Co-Expression Network Analysis of MicroRNAs and Proteins in Severe Traumatic Brain Injury: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.2. Selection Criteria
2.3. Data Collection
2.4. Bioinformatic Analysis
2.5. Risk of Bias
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. miRNA and Protein Expression Changes Post-TBI
3.4. Bioinformatic Analysis
3.5. KEGG Pathways Analysis to Identify Potential miRNA Processes and Targets for TBI
3.6. Risk of Bias (RoB)
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhomia, M.; Balakathiresan, N.S.; Wang, K.K.; Papa, L.; Maheshwari, R.K. A Panel of Serum MiRNA Biomarkers for the Diagnosis of Severe to Mild Traumatic Brain Injury in Humans. Sci. Rep. 2016, 6, 28148. [Google Scholar] [CrossRef]
- Faul, M.; Coronado, V. Epidemiology of traumatic brain injury. Handb. Clin. Neurol. 2015, 127, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Capizzi, A.; Woo, J.; Verduzco-Gutierres, M. Traumatic Brain Injury: An Overview of Epidemiology, Pathophysiology, and Medical Management. Med. Clin. N. Am. 2020, 104, 213–238. [Google Scholar] [CrossRef] [PubMed]
- Hyder, A.A.; Wunderlich, C.A.; Puvanachandra, P.; Gururaj, G.; Kobusingye, O.C. The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation 2007, 22, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Corrigan, J.D.; Selassie, A.W.; Orman, J.A. The epidemiology of traumatic brain injury. J. Head Trauma Rehabil. 2010, 25, 72–80. [Google Scholar] [CrossRef]
- Feigin, V.L.; Theadom, A.; Barker-Collo, S.; Starkey, N.J.; McPherson, K.; Kahan, M.; Dowell, A.; Brown, P.; Parag, V.; Kydd, R.; et al. Incidence of traumatic brain injury in New Zealand: A population-based study. Lancet Neurol. 2013, 12, 53–64. [Google Scholar] [CrossRef]
- Toffolo, K.; Osei, J.; Kelly, W.; Poulsen, A.; Donahue, K.; Wang, J.; Hunter, M.; Bard, J.; Wang, J.; Poulsen, D. Circulating microRNAs as biomarkers in traumatic brain injury. Neuropharmacology 2019, 145, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Langlois, J.A.; Rutland-Brown, W.; Wald, M.M. The epidemiology and impact of traumatic brain injury: A brief overview. J. Head Trauma Rehabil. 2006, 21, 375–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andelic, N.; Howe, E.I.; Hellstrøm, T.; Sanchez, M.F.; Lu, J.; Løvstad, M.; Røe, C. Disability and quality of life 20 years after traumatic brain injury. Brain Behav. 2018, 8, e01018. [Google Scholar] [CrossRef]
- Di Pietro, V.; Ragusa, M.; Davies, D.; Su, Z.; Hazeldine, J.; Lazzarino, G.; Hill, L.J.; Crombie, N.; Foster, M.; Purrello, M.; et al. MicroRNAs as Novel Biomarkers for the Diagnosis and Prognosis of Mild and Severe Traumatic Brain Injury. J. Neurotrauma 2017, 34, 1948–1956. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2007 and 2013. MMWR Surveill. Summ. 2017, 66, 1–16. [Google Scholar] [CrossRef]
- De Guzman, E.; Ament, A. Neurobehavioral Management of Traumatic Brain Injury in the Critical Care Setting: An Update. Crit. Care Clin. 2017, 33, 423–440. [Google Scholar] [CrossRef]
- Ng, S.Y.; Lee, A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef] [PubMed]
- Rockhill, C.M.; Jaffe, K.; Zhou, C.; Fan, M.Y.; Katon, W.; Fann, J.R. Health care costs associated with traumatic brain injury and psychiatric illness in adults. J. Neurotrauma 2012, 29, 1038–1046. [Google Scholar] [CrossRef]
- Menon, D.K.; Schwab, K.; Wright, D.W.; Maas, A.I. Position statement: Definition of traumatic brain injury. Arch. Phys. Med. Rehabil. 2010, 91, 1637–1640. [Google Scholar] [CrossRef]
- Zaloshnja, E.; Miller, T.; Langlois, J.A.; Selassie, A.W. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J. Head Trauma Rehabil. 2008, 23, 394–400. [Google Scholar] [CrossRef]
- Bazarian, J.J.; Cernak, I.; Noble-Haeusslein, L.; Potolicchio, S.; Temkin, N. Long-term neurologic outcomes after traumatic brain injury. J. Head Trauma Rehabil. 2009, 24, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Bruns, J., Jr.; Hauser, W.A. The epidemiology of traumatic brain injury: A review. Epilepsia 2003, 44, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Andriessen, T.M.; Jacobs, B.; Vos, P.E. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J. Cell. Mol. Med. 2010, 14, 2381–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.W.; Rissland, O.S.; Koppstein, D.; Abreu-Goodger, C.; Jan, C.H.; Agarwal, V.; Yildirim, M.A.; Rodriguez, A.; Bartel, D.P. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol. Cell 2014, 53, 1031–1043. [Google Scholar] [CrossRef] [Green Version]
- Redell, J.B.; Moore, A.N.; Ward, N.H.; Hergenroeder, G.W.; Dash, P.K. Human traumatic brain injury alters plasma microRNA levels. J. Neurotrauma 2010, 27, 2147–2156. [Google Scholar] [CrossRef]
- Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015, 43, 460–466. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2008, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The EndNote Team. EndNote; EndNote 20: Clarivate: Philadelphia, PA, USA, 2013. [Google Scholar]
- Hu, Z.; Yu, D.; Almeida-Suhett, C.; Tu, K.; Marini, A.M.; Eiden, L.; Braga, M.F.; Zhu, J.; Li, Z. Expression of miRNAs and their cooperative regulation of the pathophysiology in traumatic brain injury. PLoS ONE 2012, 7, e39357. [Google Scholar] [CrossRef]
- Jadhav, S.P.; Kamath, S.P.; Choolani, M.; Lu, J.; Dheen, S.T. microRNA-200b modulates microglia-mediated neuroinflammation via the cJun/MAPK pathway. J. Neurochem. 2014, 130, 388–401. [Google Scholar] [CrossRef]
- Korotkov, A.; Puhakka, N.; Gupta, S.D.; Vuokila, N.; Broekaart, D.W.M.; Anink, J.J.; Heiskanen, M.; Karttunen, J.; van Scheppingen, J.; Huitinga, I.; et al. Increased expression of miR142 and miR155 in glial and immune cells after traumatic brain injury may contribute to neuroinflammation via astrocyte activation. Brain Pathol. 2020, 30, 897–912. [Google Scholar] [CrossRef]
- Puhakka, N.; Bot, A.M.; Vuokila, N.; Debski, K.J.; Lukasiuk, K.; Pitkänen, A. Chronically dysregulated NOTCH1 interactome in the dentate gyrus after traumatic brain injury. PLoS ONE 2017, 12, e0172521. [Google Scholar] [CrossRef]
- Redell, J.B.; Liu, Y.; Dash, P.K. Traumatic brain injury alters expression of hippocampal microRNAs: Potential regulators of multiple pathophysiological processes. J. Neurosci. Res. 2009, 87, 1435–1448. [Google Scholar] [CrossRef]
- Thangavelu, B.; Wilfred, B.S.; Johnson, D.; Gilsdorf, J.S.; Shear, D.A.; Boutte, A.M. Penetrating Ballistic-Like Brain Injury Leads to MicroRNA Dysregulation, BACE1 Upregulation, and Amyloid Precursor Protein Loss in Lesioned Rat Brain Tissues. Front. Neurosci. 2020, 14, 915. [Google Scholar] [CrossRef]
- Vuokila, N.; Aronica, E.; Korotkov, A.; van Vliet, E.A.; Nuzhat, S.; Puhakka, N.; Pitkänen, A. Chronic regulation of miR-124-3p in the perilesional cortex after experimental and human TBI. Int. J. Mol. Sci. 2020, 21, 2418. [Google Scholar] [CrossRef] [Green Version]
- Vuokila, N.; Lukasiuk, K.; Bot, A.M.; van Vliet, E.A.; Aronica, E.; Pitkänen, A.; Puhakka, N. miR-124-3p is a chronic regulator of gene expression after brain injury. Cell Mol. Life Sci. 2018, 75, 4557–4581. [Google Scholar] [CrossRef]
- Wang, W.X.; Prajapati, P.; Vekaria, H.; Spry, M.; Cloud, A.; Sullivan, P.; Springer, J. Temporal changes in inflammatory mitochondria-enriched microRNAs following traumatic brain injury and effects of miR-146a nanoparticle delivery. Neural Regen. Res. 2021, 16, 514–522. [Google Scholar] [CrossRef]
- Xiao, X.; Bai, P.; Cao, S.; Jiang, Y.; Liang, W.; Wang, T.; Luo, X.; Guan, Q.; Gao, L.; Zhang, L. Integrated Bioinformatics Analysis for the Identification of Key Molecules and Pathways in the Hippocampus of Rats After Traumatic Brain Injury. Neurochem. Res. 2020, 45, 928–939. [Google Scholar] [CrossRef]
- Anderson, K.J.; Scheff, S.W.; Miller, K.M.; Roberts, K.N.; Gilmer, L.K.; Yang, C.; Shaw, G. The phosphorylated axonal form of the neurofilament subunit NF-H (pNF-H) as a blood biomarker of traumatic brain injury. J. Neurotrauma 2008, 25, 1079–1085. [Google Scholar] [CrossRef]
- Anwer, M.; Lara-Valderrabano, L.; Karttunen, J.; Ndode-Ekane, X.E.; Puhakka, N.; Pitkänen, A. Acute Downregulation of Novel Hypothalamic Protein Sushi Repeat-Containing Protein X-Linked 2 after Experimental Traumatic Brain Injury. J. Neurotrauma 2020, 37, 924–938. [Google Scholar] [CrossRef]
- Bonneh-Barkay, D.; Zagadailov, P.; Zou, H.; Niyonkuru, C.; Figley, M.; Starkey, A.; Wang, G.; Bissel, S.J.; Wiley, C.A.; Wagner, A.K. YKL-40 expression in traumatic brain injury: An initial analysis. J. Neurotrauma 2010, 27, 1215–1223. [Google Scholar] [CrossRef] [Green Version]
- Cui, G.; Yu, Z.; Li, Z.; Wang, W.; Lu, T.; Qian, C.; Li, J.; Ding, Y. Increased expression of Foxj1 after traumatic brain injury. J. Mol. Neurosci. 2011, 45, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Dalgard, C.L.; Cole, J.T.; Kean, W.S.; Lucky, J.J.; Sukumar, G.; McMullen, D.C.; Pollard, H.B.; Watson, W.D. The cytokine temporal profile in rat cortex after controlled cortical impact. Front. Mol. Neurosci. 2012. [Google Scholar] [CrossRef] [Green Version]
- Das Gupta, S.; Lipponen, A.; Paldanius, K.M.A.; Puhakka, N.; Pitkanen, A. Dynamics of clusterin protein expression in the brain and plasma following experimental traumatic brain injury. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef]
- Dawish, H.; Mahmood, A.; Schallert, T.; Chopp, M.; Therrien, B. Mild traumatic brain injury (MTBI) leads to spatial learning deficits. Brain Inj. 2012, 26, 151–165. [Google Scholar] [CrossRef]
- DeDominicis, K.E.; Hwang, H.; Cartagena, C.M.; Shear, D.A.; Boutte, A.M. Cerebrospinal Fluid Biomarkers Are Associated with Glial Fibrillary Acidic Protein and alpha II-spectrin Breakdown Products in Brain Tissues Following Penetrating Ballistic-Like Brain Injury in Rats. Front. Neurol. 2018, 9, 490. [Google Scholar] [CrossRef]
- Kilbourne, M.; Kuehn, R.; Tosun, C.; Caridi, J.; Keledjian, K.; Bochicchio, G.; Scalea, T.; Gerzanich, V.; Simard, J.M. Novel model of frontal impact closed head injury in the rat. J. Neurotrauma 2009, 26, 2233–2243. [Google Scholar] [CrossRef] [Green Version]
- Kobeissy, F.H.; Guingab-Cagmat, J.D.; Zhang, Z.; Moghieb, A.; Glushakova, O.Y.; Mondello, S.; Boutté, A.M.; Anagli, J.; Rubenstein, R.; Bahmad, H.; et al. Neuroproteomics and Systems Biology Approach to Identify Temporal Biomarker Changes Post Experimental Traumatic Brain Injury in Rats. Front. Neurol. 2016, 7, 198. [Google Scholar] [CrossRef] [Green Version]
- Kobeissy, F.H.; Liu, M.C.; Yang, Z.; Zhang, Z.; Zheng, W.; Glushakova, O.; Mondello, S.; Anagli, J.; Hayes, R.L.; Wang, K.K. Degradation of βII-Spectrin Protein by Calpain-2 and Caspase-3 Under Neurotoxic and Traumatic Brain Injury Conditions. Mol. Neurobiol. 2015, 52, 696–709. [Google Scholar] [CrossRef] [Green Version]
- Kobeissy, F.H.; Ottens, A.K.; Zhang, Z.; Liu, M.C.; Denslow, N.D.; Dave, J.R.; Tortella, F.C.; Hayes, R.L.; Wang, K.K. Novel differential neuroproteomics analysis of traumatic brain injury in rats. Mol. Cell. Proteom. 2006, 5, 1887–1898. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Zhang, C.; Liu, W.; Luo, P.; Zhang, L.; Wang, Y.; Wang, Z.; Fei, Z. A novel rat model of blast-induced traumatic brain injury simulating different damage degree: Implications for morphological, neurological, and biomarker changes. Front. Cell. Neurosci. 2015, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.C.; Akle, V.; Zheng, W.; Kitlen, J.; O’Steen, B.; Larner, S.F.; Dave, J.R.; Tortella, F.C.; Hayes, R.L.; Wang, K.K. Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J. Neurochem. 2006, 98, 700–712. [Google Scholar] [CrossRef]
- McDonald, W.S.; Jones, E.E.; Wojciak, J.M.; Drake, R.R.; Sabbadini, R.A.; Harris, N.G. Matrix-Assisted Laser Desorption Ionization Mapping of Lysophosphatidic Acid Changes after Traumatic Brain Injury and the Relationship to Cellular Pathology. Am. J. Pathol. 2018, 188, 1779–1793. [Google Scholar] [CrossRef] [Green Version]
- Mrozek, S.; Delamarre, L.; Capilla, F.; Al-Saati, T.; Fourcade, O.; Constantin, J.M.; Geeraerts, T. Cerebral Expression of Glial Fibrillary Acidic Protein, Ubiquitin Carboxy-Terminal Hydrolase-L1, and Matrix Metalloproteinase 9 After Traumatic Brain Injury and Secondary Brain Insults in Rats. Biomark Insights 2019, 14, 1177271919851515. [Google Scholar] [CrossRef]
- Ottens, A.K.; Bustamante, L.; Golden, E.C.; Yao, C.; Hayes, R.L.; Wang, K.K.; Tortella, F.C.; Dave, J.R. Neuroproteomics: A biochemical means to discriminate the extent and modality of brain injury. J. Neurotrauma 2010, 27, 1837–1852. [Google Scholar] [CrossRef] [Green Version]
- Ottens, A.K.; Golden, E.C.; Bustamante, L.; Hayes, R.L.; Denslow, N.D.; Wang, K.K. Proteolysis of multiple myelin basic protein isoforms after neurotrauma: Characterization by mass spectrometry. J. Neurochem. 2008, 104, 1404–1414. [Google Scholar] [CrossRef] [Green Version]
- Pabón, M.M.; Acosta, S.; Guedes, V.A.; Tajiri, N.; Kaneko, Y.; Borlongan, C.V. Brain Region-Specific Histopathological Effects of Varying Trajectories of Controlled Cortical Impact Injury Model of Traumatic Brain Injury. CNS Neurosci. Ther. 2016, 22, 200–211. [Google Scholar] [CrossRef]
- Rubenstein, R.; Chang, B.; Davies, P.; Wagner, A.K.; Robertson, C.S.; Wang, K.K. A novel, ultrasensitive assay for tau: Potential for assessing traumatic brain injury in tissues and biofluids. J. Neurotrauma 2015, 32, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Schober, M.E.; Requena, D.F.; Davis, L.J.; Metzger, R.R.; Bennett, K.S.; Morita, D.; Niedzwecki, C.; Yang, Z.; Wang, K.K. Alpha II Spectrin breakdown products in immature Sprague Dawley rat hippocampus and cortex after traumatic brain injury. Brain Res. 2014, 1574, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Williams, A.J.; Ottens, A.K.; Lu, X.C.; Liu, M.C.; Hayes, R.L.; Wang, K.K.; Tortella, F.C.; Dave, J.R. P43/pro-EMAPII: A potential biomarker for discriminating traumatic versus ischemic brain injury. J. Neurotrauma 2009, 26, 1295–1305. [Google Scholar] [CrossRef]
- Zheng, F.; Zhou, Y.T.; Feng, D.D.; Li, P.F.; Tang, T.; Luo, J.K.; Wang, Y. Metabolomics analysis of the hippocampus in a rat model of traumatic brain injury during the acute phase. Brain Behav. 2020, 10, e01520. [Google Scholar] [CrossRef]
- Boudreau, R.L.; Jiang, P.; Gilmore, B.L.; Spengler, R.M.; Tirabassi, R.; Nelson, J.A.; Ross, C.A.; Xing, X.; Davidson, B.L. Transcriptome-wide discovery of microRNA binding sites in human brain. Neuron 2014, 81, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, L.; Stebbing, J.; Braga, V.M.; Frampton, A.E.; Jacob, J.; Buluwela, L.; Jiao, L.R.; Periyasamy, M.; Madsen, C.D.; Caley, M.P.; et al. miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts. Nucleic Acids Res. 2013, 41, 5400–5412. [Google Scholar] [CrossRef]
- Pillai, M.M.; Gillen, A.E.; Yamamoto, T.M.; Kline, E.; Brown, J.; Flory, K.; Hesselberth, J.R.; Kabos, P. HITS-CLIP reveals key regulators of nuclear receptor signaling in breast cancer. Breast Cancer Res. Treat. 2014, 8, 559–564. [Google Scholar] [CrossRef]
- Kishore, S.; Jaskiewicz, L.; Burger, L.; Hausser, J.; Khorshid, M.; Zavolan, M. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods 2011, 8, 559–564. [Google Scholar] [CrossRef]
- Karginov, F.D.; Hannon, G.J. Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. Genes Dev. 2013, 27, 1624–1632. [Google Scholar] [CrossRef]
- Hafner, M.; Landthaler, M.; Burger, L.; Khorshid, M.; Hausser, J.; Berninger, P.; Rothballer, A.; Ascano, M., Jr.; Jungkamp, A.C.; Munschauer, M.; et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010, 141, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Haecker, I.; Gay, L.A.; Yang, Y.; Hu, J.; Morse, A.M.; McIntyre, L.M.; Renne, R. Ago HITS-CLIP expands understanding of Kaposi’s sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Pathog. 2012, 8, e1002884. [Google Scholar] [CrossRef] [Green Version]
- Kameswaran, V.; Bramswig, N.C.; McKenna, L.B.; Penn, M.; Schug, J.; Hand, N.J.; Chen, J.; Choi, I.; Vourekas, A.; Won, K.J.; et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic isle Cell. Cell. Metab. 2014, 19, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Ouyang, K.; Huang, J.; Zhou, Y.; Ouyang, H.; Li, H.; Wang, G.; Wu, Q.; Wei, C.; Bi, Y.; et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 2013, 152, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Baek, D.; Villén, J.; Shin, C.; Camargo, F.D.; Gygi, P.G.; Bartel, P.B. The impact of microRNAs on protein output. Nature 2008, 455, 64–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whisnant, A.D.; Bogerd, H.P.; Flores, O.; Ho, P.; Powers, J.G.; Sharova, N.; Stevenson, M.; Chen, C.H.; Cullen, B.R. In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. mBio 2013, 4, e000193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakrishnan, I.; Yang, X.; Brown, J.; Ramakrishnan, A.; Torok-Storb, B.; Kabos, P.; Hesselberth, J.R.; Pillai, M.M. Genome-wide analysis of miRNA-mRNA interactions in marrow stromal cells. Stem. Cells 2014, 32, 662–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavazoie, S.F.; Alarcón, C.; Oskarsson, T.; Padua, D.; Wang, Q.; Bos, P.D.; Gerald, W.L.; Massagué, J. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008, 451, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimson, A.; Kai-How Farh, K.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell 2007, 27, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Gottwein, E.; Corcoran, D.L.; Mukherjee, N.; Skalsky, R.L.; Hafner, M.; Nusbaum, J.D.; Shamulailatpam, P.; Love, C.L.; Dave, S.S.; Tuschl, T.; et al. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 2011, 10, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Wilson, J.M.; Harvel, N.; Liu, J.; Pei, L.; Huang, S.; Hawthorn, L.A.; Shi, H. A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells. J. Transl. Med. 2013, 11, 57. [Google Scholar] [CrossRef] [Green Version]
- Mandemakers, W.; Abuhatzira, L.; Xu, H.; Caromile, L.A.; Hébert, S.S.; Snellinx, A.; Morais, V.A.; Matta, S.; Cai, T.; Notkins, A.L.; et al. Co-regulation of intragenic microRNA miR-153 and its host gene Ia-2 β: Identification of miR-153 target genes with functions related to IA-2β in pancreas and brain. Diabetologia 2013, 56, 1547–1556. [Google Scholar] [CrossRef] [Green Version]
- Hébert, S.S.; Horré, K.; Nicolaï, L.; Papadopoulou, A.S.; Mandemakers, W.; Silahtaroglu, A.N.; Kauppinen, S.; Delacourte, A.; De Strooper, B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased. BACE1/beta-secretase expression. Proc. Natl. Acad. Sci. USA 2008, 105, 6415–6420. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Steeg, P.S. Endocytosis: A pivotal pathway for regulating metastasis. Br. J. Cancer 2021, 124, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Cullen, P.J.; Steinberg, F. To degrade or not to degrade: Mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol. 2018, 19, 679–696. [Google Scholar] [CrossRef]
- Jie, X.; Qun, C.; Ke, Z.; Chenyu, Z.; Qipeng, Z. Synaptosomes secrete and uptake functionally active microRNAs via exocytosis and endocytosis pathways. JNC 2012, 124, 15–25. [Google Scholar]
- Xing, L.; Wanwen, L.; Yuanyuan, Z.; Chaoquan, P. MiR-125b overexpression in EPCs ameliorated TNF-α-induced activation of the NF-κB pathway. Cardiol. Res. Pract. 2020, 7, 6210847. [Google Scholar]
- Kim, S.W.; Ramasamy, K.; Bouamar, H.; Lin, A.P.; Jiang, D.; Aguiar, R.C. MicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc. Natl. Acad. Sci. USA 2012, 109, 7865–7870. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Kim, I.; Lee, S.G.; Kim, Y.J.; Silwal, P.; Kim, J.Y.; Kim, J.K.; Seo, W.; Chung, C.; Cho, H.K.; et al. MiR-144-3p is associated with pathological inflammation in patients infected with Mycobacteroides abscessus. Exp. Mol. Med. 2021, 53, 136–149. [Google Scholar] [CrossRef]
- Van Quickelberghe, E.; De Sutter, D.; van Loo, G.; Eyckerman, S.; Gevaert, K. A protein-protein interaction map of the TNF-induced NF-κB signal transduction pathway. Sci. Data 2018, 5, 180289. [Google Scholar] [CrossRef] [Green Version]
- Medler, J.; Wajant, H. Tumor necrosis factor receptor-2 (TNFR2): An overview of an emerging drug target. Expert Opin. Targets 2019, 23, 295–307. [Google Scholar] [CrossRef]
- Decourt, B.; Lahiri, D.K.; Sabbagh, M.N. Targeting Tumor Necrosis Factor Alpha for Alzheimer’s Disease. Curr. Alzheimer Res. 2017, 14, 412–425. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wang, Z.H.; Liu, X.; Zhang, Z.; Gu, X.; Yu, S.P.; Keene, C.D.; Cheng, L.; Ye, K. Traumatic brain injury triggers APP and Tau cleavage by delta-secretase, mediating Alzheimer’s disease pathology. Prog. Neurobiol. 2020, 185, 101730. [Google Scholar] [CrossRef] [PubMed]
- Mufson, E.J.; Ikonomovic, M.D.; Counts, S.E.; Perez, S.E.; Malek-Ahmadi, M.; Scheff, S.W.; Ginsberg, S.D. Molecular and cellular pathophysiology of preclinical Alzheimer’s disease. Behav. Brain Res. 2016, 311, 54–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikonomovic, M.D.; Uryu, K.; Abrahamson, E.E.; Ciallella, J.R.; Trojanowski, J.Q.; Lee, V.M.; Clark, R.S.; Marion, D.W.; Wisniewski, S.R.; DeKosky, S.T. Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp. Neurol. 2004, 190, 192–203. [Google Scholar] [CrossRef]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Widespread τ and amyloid-β pathology many years after a single traumatic brain injury in humans. Brain Pathol. 2012, 22, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, P.; Liu, D.Z.; Jickling, G.C.; Sharp, F.R.; Yin, K.J. MicroRNA-based therapeutics in central nervous system injuries. J. Cereb. Blood Flow Metab. 2018, 38, 1125–1148. [Google Scholar] [CrossRef]
- Madathil, S.K.; Nelson, P.T.; Saatman, K.E.; Wilfred, B.R. MicroRNAs in CNS injury: Potential roles and therapeutic implications. Bioessays 2011, 33, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopher, A.F.; Kaur, R.P.; Kaur, G.; Kaur, A.; Gupta, V.; Bansal, P. MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect. Clin. Res. 2016, 7, 68–74. [Google Scholar] [CrossRef]
- Chang, H.I.; Yeh, M.K. Clinical development of liposome-based drugs: Formulation, characterization, and therapeutic efficacy. Int. J. Nanomed. 2012, 7, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef]
- Schmidt, M.F. Drug target miRNAs: Chances and challenges. Trends Biotechnol. 2014, 32, 578–585. [Google Scholar] [CrossRef]
- Janssen, H.L.; Reesink, H.W.; Lawitz, E.J.; Zeuzem, S.; Rodriguez-Torres, M.; Patel, K.; van der Meer, A.J.; Patick, A.K.; Chen, A.; Zhou, Y.; et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 2013, 368, 1685–1694. [Google Scholar] [CrossRef] [Green Version]
- Garzon, R.; Marcucci, G.; Croce, C.M. Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat. Rev. Drug Discov. 2010, 9, 775–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, D.G. Embracing failure: What the Phase III progesterone studies can teach about TBI clinical trials. Brain Inj. 2015, 29, 1259–1272. [Google Scholar] [CrossRef] [PubMed]
- Percie du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef] [PubMed]
Protein Studies to Be Included If: | miRNAs—Studies to Be Included If: |
---|---|
Severe TBI model | Severe TBI model |
Rat brain tissue | Rat brain tissue |
Full text available | Full text available |
Primary research paper | Primary research paper |
Protein expression analysed | miRNA expression analysed |
English language | English language |
Proteins—Studies Excluded If: | miRNAs—Studies Excluded If: |
---|---|
No TBI model | No TBI model |
No brain tissue | No brain tissue |
In vitro/cell/human model utilised | In vitro/cell/human model utilised |
No full text available | No full text available |
No primary paper | No primary paper |
Protein expression after any treatment | miRNA expression after any treatment |
Mild or moderate TBI | Mild or moderate TBI |
Protein expression not analysed | miRNA expression not analysed |
No English language | No English language |
Protein Target | miRNA Interaction (DIANA-Tools) | miRNA Interaction (miRTargets) | miRNA Interaction (miRwalk) | miRNA Expression | Protein Expression | Inverse Expression | Experimentally Validated |
---|---|---|---|---|---|---|---|
FOXJ1 | miR-200a-3p | x | x | ↑ | ↑ | N | |
miR-325-3p | x | ↓ | ↑ | Y | |||
CXCL1 | miR-150-5p | x | ↓ | ↑ | Y | ||
CCL2 | miR-369-3p | ↓ | ↑ | Y | |||
CCL20 | miR-221-3p | ↓ | ↑ | Y | |||
miR-376c-3p | ↓ | ↑ | Y | ||||
ACO1 | miR-200a-3p | x | ↑ | ↑ | N | ||
miR-223-3p | ↑ | ↑ | N | ||||
C3 | miR-127-5p | x | x | ↓ | ↑ | Y | |
GMPS | miR-23a-3p | ↑ | ↑ | N | [64] | ||
miR-23b-3p | x | ↑ | ↑ | N | [65] | ||
miR-200a-3p | x | ↑ | ↑ | N | |||
miR-200b-3p | x | ↑ | ↑ | N | |||
miR-200c-3p | x | ↑ | ↑ | N | |||
miR-224-5p | x | ↑ | ↑ | N | [66] | ||
miR-543-3p | ↓ | ↑ | Y | ||||
DPYSL2 | miR-29c-3p | x | ↓ | ↑ and ↓ | Y | ||
miR-29a-3p | x | x | ↓ | ↑ and ↓ | Y | ||
miR-30a-5p | x | ↑ | ↑ and ↓ | Y | |||
miR-30b-5p | x | x | ↑ | ↑ and ↓ | Y | ||
miR-30c-5p | x | x | ↑ and ↓ | ↑ and ↓ | Y | ||
miR-30e-5p | x | ↑ | ↑ and ↓ | Y | |||
miR-130a-3p | x | x | ↓ | ↑ and ↓ | Y | ||
miR-130b-3p | x | ↑ | ↑ and ↓ | Y | |||
miR-140-5p | x | x | ↓ | ↑ and ↓ | Y | ||
miR-181b-5p | x | ↓ | ↑ and ↓ | Y | |||
miR-224-5p | x | x | ↑ | ↑ and ↓ | Y | ||
miR-329-3p | x | x | ↓ | ↑ and ↓ | Y | ||
miR-721 | ↑ | ↑ and ↓ | Y | ||||
DPYSL3 | miR-132-3p | x | ↑ | ↑ | N | [64] | |
miR-212-3p | x | x | ↓ | ↑ | Y | ||
DPYSL5 | miR-19a-3p | x | x | ↓ | ↑ | Y | |
miR-19b-3p | x | x | ↑ and ↓ | ↑ | Y | [67] | |
miR-20b-5p | x | x | ↑ | ↑ | N | ||
miR-29a-3p | x | ↓ | ↑ | Y | |||
miR-29c-3p | x | ↓ | ↑ | Y | |||
miR-139-5p | x | x | ↓ | ↑ | Y | ||
miR-153-3p | x | x | ↑ | ↑ | N | ||
miR-224-5p | x | ↑ | ↑ | N | |||
miR-342-5p | x | x | ↓ | ↑ | Y | [68] | |
miR-467a-5p | ↑ | ↑ | N | ||||
miR-667-3p | ↓ | ↑ | Y | ||||
WDR1 | miR-19a-3p | x | ↓ | ↑ | Y | ||
miR-19b-3p | x | ↑ and ↓ | ↑ | Y | |||
miR-125a-5p | x | ↓ | ↑ | Y | |||
miR-125b-5p | x | ↓ | ↑ | Y | |||
BASP1 | miR-200b-3p | x | ↑ | ↑ | N | ||
miR-200c-3p | x | x | ↑ | ↑ | N | ||
miR-325-3p | ↓ | ↑ | Y | ||||
miR-381-3p | x | ↑ | ↑ | N | |||
CFH | miR-136-5p | x | ↓ | ↑ | Y | ||
miR-181b-5p | x | ↓ | ↑ | Y | |||
ACO2 | miR-744-5p | x | ↑ | ↓ | Y | ||
PLCB1 | miR-20b-5p | x | x | ↑ | ↓ | Y | |
miR-130a-3p | x | ↓ | ↓ | N | |||
miR-130b-3p | x | ↑ | ↓ | Y | |||
miR-139-5p | x | x | ↓ | ↓ | N | [64] | |
miR-144-3p | x | ↓ | ↓ | N | |||
miR-153-3p | x | x | ↑ | ↓ | Y | ||
miR-181a-5p | ↓ | ↓ | N | ||||
miR-181b-5p | x | ↓ | ↓ | N | |||
miR-325-3p | ↓ | ↓ | N | ||||
miR-499-5p | x | ↑ | ↓ | Y | |||
miR-721 | ↑ | ↓ | Y | ||||
miR-744-5p | x | ↑ | ↓ | Y | |||
UBA1 | miR-325-3p | ↓ | ↓ | N | |||
STXBP1 | miR-674-5p | ↓ | ↓ | N | |||
STMN1 | miR-9-5p | x | x | ↑ | ↓ | Y | [69] |
miR-221-3p | x | x | ↓ | ↓ | N | ||
miR-222-3p | x | ↓ | ↓ | N | [69] | ||
SPTBN1 | miR-135a-5p | ↓ | ↓ | N | |||
miR-135b-5p | x | ↓ | ↓ | N | |||
miR-298-5p | ↑ | ↓ | Y | ||||
miR-320-3p | ↓ | ↓ | N | ||||
miR-671-5p | x | x | ↑ | ↓ | Y | ||
ARF3 | miR-329-3p | x | ↓ | ↑ | Y | ||
OXCT1 | miR-185-5p | x | ↓ | ↑ | Y | ||
MDH1 | miR-25-3p | ↓ | ↑ | Y | [66] | ||
miR-142a-5p | ↑ | ↑ | N | ||||
miR-674-5p | ↓ | ↑ | Y | ||||
miR-691 | ↑ | ↑ | N | ||||
APP | miR-20b-5p | x | x | ↑ | ↑ | N | |
miR-144-3p | x | ↓ | ↑ | Y | |||
miR-153-3p | x | ↑ | ↑ | N | |||
miR-185-5p | x | x | ↓ | ↑ | Y | ||
GDI1 | miR-150-5p | x | x | ↓ | ↑ | Y | |
miR-325-3p | ↓ | ↑ | Y | ||||
miR-329-3p | x | ↓ | ↑ | Y | |||
SPTAN1 | miR-29a-3p | x | ↓ | ↑ | Y | [70,71,72] | |
miR-29c-3p | x | ↓ | ↑ | Y | [66,70,71,72] | ||
miR-325-3p | ↓ | ↑ | Y | ||||
ANXA11 | miR-124-3p | x | x | ↑ and ↓ | ↓ | Y | [73] |
ACSS2 | miR-125a-5p | x | ↓ | ↓ | N | ||
miR-125b-5p | ↓ | ↓ | N | ||||
PGK2 | miR-499-5p | ↑ | ↓ | Y | |||
PGK1 | miR-34c-5p | x | ↑ | ↑ and ↓ | Y | ||
miR-449b | x | ↑ | ↑ and ↓ | Y | |||
GLUD1 | miR-379-5p | ↓ | ↓ | N | |||
ALDOA | miR-34c-5p | x | x | ↑ | ↓ | Y | |
miR-449b | x | ↑ | ↓ | Y | |||
DDAH1 | miR-30a-5p | x | ↑ | ↓ | Y | [67,74,75] | |
miR-30b-5p | x | ↑ | ↓ | Y | [66,67,74,75] | ||
miR-30c-5p | x | ↑ and ↓ | ↓ | Y | [66,67,74,75] | ||
miR-30e-5p | x | ↑ | ↓ | Y | [66,67,74,75] | ||
MAP2 | miR-34b-3p | x | x | ↑ and ↓ | ↓ | Y | |
miR-129-5p | x | x | ↓ | ↓ | N | ||
miR-185-5p | x | ↓ | ↓ | N | |||
miR-200b-3p | x | x | ↑ | ↓ | Y | ||
miR-200c-3p | x | ↑ | ↓ | Y | |||
miR-325-3p | x | ↓ | ↓ | N | |||
miR-335-5p | ↓ | ↓ | N | [76] | |||
miR-361-5p | x | ↓ | ↓ | N | [64] | ||
miR-369-3p | x | ↓ | ↓ | N | [64] | ||
miR-667-3p | ↓ | ↓ | N | ||||
NRGN | miR-23a-3p | ↑ | ↑ | N | [75] | ||
miR-23b-3p | ↑ | ↑ | N | [75] | |||
miR-181a-5p | ↓ | ↑ | Y | ||||
miR-181b-5p | x | ↓ | ↑ | Y | |||
miR-330-5p | x | ↓ | ↑ | Y | |||
PRDX2 | miR-325-3p | ↓ | ↑ | Y | |||
SYN2 | miR-25-3p | x | x | ↓ | ↑ | Y | |
miR-325-3p | ↓ | ↑ | Y | ||||
miR-363-3p | x | ↑ | ↑ | N | |||
miR-495-3p | x | ↓ | ↑ | Y | |||
HIBADH | miR-132-3p | x | ↑ | ↓ | Y | ||
miR-212-3p | x | ↓ | ↓ | N | |||
ACTA1 | miR-155-5p | x | x | ↑ | ↓ | Y | |
ARF1 | miR-153-3p | x | ↑ | ↓ | Y | ||
miR-320-3p | x | ↓ | ↓ | N | |||
miR-342-5p | x | ↓ | ↓ | N | |||
miR-381-3p | x | x | ↑ | ↓ | Y | ||
miR-674-5p | ↓ | ↓ | N | ||||
AMPH | miR-153-3p | x | x | ↑ | ↓ | Y | |
miR-705 | ↑ | ↓ | Y | ||||
COPS2 | miR-103-3p | ↓ | ↓ | N | |||
miR-107-3p | ↓ | ↓ | N | ||||
miR-181a-5p | x | x | ↓ | ↓ | N | [64,66,67,70,75,77,78] | |
miR-181b-5p | x | x | ↓ | ↓ | N | [64,66,67,70,75,77,78,79] | |
miR-200b-3p | x | ↑ | ↓ | Y | [71] | ||
miR-200c-3p | x | x | ↑ | ↓ | Y | [71] | |
miR-320-3p | x | ↓ | ↓ | N | |||
miR-674-5p | ↓ | ↓ | N | ||||
GAPDH | miR-325-3p | ↓ | ↓ | N | |||
HSPH1 | miR-200b-3p | ↑ | ↓ | Y | |||
miR-200c-3p | x | ↑ | ↓ | Y | |||
miR-369-3p | x | ↓ | ↓ | N | [64] | ||
miR-667-3p | ↓ | ↓ | N | ||||
HSPA4 | miR-495-3p | x | ↓ | ↓ | N | ||
MAPT | miR-298-5p | ↑ | ↓ | Y | |||
miR-433-3p | x | ↓ | ↓ | N | |||
miR-671-5p | x | ↑ | ↓ | Y | |||
NLN | miR-144-3p | ↓ | ↓ | N | |||
miR-325-3p | ↓ | ↓ | N | ||||
NDRG2 | miR-325-3p | ↓ | ↓ | N | |||
PCNP | miR-181a-5p | x | x | ↓ | ↓ | N | |
miR-181b-5p | x | ↓ | ↓ | N | |||
miR-325-3p | x | ↓ | ↓ | N | |||
miR-495-3p | ↓ | ↓ | N | ||||
PDCD6IP | miR-9-5p | x | ↑ | ↓ | Y | [64] | |
miR-142a-5p | x | ↑ | ↓ | Y | |||
miR-181b-5p | x | x | ↓ | ↓ | N | ||
PDHA1 | miR-34b-3p | x | ↑ and ↓ | ↓ | Y | ||
miR-381-3p | ↑ | ↓ | Y | ||||
RAB3C | miR-25-3p | x | x | ↓ | ↓ | N | |
miR-34c-5p | x | ↑ | ↓ | Y | |||
miR-325-3p | ↓ | ↓ | N | ||||
miR-329-3p | ↓ | ↓ | N | ||||
miR-335-5p | ↓ | ↓ | N | [76] | |||
miR-363-3p | x | x | ↑ | ↓ | Y | ||
miR-369-3p | ↓ | ↓ | N | ||||
miR-495-3p | x | ↓ | ↓ | N | [64] | ||
PPP3CC | miR-382-5p | x | x | ↓ | ↓ | N | |
SNAP25 | miR-130a-3p | x | x | ↓ | ↓ | N | [71] |
miR-130b-3p | x | x | ↑ | ↓ | Y | [71] | |
miR-153-3p | x | ↑ | ↓ | Y | [80] | ||
miR-185-5p | x | x | ↓ | ↓ | N | ||
miR-200b-3p | x | ↑ | ↓ | Y | |||
miR-200c-3p | x | ↑ | ↓ | Y | |||
miR-221-3p | ↓ | ↓ | N | ||||
miR-222-3p | ↓ | ↓ | N | ||||
miR-721 | ↑ | ↓ | Y | ||||
TAGLN3 | miR-153-3p | x | ↑ | ↓ | Y | ||
BACE1 | miR-9-5p | x | x | ↑ | ↑ | N | [81] |
miR-19a-3p | x | ↓ | ↑ | Y | |||
miR-19b-3p | x | x | ↑ and ↓ | ↑ | Y | ||
miR-103-3p | ↓ | ↑ | Y | ||||
miR-107-3p | ↓ | ↑ | Y | ||||
miR-124-3p | x | x | ↑ and ↓ | ↑ | Y | ||
miR-135a-5p | x | x | ↓ | ↑ | Y | ||
miR-135b-5p | x | x | ↓ | ↑ | Y | ||
OAT | miR-181b-5p | x | ↓ | ↑ | Y | ||
miR-369-3p | ↓ | ↑ | Y | ||||
SLC23A2 | miR-127-5p | x | ↓ | ↑ | Y | ||
miR-139-5p | x | ↓ | ↑ | Y | |||
miR-142a-5p | ↑ | ↑ | N | ||||
miR-144-3p | x | ↓ | ↑ | Y | |||
miR-200b-3p | x | ↑ | ↑ | N | |||
miR-200c-3p | x | x | ↑ | ↑ | N | ||
miR-382-5p | ↓ | ↑ | Y | ||||
miR-665-3p | x | ↑ | ↑ | N |
TNF Signalling Pathway | Endocytosis Pathway | ||
---|---|---|---|
miRNAs Involved (n = 53): | Proteins/Genes Involved (n = 55): | miRNAs Involved (n = 55): | Proteins/Genes Involved (n = 129): |
miR-103-3p | Akt1 | miR-103-3p | 2610002M06Rik |
miR-107-3p | Atf2 | miR-107-3p | Acap2 |
miR-124-3p | Bag4 | miR-124-3p | Acap3 |
miR-125a-5p | Bcl3 | miR-125a-5p | Adrb1 |
miR-125b-5p | Ccl2 | miR-125b-5p | Adrb2 |
miR-130a-3p | Ccl20 | miR-127-5p | Adrb3 |
miR-130b-3p | Cebpb | miR-130a-3p | Adrbk1 |
miR-135a-5p | Cflar | miR-130b-3p | Agap1 |
miR-135b-5p | Chuk | miR-132-3p | Ap2b1 |
miR-136-5p | Creb1 | miR-135a-5p | Ap2m1 |
miR-139-5p | Creb3l1 | miR-135b-5p | Arap2 |
miR-140-5p | Creb3l2 | miR-136-5p | Arap3 |
miR-142a-5p | Creb5 | miR-139-5p | Arf3 |
miR-144-3p | Csf1 | miR-140-5p | Arf5 |
miR-150-5p | Cx3cl1 | miR-142a-5p | Arf6 |
miR-153-3p | Cxcl1 | miR-144-3p | Arfgef1 |
miR-155-5p | Cxcl10 | miR-150-5p | Arfgef2 |
miR-181a-5p | Dnm1l | miR-153-3p | Arrb1 |
miR-181b-5p | Edn1 | miR-155-5p | Asap1 |
miR-185-5p | Fos | miR-181a-5p | Asap2 |
miR-19a-3p | Il18r1 | miR-181b-5p | Cav1 |
miR-19b-3p | Jun | miR-185-5p | Cav2 |
miR-200b-3p | Junb | miR-19a-3p | Cbl |
miR-200c-3p | Lif | miR-19b-3p | Cblb |
miR-20b-5p | Lta | miR-200b-3p | Cdc42 |
miR-221-3p | Magi2 | miR-200c-3p | Chmp1a |
miR-224-5p | Map2k1 | miR-20b-5p | Chmp2b |
miR-25-3p | Map2k4 | miR-212-3p | Chmp3 |
miR-298-5p | Map2k7 | miR-221-3p | Chmp4c |
miR-29a-3p | Map3k14 | miR-224-5p | Chmp5 |
miR-29c-3p | Map3k5 | miR-25-3p | Chmp6 |
miR-30a-5p | Map3k7 | miR-298-5p | Chmp7 |
miR-30b-5p | Map3k8 | miR-29a-3p | Clta |
miR-30c-5p | Mapk10 | miR-29c-3p | Cltb |
miR-30e-5p | Mapk12 | miR-30a-5p | Cltc |
miR-325-3p | Mapk14 | miR-30b-5p | Cxcr2 |
miR-329-3p | Mapk8 | miR-30c-5p | Cxcr4 |
miR-330-5p | Mapk9 | miR-30e-5p | Cyth1 |
miR-342-5p | Nfkb1 | miR-325-3p | Cyth3 |
miR-363-3p | Nfkbia | miR-329-3p | Dab2 |
miR-369-3p | Pik3cb | miR-330-5p | Dnm1 |
miR-376c-3p | Pik3cd | miR-363-3p | Dnm3 |
miR-381-3p | Pik3r1 | miR-369-3p | Eea1 |
miR-382-5p | Pik3r2 | miR-376c-3p | Egfr |
miR-495-3p | Pik3r3 | miR-381-3p | Ehd2 |
miR-499-5p | Rela | miR-382-5p | Ehd3 |
miR-543-3p | Rps6ka4 | miR-495-3p | Ehd4 |
miR-667-3p | Rps6ka5 | miR-499-5p | Epn2 |
miR-671-5p | Socs3 | miR-543-3p | Epn3 |
miR-674-5p | Tab2 | miR-667-3p | Eps15 |
miR-705 | Tab3 | miR-671-5p | Erbb4 |
miR-721 | Tnf | miR-674-5p | F2r |
miR-9-5p | Tnfrsf1a | miR-705 | Fgfr2 |
Tnfrsf1b | miR-721 | Flt1 | |
Traf3 | miR-9-5p | Folr2 | |
Gbf1 | |||
Git2 | |||
Grk1 | |||
Grk4 | |||
Grk5 | |||
H2-K1 | |||
H2-M3 | |||
H2-Q1 | |||
H2-T23 | |||
Hspa1b | |||
Hspa2 | |||
Igf1r | |||
Iqsec1 | |||
Iqsec2 | |||
Kdr | |||
Kit | |||
Ldlrap1 | |||
Mdm2 | |||
Met | |||
Nedd4 | |||
Nedd4l | |||
Pard3 | |||
Pard6b | |||
Pdcd6ip | |||
Pip5k1b | |||
Pip5k1c | |||
Pld1 | |||
Pld2 | |||
Pml | |||
Prkcz | |||
Psd | |||
Psd2 | |||
Psd3 | |||
Rab11a | |||
Rab11b | |||
Rab11fip1 | |||
Rab11fip2 | |||
Rab11fip4 | |||
Rab11fip5 | |||
Rab22a | |||
Rab5a | |||
Rab5b | |||
Rab5c | |||
Ret | |||
Rhoa | |||
Sh3glb1 | |||
Sh3kbp1 | |||
Smad6 | |||
Smad7 | |||
Smap1 | |||
Smap2 | |||
Smurf1 | |||
Smurf2 | |||
Src | |||
Stam | |||
Stam2 | |||
Tfrc | |||
Tgfb2 | |||
Tgfbr1 | |||
Tgfbr2 | |||
Tonsl | |||
Traf6 | |||
Usp8 | |||
Vps25 | |||
Vps36 | |||
Vps37a | |||
Vps37b | |||
Vps37c | |||
Vps37d | |||
Vps4b | |||
Wwp1 | |||
Zfyve16 | |||
Zfyve20 | |||
Zfyve9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osgood, C.; Ahmed, Z.; Di Pietro, V. Co-Expression Network Analysis of MicroRNAs and Proteins in Severe Traumatic Brain Injury: A Systematic Review. Cells 2021, 10, 2425. https://doi.org/10.3390/cells10092425
Osgood C, Ahmed Z, Di Pietro V. Co-Expression Network Analysis of MicroRNAs and Proteins in Severe Traumatic Brain Injury: A Systematic Review. Cells. 2021; 10(9):2425. https://doi.org/10.3390/cells10092425
Chicago/Turabian StyleOsgood, Claire, Zubair Ahmed, and Valentina Di Pietro. 2021. "Co-Expression Network Analysis of MicroRNAs and Proteins in Severe Traumatic Brain Injury: A Systematic Review" Cells 10, no. 9: 2425. https://doi.org/10.3390/cells10092425
APA StyleOsgood, C., Ahmed, Z., & Di Pietro, V. (2021). Co-Expression Network Analysis of MicroRNAs and Proteins in Severe Traumatic Brain Injury: A Systematic Review. Cells, 10(9), 2425. https://doi.org/10.3390/cells10092425