peikert, K.; Lindstrom, M.; Domellof, F.P. Sympathetic innervation of human muscle spindles. J. Anat. 2015, 226, 542–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, G.P.; Rubin, M.A.; Mello, C.F. Modulation of learning and memory by natural polyamines. Pharm. Res. 2016, 112, 99–118. [Google Scholar] [CrossRef]
- Meguro, Y.; Miyano, K.; Hirayama, S.; Yoshida, Y.; Ishibashi, N.; Ogino, T.; Fujii, Y.; Manabe, S.; Eto, M.; Nonaka, M.; et al. Neuropeptide oxytocin enhances mu opioid receptor signaling as a positive allosteric modulator. J. Pharm. Sci. 2018, 137, 67–75. [Google Scholar] [CrossRef]
- Gao, L.; Yu, L.C. Involvement of opioid receptors in the oxytocin-induced antinociception in the central nervous system of rats. Regul. Pept. 2004, 120, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Fattore, L.; Deiana, S.; Spano, S.M.; Cossu, G.; Fadda, P.; Scherma, M.; Fratta, W. Endocannabinoid system and opioid addiction: Behavioural aspects. Pharm. Biochem. Behav. 2005, 81, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Vigano, D.; Rubino, T.; Parolaro, D. Molecular and cellular basis of cannabinoid and opioid interactions. Pharm. Biochem. Behav. 2005, 81, 360–368. [Google Scholar] [CrossRef]
- Robledo, P.; Berrendero, F.; Ozaita, A.; Maldonado, R. Advances in the field of cannabinoid—Opioid cross-talk. Addict. Biol. 2008, 13, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Llorente, L.; Ortega-Gutierrez, S.; Viso, A.; Sanchez, M.G.; Sanchez, A.M.; Fernandez, C.; Ramos, J.A.; Hillard, C.; Lasuncion, M.A.; Lopez-Rodriguez, M.L.; et al. Characterization of an anandamide degradation system in prostate epithelial PC-3 cells: Synthesis of new transporter inhibitors as tools for this study. Br. J. Pharm. 2004, 141, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Caron, P.C.; Cote, L.J.; Kremzner, L.T. Putrescine, a source of gamma-aminobutyric acid in the adrenal gland of the rat. Biochem. J. 1988, 251, 559–562. [Google Scholar] [CrossRef] [Green Version]
- Beggs, S.; Liu, X.J.; Kwan, C.; Salter, M.W. Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier. Mol. Pain 2010, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Wolff, B.G.; Fleshman, J. American Society of Colon and Rectal Surgeons. In The ASCRS Textbook of Colon and Rectal Surgery; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Firpo, M.R.; Mounce, B.C. Diverse Functions of Polyamines in Virus Infection. Biomolecules 2020, 10, 628. [Google Scholar] [CrossRef] [Green Version]
- Sigrist, S.J.; Carmona-Gutierrez, D.; Gupta, V.K.; Bhukel, A.; Mertel, S.; Eisenberg, T.; Madeo, F. Spermidine-triggered autophagy ameliorates memory during aging. Autophagy 2014, 10, 178–179. [Google Scholar] [CrossRef] [Green Version]
- Nosaka, K.; Sakamoto, K.; Newton, M.; Sacco, P. How long does the protective effect on eccentric exercise-induced muscle damage last? Med. Sci. Sports Exerc. 2001, 33, 1490–1495. [Google Scholar] [CrossRef]
- Pearson-Leary, J.; Osborne, D.M.; McNay, E.C. Role of Glia in Stress-Induced Enhancement and Impairment of Memory. Front. Integr. Neurosci. 2015, 9, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacs, G.L.; Bohus, B.; Versteeg, D.H.; de Kloet, E.R.; de Wied, D. Effect of oxytocin and vasopressin on memory consolidation: Sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures. Brain Res. 1979, 175, 303–314. [Google Scholar] [CrossRef]
- Berlese, D.B.; Sauzem, P.D.; Carati, M.C.; Guerra, G.P.; Stiegemeier, J.A.; Mello, C.F.; Rubin, M.A. Time-dependent modulation of inhibitory avoidance memory by spermidine in rats. Neurobiol. Learn. Mem. 2005, 83, 48–53. [Google Scholar] [CrossRef]
- Bolanos, J.; Morgentaler, A. Successful treatment of Post-orgasmic illness syndrome with human chorionic gonadotropin. Urol. Case Rep. 2020, 29, 101078. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.J.; Lundgren, D.W.; Moore, R.M.; Andersen, B. Polyamines control human chorionic gonadotropin production in the JEG-3 choriocarcinoma cell. J. Biol. Chem. 1988, 263, 12765–12769. [Google Scholar] [CrossRef]
- Lacomblez, L.; Bensimon, G.; Leigh, P.N.; Guillet, P.; Meininger, V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 1996, 347, 1425–1431. [Google Scholar] [CrossRef]
- Bewick, G.S.; Banks, R.W. Spindles are doin’ it for themselves: Glutamatergic autoexcitation in muscle spindles. J. Physiol. 2021. [Google Scholar] [CrossRef]
- Volkers, L.; Mechioukhi, Y.; Coste, B. Piezo channels: From structure to function. Pflug. Arch. 2015, 467, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Marshall, K.L.; Saade, D.; Ghitani, N.; Coombs, A.M.; Szczot, M.; Keller, J.; Ogata, T.; Daou, I.; Stowers, L.T.; Bonnemann, C.G.; et al. PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature 2020, 588, 290–295. [Google Scholar] [CrossRef]
- Ovalle, W.K.; Nahirney, P.C.; Netter, F.H. Netter‘s Essential Histology; Elsevier/Saunders: Philadelphia, PA, USA, 2013. [Google Scholar]
- Morgan, D.L.; Allen, D.G. Early events in stretch-induced muscle damage. J. Appl. Physiol. 1999, 87, 2007–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hody, S.; Croisier, J.L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric Muscle Contractions: Risks and Benefits. Front. Physiol. 2019, 10, 536. [Google Scholar] [CrossRef] [PubMed]
- Sufka, K.J.; Price, D.D. Gate control theory reconsidered. Brain Mind 2002, 3, 277–290. [Google Scholar] [CrossRef]
- Bewick, G.S.; Reid, B.; Richardson, C.; Banks, R.W. Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: Evidence from the rat muscle spindle primary sensory ending. J. Physiol. 2005, 562, 381–394. [Google Scholar] [CrossRef]
- Than, K.; Kim, E.; Navarro, C.; Chu, S.; Klier, N.; Occiano, A.; Ortiz, S.; Salazar, A.; Valdespino, S.R.; Villegas, N.K.; et al. Vesicle-released glutamate is necessary to maintain muscle spindle afferent excitability but not dynamic sensitivity in adult mice. J. Physiol. 2021. [Google Scholar] [CrossRef] [PubMed]
Acute Piezo2 Channelopathy | Acute Compression Proprioceptive Axonopathy | |
---|---|---|
Post orgasmic illness syndrome symptoms 2 days | Post orgasmic illness syndrome symptoms 3–7 days | Delayed onset muscle soreness symptoms 7 days |
PRIMARY INJURY PHASE | ||
Repetitive unaccustomed or strenuous eccentric contractions | ||
Fatigue-induced acute stress response | ||
Ejaculation | Ejaculation | |
Energy depletion of the mitochondria in the primary afferent terminal of the muscle spindle | ||
Impairment of glutamate vesicular release and Piezo2 channels | ||
Spermidine depletion | Spermidine depletion | |
SECONDARY INJURY PHASE | ||
No tissue damage | Limited tissue damage | Harsher tissue damage |
No C-fiber contribution | C-fiber contribution limited | C-fiber contribution |
TERTIARY INJURY PHASE | ||
Post orgasmic illness syndrome = Repeated bout effect | Post orgasmic illness syndrome = Repeated bout effect | Repeated bout effect |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonkodi, B.; Kopa, Z.; Nyirády, P. Post Orgasmic Illness Syndrome (POIS) and Delayed Onset Muscle Soreness (DOMS): Do They Have Anything in Common? Cells 2021, 10, 1867. https://doi.org/10.3390/cells10081867
Sonkodi B, Kopa Z, Nyirády P. Post Orgasmic Illness Syndrome (POIS) and Delayed Onset Muscle Soreness (DOMS): Do They Have Anything in Common? Cells. 2021; 10(8):1867. https://doi.org/10.3390/cells10081867
Chicago/Turabian StyleSonkodi, Balázs, Zsolt Kopa, and Péter Nyirády. 2021. "Post Orgasmic Illness Syndrome (POIS) and Delayed Onset Muscle Soreness (DOMS): Do They Have Anything in Common?" Cells 10, no. 8: 1867. https://doi.org/10.3390/cells10081867
APA StyleSonkodi, B., Kopa, Z., & Nyirády, P. (2021). Post Orgasmic Illness Syndrome (POIS) and Delayed Onset Muscle Soreness (DOMS): Do They Have Anything in Common? Cells, 10(8), 1867. https://doi.org/10.3390/cells10081867