New Insights into Xenotransplantation for Cartilage Repair: Porcine Multi-Genetically Modified Chondrocytes as a Promising Cell Source
Abstract
:1. Introduction
2. Material and Methods
2.1. Generation of Multi-Transgenic Pigs
2.2. Isolation of Porcine Chondrocytes and Cell Culture
2.3. AlamarBlue® Cell Proliferation Assay
2.4. Immunohistochemistry (IHC) and Histology
2.5. Immunofluorescence Staining and Flow Cytometric-Based Expression Analysis
2.6. Expression of Transgenes and Cartilage ECM Associated Genes
2.7. Detection of TNFAIP3 Activity
2.8. Anaphylatoxin Generation
2.9. Trypan Blue Exclusion Assay
2.10. C5b-9 and Activated C3b Specific Cell ELISA
2.11. Statistics
3. Results
3.1. Genetically Modified Chondrocytes Show No Obvious Biological Disadvantage
3.2. Genetically Modified Chondrocytes Show Strong Expression of CD55/CD59/TNFAIP3 and Absence of Xenoantigens α-1,3-Gal and Neu5Gc
3.3. Knockout of Xenoantigens and/or Expression of hCregs Result in Protection from Complement-Mediated Destruction of Chondrocytes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.R.; Grodzinsky, A.J.; Hsu, H.P.; Martin, S.D.; Spector, M. Effects of Harvest and Selected Cartilage Repair Procedures on the Physical and Biochemical Properties of Articular Cartilage in The Canine Knee. J. Orthop. Res. 2000, 18, 790–799. [Google Scholar] [CrossRef]
- Mumme, M.; Barbero, A.; Miot, S.; Wixmerten, A.; Feliciano, S.; Wolf, F.; Asnaghi, A.M.; Baumhoer, D.; Bieri, O.; Kretzschmar, M.; et al. Nasal Chondrocyte-Based Engineered Autologous Cartilage Tissue For Repair Of Articular Cartilage Defects: An Observational First-In-Human Trial. Lancet 2016, 388, 1985–1994. [Google Scholar] [CrossRef]
- Rotter, N.; Brenner, R.E. Cartilage Repair Across Germ Layer Origins. Lancet 2016, 388, 1957–1958. [Google Scholar] [CrossRef]
- Somoza, R.A.; Welter, J.F.; Correa, D.; Caplan, A.I. Chondrogenic Differentiation of Mesenchymal Stem Cells: Challenges and Unfulfilled Expectations. Tissue Eng. Part B Rev. 2014, 20, 596–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekser, B.; Li, P.; Cooper, D.K.C. Xenotransplantation: Past, Present, and Future. Curr. Opin. Organ. Transplant. 2017, 22, 513–521. [Google Scholar] [CrossRef]
- Galili, U. Discovery of the Natural Anti-Gal Antibody and its Past and Future Relevance to Medicine. Xenotransplantation 2013, 20, 138–147. [Google Scholar] [CrossRef]
- Lutz, A.J.; Li, P.; Estrada, J.L.; Sidner, R.A.; Chihara, R.K.; Downey, S.M.; Burlak, C.; Wang, Z.-Y.; Reyes, L.M.; Ivary, B.; et al. Double Knockout Pigs Deficient in N-Glycolylneuraminic Acid and Galactose A-1,3-Galactose Reduce the Humoral Barrier to Xenotransplantation. Xenotransplantation 2013, 20, 27–35. [Google Scholar] [CrossRef]
- Salama, A.; Evanno, G.; Harb, J.; Soulillou, J.-P. Potential Deleterious Role of Anti-Neu5Gc Antibodies in Xenotransplantation. Xenotransplantation 2015, 22, 85–94. [Google Scholar] [CrossRef]
- Perota, A.; Lagutina, I.; Duchi, R.; Zanfrini, E.; Lazzari, G.; Judor, J.P.; Conchon, S.; Bach, J.M.; Bottio, T.; Gerosa, G.; et al. Generation of Cattle Knockout for Galactose-A1,3-Galactose and N-Glycolylneuraminic Acid Antigens. Xenotransplantation 2019, 26, E12524. [Google Scholar] [CrossRef] [PubMed]
- Azimzadeh, A.M.; Kelishadi, S.S.; Ezzelarab, M.B.; Singh, A.K.; Stoddard, T.; Iwase, H.; Zhang, T.; Burdorf, L.; Sievert, E.; Avon, C.; et al. Early Graft Failure of Galtko Pig Organs in Baboons Is Reduced by Expression of a Human Complement Pathway-Regulatory Protein. Xenotransplantation 2015, 22, 310–316. [Google Scholar] [CrossRef]
- Medof, M.E.; Kinoshita, T.; Nussenzweig, V. Inhibition of Complement Activation on the Surface of Cells after Incorporation of Decay-Accelerating Factor (DAF) into Their Membranes. J. Exp. Med. 1984, 160, 1558–1578. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Inoue, T.; Ogawa, K.; Iida, K.; Tamura, N. The Mechanism of Action of Decay-Accelerating Factor (DAF). DAF Inhibits the Assembly of C3 Convertases by Dissociating C2a and Bb. J. Exp. Med. 1987, 166, 1221–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oglesby, T.J.; Allen, C.J.; Liszewski, M.K.; White, D.J.; Atkinson, J.P. Membrane Cofactor Protein (CD46) Protects Cells from Complement-Mediated Attack by an Intrinsic Mechanism. J. Exp. Med. 1992, 175, 1547–1551. [Google Scholar] [CrossRef]
- Farkas, I.; Baranyi, L.; Ishikawa, Y.; Okada, N.; Bohata, C.; Budai, D.; Fukuda, A.; Imai, M.; Okada, H. CD59 Blocks Not Only the Insertion of C9 into MAC but Inhibits Ion Channel Formation by Homologous C5b-8 as well as C5b-9. J. Physiol. 2002, 539, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Kraner-Scheiber, S.; Petersen, B.; Rieblinger, B.; Buermann, A.; Flisikowska, T.; Flisikowski, K.; Christan, S.; Edlinger, M.; Baars, W.; et al. Efficient Production of Multi-Modified Pigs for Xenotransplantation by ‘Combineering’, Gene Stacking and Gene Editing. Sci. Rep. 2016, 6, 29081. [Google Scholar] [CrossRef]
- Ryter, S.W.; Tyrrell, R.M. The Heme Synthesis and Degradation Pathways: Role in Oxidant Sensitivity. Free Radic. Biol. Med. 2000, 28, 289–309. [Google Scholar] [CrossRef]
- Otterbein, L.E.; Choi, A.M. Heme Oxygenase: Colors of Defense Against Cellular Stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennery, P.A. Signaling Function Of Heme Oxygenase Proteins. Antioxid. Redox Signal. 2014, 20, 1743–1753. [Google Scholar] [CrossRef] [Green Version]
- Soares, M.P.; Bach, F.H. Heme Oxygenase-1: From Biology to Therapeutic Potential. Trends Mol. Med. 2009, 15, 50–58. [Google Scholar] [CrossRef]
- Vereecke, L.; Beyaert, R.; Van Loo, G. The Ubiquitin-Editing Enzyme A20 (TNFAIP3) Is a Central Regulator of Immunopathology. Trends Immunol. 2009, 30, 383–391. [Google Scholar] [CrossRef]
- Heyninck, K.; Beyaert, R. A20 Inhibits NF-Kappab Activation by Dual Ubiquitin-Editing Functions. Trends Biochem. Sci. 2005, 30, 1–4. [Google Scholar] [CrossRef]
- Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.-P.; Fahmi, H. Role of Proinflammatory Cytokines in the Pathophysiology of Osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 33–42. [Google Scholar] [CrossRef]
- Liacini, A. Induction of Matrix Metalloproteinase-13 Gene Expression by TNF-A is Mediated By MAP Kinases, AP-1, and NF-Κb Transcription Factors in Articular Chondrocytes. Exp. Cell Res. 2003, 288, 208–217. [Google Scholar] [CrossRef]
- Goldring, M.B.; Otero, M.; Plumb, D.A.; Dragomir, C.; Favero, M.; El Hachem, K.; Hashimoto, K.; Roach, H.I.; Olivotto, E.; Borzì, R.M.; et al. Roles Of Inflammatory and Anabolic Cytokines in Cartilage Metabolism: Signals and Multiple Effectors Converge Upon MMP-13 Regulation in Osteoarthritis. Eur. Cells Mater. 2011, 21, 202–220. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.-C.; Jo, J.; Park, J.; Kang, H.K.; Park, Y. NF-Κb Signaling Pathways in Osteoarthritic Cartilage Destruction. Cells 2019, 8, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommaggio, R.; Bello-Gil, D.; Perez-Cruz, M.; Brokaw, J.L.; Manez, R.; Costa, C. Genetic Engineering Strategies to Prevent the Effects of Antibody and Complement on Xenogeneic Chondrocytes. Eur. Cells Mater. 2015, 30, 258–270. [Google Scholar] [CrossRef]
- Sommaggio, R.; Perez-Cruz, M.; Brokaw, J.L.; Manez, R.; Costa, C. Inhibition of Complement Component C5 Protects Porcine Chondrocytes from Xenogeneic Rejection. Osteoarthr. Cartil. 2013, 21, 1958–1967. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Brokaw, J.L.; Wang, Y.; Fodor, W.L. Delayed Rejection of Porcine Cartilage Is Averted by Transgenic Expression of Alpha1,2-Fucosyltransferase. FASEB J. 2003, 17, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Joos, H.; Albrecht, W.; Laufer, S.; Reichel, H.; Brenner, R.E. IL-1beta Regulates FHL2 and Other Cytoskeleton-Related Genes in Human Chondrocytes. Mol. Med. 2008, 14, 150–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumann, B.C.; Forte, P.; Hawley, R.J.; Rieben, R.; Schneider, M.K.J.; Seebach, J.D. Lack Of Galactose-Alpha-1,3-Galactose Expression on Porcine Endothelial Cells Prevents Complement-Induced Lysis but Not Direct Xenogeneic NK Cytotoxicity. J. Immunol. 2004, 172, 6460–6467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riegger, J.; Brenner, R.E. Evidence of Necroptosis in Osteoarthritic Disease: Investigation of Blunt Mechanical Impact as Possible Trigger in Regulated Necrosis. Cell Death Dis. 2019, 10, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riegger, J.; Leucht, F.; Palm, H.-G.; Ignatius, A.; Brenner, R.E. Initial Harm Reduction by N-Acetylcysteine Alleviates Cartilage Degeneration after Blunt Single-Impact Cartilage Trauma In Vivo. Int. J. Mol. Sci. 2019, 20, 2916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Liao, J.; Yang, Y.-J.; Wang, Z.; Qin, F.; Zhu, S.-M.; Zheng, H.; Wang, Y.-P. Effect Of Membrane-Bound Complement Regulatory Proteins on Tumor Cell Sensitivity to Complement-Dependent Cytolysis Triggered by Heterologous Expression of the A-Gal Xenoantigen. Oncol. Lett. 2018, 15, 9061–9068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riegger, J.; Huber-Lang, M.; Brenner, R.E. Crucial Role of the Terminal Complement Complex in Chondrocyte Death and Hypertrophy after Cartilage Trauma. Osteoarthr. Cartil. 2020, 28, 685–697. [Google Scholar] [CrossRef]
- Tegla, C.A.; Cudrici, C.; Patel, S.; Trippe III, R.; Rus, V.; Niculescu, F.; Rus, H. Membrane Attack By Complement: The Assembly and Biology of Terminal Complement Complexes. Immunol. Res. 2011, 51, 45–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fermor, H.L.; Mclure, S.W.D.; Taylor, S.D.; Russell, S.L.; Williams, S.; Fisher, J.; Ingham, E. Biological, Biochemical and Biomechanical Characterisation of Articular Cartilage from the Porcine, Bovine and Ovine Hip and Knee. Biomed. Mater. Eng. 2015, 25, 381–395. [Google Scholar] [CrossRef]
- Kääb, M.J.; Gwynn, I.A.; Nötzli, H.P. Collagen Fibre Arrangement in the Tibial Plateau Articular Cartilage of Man and Other Mammalian Species. J. Anat. 1998, 193, 23–34. [Google Scholar] [CrossRef]
- Bao, L.; Chen, H.; Jong, U.; Rim, C.; Li, W.; Lin, X.; Zhang, D.; Luo, Q.; Cui, C.; Huang, H.; et al. Generation Of GGTA1 Biallelic Knockout Pigs via Zinc-Finger Nucleases and Somatic Cell Nuclear Transfer. Sci. China Life Sci. 2014, 57, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Phelps, C.J.; Koike, C.; Vaught, T.D.; Boone, J.; Wells, K.D.; Chen, S.-H.; Ball, S.; Specht, S.M.; Polejaeva, I.A.; Monahan, J.A.; et al. Production Of Alpha 1,3-Galactosyltransferase-Deficient Pigs. Science 2003, 299, 411–414. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Vaught, T.D.; Boone, J.; Chen, S.-H.; Phelps, C.J.; Ball, S.; Monahan, J.A.; Jobst, P.M.; Mccreath, K.J.; Lamborn, A.E.; et al. Targeted Disruption of the Alpha1,3-Galactosyltransferase Gene in Cloned Pigs. Nat. Biotechnol. 2002, 20, 251–255. [Google Scholar] [CrossRef]
- Lai, L.; Kolber-Simonds, D.; Park, K.-W.; Cheong, H.-T.; Greenstein, J.L.; Im, G.-S.; Samuel, M.; Bonk, A.; Rieke, A.; Day, B.N.; et al. Production of Alpha-1,3-Galactosyltransferase Knockout Pigs by Nuclear Transfer Cloning. Science 2002, 295, 1089–1092. [Google Scholar] [CrossRef]
- Costa, C.; Zhao, L.; Burton, W.V.; Bondioli, K.R.; Williams, B.L.; Hoagland, T.A.; Ditullio, P.A.; Ebert, K.M.; Fodor, W.L. Expression of the Human Alpha1,2-Fucosyltransferase in Transgenic Pigs Modifies the Cell Surface Carbohydrate Phenotype and Confers Resistance to Human Serum-Mediated Cytolysis. FASEB J. 1999, 13, 1762–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, C.; Brokaw, J.L.; Fodor, W.L. Characterization of Cartilage from H-Transferase Transgenic Pigs. Transplant. Proc. 2008, 40, 554–556. [Google Scholar] [CrossRef]
- Lipinski, D.; Jura, J.; Zeyland, J.; Juzwa, W.; Maly, E.; Kalak, R.; Bochenek, M.; Plawski, A.; Szalata, M.; Smorag, Z.; et al. Production of Transgenic Pigs Expressing Human Alpha 1,2-Fucosyltransferase to Avoid Humoral Xenograft Rejection. Med. Weter. 2010, 66, 316–322. [Google Scholar]
- Chen, C.G.; Salvaris, E.J.; Romanella, M.; Aminian, A.; Katerelos, M.; Fisicaro, N.; d’Apice, A.J.; Pearse, M.J. Transgenic Expression of Human Alpha1,2-Fucosyltransferase (H-Transferase) Prolongs Mouse Heart Survival in an Ex Vivo Model of Xenograft Rejection. Transplantation 1998, 65, 832–837. [Google Scholar] [CrossRef]
- Fischer, K.; Rieblinger, B.; Hein, R.; Sfriso, R.; Zuber, J.; Fischer, A.; Klinger, B.; Liang, W.; Flisikowski, K.; Kurome, M.; et al. Viable Pigs after Simultaneous Inactivation of Porcine MHC Class I and Three Xenoreactive Antigen Genes GGTA1, CMAH and B4GALNT2. Xenotransplantation 2020, 27, E12560. [Google Scholar] [CrossRef]
- Wang, Q.; Rozelle, A.L.; Lepus, C.M.; Scanzello, C.R.; Song, J.J.; Larsen, D.M.; Crish, J.F.; Bebek, G.; Ritter, S.Y.; Lindstrom, T.M.; et al. Identification Of A Central Role for Complement in Osteoarthritis. Nat. Med. 2011, 17, 1674–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigoglou, S.; Papavassiliou, A.G. The NF-Κb Signalling Pathway in Osteoarthritis. Int. J. Biochem. Cell Biol. 2013, 45, 2580–2584. [Google Scholar] [CrossRef]
- Peng, K.; Li, Y.; Lu, C.; Hu, S. ABIN-1 Protects Chondrocytes from Lipopolysaccharide-Induced Inflammatory Injury through the Inactivation of NF-Κb Signalling. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1212–1220. [Google Scholar] [CrossRef]
- Johnson, K.; Hashimoto, S.; Lotz, M.; Pritzker, K.; Terkeltaub, R. Interleukin-1 Induces Pro-Mineralizing Activity of Cartilage Tissue Transglutaminase and Factor Xiiia. Am. J. Pathol. 2001, 159, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Sommaggio, R.; Máñez, R.; Costa, C. TNF, Pig CD86, and VCAM-1 Identified as Potential Targets for Intervention in Xenotransplantation of Pig Chondrocytes. Cell Transplant. 2009, 18, 1381–1393. [Google Scholar] [CrossRef] [PubMed]
- Sommaggio, R.; Cohnen, A.; Watzl, C.; Costa, C. Multiple Receptors Trigger Human NK Cell-Mediated Cytotoxicity against Porcine Chondrocytes. J. Immunol. 2012, 188, 2075–2083. [Google Scholar] [CrossRef] [Green Version]
- Nomura, S.; Ariyoshi, Y.; Watanabe, H.; Pomposelli, T.; Takeuchi, K.; Garcia, G.; Tasaki, M.; Ayares, D.; Sykes, M.; Sachs, D.; et al. Transgenic Expression Of Human CD47 Reduces Phagocytosis Of Porcine Endothelial Cells and Podocytes by Baboon and Human Macrophages. Xenotransplantation 2020, 27, E12549. [Google Scholar] [CrossRef]
- Tena, A.; Kurtz, J.; Leonard, D.A.; Dobrinsky, J.R.; Terlouw, S.L.; Mtango, N.; Verstegen, J.; Germana, S.; Mallard, C.; Arn, J.S.; et al. Transgenic Expression of Human CD47 Markedly Increases Engraftment in a Murine Model of Pig-to-Human Hematopoietic Cell Transplantation. Am. J. Transplant. 2014, 14, 2713–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho Oliveira, M.; Valdivia, E.; Verboom, M.; Yuzefovych, Y.; Sake, H.J.; Pogozhykh, O.; Niemann, H.; Schwinzer, R.; Petersen, B.; Seissler, J.; et al. Generating Low Immunogenic Pig Pancreatic Islet Cell Clusters for Xenotransplantation. J. Cell. Mol. Med. 2020, 24, 5070–5081. [Google Scholar] [CrossRef] [Green Version]
- Martens, G.R.; Reyes, L.M.; Li, P.; Butler, J.R.; Ladowski, J.M.; Estrada, J.L.; Sidner, R.A.; Eckhoff, D.E.; Tector, M.; Tector, A.J. Humoral Reactivity of Renal Transplant-Waitlisted Patients to Cells from GGTA1/CMAH/B4galnt2, and SLA Class I Knockout Pigs. Transplantation 2017, 101, E86. [Google Scholar] [CrossRef] [PubMed]
- Ladowski, J.M.; Reyes, L.M.; Martens, G.R.; Butler, J.R.; Wang, Z.-Y.; Eckhoff, D.E.; Tector, M.; Tector, A.J. Swine Leukocyte Antigen Class II Is a Xenoantigen. Transplantation 2018, 102, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Klymiuk, N.; Van Buerck, L.; Bähr, A.; Offers, M.; Kessler, B.; Wuensch, A.; Kurome, M.; Thormann, M.; Lochner, K.; Nagashima, H.; et al. Xenografted Islet Cell Clusters from INSLEA29Y Transgenic Pigs Rescue Diabetes and Prevent Immune Rejection in Humanized Mice. Diabetes 2012, 61, 1527–1532. [Google Scholar] [CrossRef] [Green Version]
- Buerck, L.W.; Schuster, M.; Oduncu, F.S.; Baehr, A.; Mayr, T.; Guethoff, S.; Abicht, J.; Reichart, B.; Klymiuk, N.; Wolf, E.; et al. LEA29Y Expression in Transgenic Neonatal Porcine Islet-Like Cluster Promotes Long-Lasting Xenograft Survival in Humanized Mice without Immunosuppressive Therapy. Sci. Rep. 2017, 7, 3572. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Onuma, K.; Liu, C.; Wong, H.; Bloom, M.S.; Elliott, E.E.; Cao, R.R.; Hu, N.; Lingampalli, N.; Sharpe, O.; et al. Dysregulated Integrin Avβ3 and CD47 Signaling Promotes Joint Inflammation, Cartilage Breakdown, and Progression of Osteoarthritis. JCI Insight 2019, 4, e128616. [Google Scholar] [CrossRef] [Green Version]
- Lyman, S.; Nakamura, N.; Cole, B.J.; Erggelet, C.; Gomoll, A.H.; Farr, J. Cartilage-Repair Innovation at a Standstill: Methodologic and Regulatory Pathways to Breaking Free. J. Bone Jt. Surg. Am. 2016, 98, E63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Abbreviation | Genetic Modification |
---|---|
Wild-type (WT) | - |
TG | human CD59/CD55/CD46/TNFAIP3/HMOX1 transgenic |
GalTKO | GGTA1−/− |
GalTKO/TG | GGTA1−/− and human CD59/CD55/CD46/TNFAIP3/HMOX1 transgenic |
GalT/CMAHKO | GGTA1−/− and CMAH−/− |
GalT/CMAHKO/TG | GGTA1−/−/CMAH−/− and human CD59/CD55/CD46/TNFAIP3/HMOX1 transgenic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tritschler, H.; Fischer, K.; Seissler, J.; Fiedler, J.; Halbgebauer, R.; Huber-Lang, M.; Schnieke, A.; Brenner, R.E. New Insights into Xenotransplantation for Cartilage Repair: Porcine Multi-Genetically Modified Chondrocytes as a Promising Cell Source. Cells 2021, 10, 2152. https://doi.org/10.3390/cells10082152
Tritschler H, Fischer K, Seissler J, Fiedler J, Halbgebauer R, Huber-Lang M, Schnieke A, Brenner RE. New Insights into Xenotransplantation for Cartilage Repair: Porcine Multi-Genetically Modified Chondrocytes as a Promising Cell Source. Cells. 2021; 10(8):2152. https://doi.org/10.3390/cells10082152
Chicago/Turabian StyleTritschler, Hanna, Konrad Fischer, Jochen Seissler, Jörg Fiedler, Rebecca Halbgebauer, Markus Huber-Lang, Angelika Schnieke, and Rolf E. Brenner. 2021. "New Insights into Xenotransplantation for Cartilage Repair: Porcine Multi-Genetically Modified Chondrocytes as a Promising Cell Source" Cells 10, no. 8: 2152. https://doi.org/10.3390/cells10082152
APA StyleTritschler, H., Fischer, K., Seissler, J., Fiedler, J., Halbgebauer, R., Huber-Lang, M., Schnieke, A., & Brenner, R. E. (2021). New Insights into Xenotransplantation for Cartilage Repair: Porcine Multi-Genetically Modified Chondrocytes as a Promising Cell Source. Cells, 10(8), 2152. https://doi.org/10.3390/cells10082152