Bmp Signal Gradient Modulates Convergent Cell Movement via Xarhgef3.2 during Gastrulation of Xenopus Embryos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Embryos Injection and Explant Culture
2.3. Sample Preparation and Microarray Analysis
2.4. Microarray Data Normalization, Analysis, and Phylogenetic Tree
2.5. RNA Isolation and Reverse Transcription Polymerase Chain Reaction (RT-PCR)
2.6. In Vitro Transcription
2.7. Embryos and Whole-Mount In Situ Hybridization
2.8. Morpholino Oligos
3. Results
3.1. Bmp Signal Gradient Modulates Xarhgef3.2 Transcription
3.2. Xarhgef3.2 Is Predominantly Expressed in the DMZ at the Gastrula Stage
3.3. Overexpression of Xarhgef3.2 Modulates Gastrulation without Affecting the Cell Fate
3.4. Xarhgef3.2 Is Required for Normal Gastrulation of Xenopus Embryos
3.5. Xarhgef3.2 Specifically Interacts with RhoA and Regulates CE Cell Movement through Modulation of Noncanonical Wnt Signaling
3.6. N-Terminal Region of Xarhgef3.2 Interacts with Dsh2 through Daam1 under the Wnt-PCP Signaling Stimulation
4. Discussion
4.1. BMP Gradient Inversely Correlates with CE Movement
4.2. Bmp Inhibition Upregulates Expression of a Regulator of Small GTPases, Xarhgef3.2
4.3. Xarhgef3.2 Is a Component of Wnt-PCP Signaling without Affecting Fate Determination
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piccolo, S.; Sasai, Y.; Lu, B.; De Robertis, E.M. Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 1996, 86, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Roszko, I.; Sawada, A.; Solnica-Krezel, L. Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin. Cell Dev. Biol. 2009, 20, 986–997. [Google Scholar] [CrossRef] [Green Version]
- Keller, R.; Davidson, L.; Edlund, A.; Elul, T.; Ezin, M.; Shook, D.; Skoglund, P. Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 355, 897–922. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, S.; Agius, E.; Leyns, L.; Bhattacharyya, S.; Grunz, H.; Bouwmeester, T.; De Robertis, E.M. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 1999, 397, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.M.; Smith, J.C. Establishment of a BMP-4 morphogen gradient by long-range inhibition. Dev. Biol. 1998, 194, 12–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Umair, Z.; Kumar, S.; Lee, U.; Kim, J. Smad2 and Smad3 differentially modulate chordin transcription via direct binding on the distal elements in gastrula Xenopus embryos. Biochem. Biophys. Res. Commun. 2021, 559, 168–175. [Google Scholar] [CrossRef]
- Zoltewicz, J.S.; Gerhart, J.C. The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage. Dev. Biol. 1997, 192, 482–491. [Google Scholar] [CrossRef] [Green Version]
- Sasai, Y.; Lu, B.; Steinbeisser, H.; De Robertis, E.M. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 1995, 376, 333–336. [Google Scholar] [CrossRef]
- Wang, R.N.; Green, J.; Wang, Z.; Deng, Y.; Qiao, M.; Peabody, M.; Zhang, Q.; Ye, J.; Yan, Z.; Denduluri, S.; et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 2014, 1, 87–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, D.C.; Sepich, D.S.; Solnica-Krezel, L. Bmp activity gradient regulates convergent extension during zebrafish gastrulation. Dev. Biol. 2002, 243, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.M.; Lyons, K.M.; Lapan, P.M.; Wright, C.V.; Hogan, B.L. DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 1992, 115, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Graff, J.M.; Thies, R.S.; Song, J.J.; Celeste, A.J.; Melton, D.A. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 1994, 79, 169–179. [Google Scholar] [CrossRef]
- Tada, M.; Concha, M.L.; Heisenberg, C.P. Non-canonical Wnt signalling and regulation of gastrulation movements. Semin. Cell Dev. Biol. 2002, 13, 251–260. [Google Scholar] [CrossRef]
- Kuhl, M. Non-canonical Wnt signaling in Xenopus: Regulation of axis formation and gastrulation. Semin. Cell Dev. Biol. 2002, 13, 243–249. [Google Scholar] [CrossRef]
- Wallingford, J.B.; Harland, R.M. Xenopus Dishevelled signaling regulates both neural and mesodermal convergent extension: Parallel forces elongating the body axis. Development 2001, 128, 2581–2592. [Google Scholar] [CrossRef]
- Wallingford, J.B.; Rowning, B.A.; Vogeli, K.M.; Rothbacher, U.; Fraser, S.E.; Harland, R.M. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 2000, 405, 81–85. [Google Scholar] [CrossRef]
- Hens, M.D.; Nikolic, I.; Woolcock, C.M. Regulation of Xenopus embryonic cell adhesion by the small GTPase, rac. Biochem. Biophys. Res. Commun. 2002, 298, 364–370. [Google Scholar] [CrossRef]
- Wunnenberg-Stapleton, K.; Blitz, I.L.; Hashimoto, C.; Cho, K.W. Involvement of the small GTPases XRhoA and XRnd1 in cell adhesion and head formation in early Xenopus development. Development 1999, 126, 5339–5351. [Google Scholar] [CrossRef] [PubMed]
- Drechsel, D.N.; Hyman, A.A.; Hall, A.; Glotzer, M. A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr. Biol. 1997, 7, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Kishi, K.; Sasaki, T.; Kuroda, S.; Itoh, T.; Takai, Y. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J. Cell Biol. 1993, 120, 1187–1195. [Google Scholar] [CrossRef] [Green Version]
- Penzo-Mendez, A.; Umbhauer, M.; Djiane, A.; Boucaut, J.C.; Riou, J.F. Activation of Gbetagamma signaling downstream of Wnt-11/Xfz7 regulates Cdc42 activity during Xenopus gastrulation. Dev. Biol. 2003, 257, 302–314. [Google Scholar] [CrossRef] [Green Version]
- Habas, R.; Dawid, I.B.; He, X. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 2003, 17, 295–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.C.; Han, J.K. Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway. Dev. Biol. 2002, 244, 342–357. [Google Scholar] [CrossRef] [Green Version]
- Habas, R.; Kato, Y.; He, X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 2001, 107, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Cherfils, J.; Zeghouf, M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 2013, 93, 269–309. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y. Dbl family guanine nucleotide exchange factors. Trends Biochem. Sci. 2001, 26, 724–732. [Google Scholar] [CrossRef]
- Tanegashima, K.; Zhao, H.; Dawid, I.B. WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation. EMBO J. 2008, 27, 606–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyakoshi, A.; Ueno, N.; Kinoshita, N. Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development. Differentiation 2004, 72, 48–55. [Google Scholar] [CrossRef]
- Kristelly, R.; Gao, G.; Tesmer, J.J. Structural determinants of RhoA binding and nucleotide exchange in leukemia-associated Rho guanine-nucleotide exchange factor. J. Biol. Chem. 2004, 279, 47352–47362. [Google Scholar] [CrossRef] [Green Version]
- Arthur, W.T.; Ellerbroek, S.M.; Der, C.J.; Burridge, K.; Wennerberg, K. XPLN, a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC. J. Biol. Chem. 2002, 277, 42964–42972. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.C.; Slack, J.M. Dorsalization and neural induction: Properties of the organizer in Xenopus laevis. J. Embryol. Exp. Morphol. 1983, 78, 299–317. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Umair, Z.; Kumar, V.; Kumar, S.; Lee, U.; Kim, J. Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos. Sci. Rep. 2020, 10, 16780. [Google Scholar] [CrossRef] [PubMed]
- Nieuwkoop, P.D.; Faber, J.; Gerhart, J.; Kirschner, M. Normal Table of Xenopus Laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis; Garland Science: New York, NY, USA, 1994. [Google Scholar]
- Suzuki, A.; Thies, R.S.; Yamaji, N.; Song, J.J.; Wozney, J.M.; Murakami, K.; Ueno, N. A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl. Acad. Sci. USA 1994, 91, 10255–10259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.-H.; Kim, J.; Taira, M.; Zhan, S.; Sredni, D.; Kung, H. A dominant negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm. Biochem. Biophys. Res. Commun. 1995, 212, 212–219. [Google Scholar] [CrossRef]
- Umair, Z.; Kumar, S.; Rafiq, K.; Kumar, V.; Reman, Z.U.; Lee, S.H.; Kim, S.; Lee, J.Y.; Lee, U.; Kim, J. Dusp1 modulates activin/smad2 mediated germ layer specification via FGF signal inhibition in Xenopus embryos. Anim. Cells Syst. 2020, 24, 359–370. [Google Scholar] [CrossRef]
- Grow, M.; Neff, A.W.; Mescher, A.L.; King, M.W. Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration. Dev. Dyn. 2006, 235, 2667–2685. [Google Scholar] [CrossRef]
- Dereeper, A.; Audic, S.; Claverie, J.M.; Blanc, G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 2010, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Goutam, R.S.; Umair, Z.; Park, S.; Lee, U.; Kim, J. Foxd4l1.1 Negatively Regulates Chordin Transcription in Neuroectoderm of Xenopus Gastrula. Cells 2021, 10, 2779. [Google Scholar] [CrossRef]
- Kumar, S.; Umair, Z.; Kumar, V.; Lee, U.; Choi, S.C.; Kim, J. Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression. BMB Rep. 2019, 52, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Umair, Z.; Kumar, S.; Kim, D.H.; Rafiq, K.; Kumar, V.; Kim, S.; Park, J.B.; Lee, J.Y.; Lee, U.; Kim, J. Ventx1.1 as a Direct Repressor of Early Neural Gene zic3 in Xenopus laevis. Mol. Cells 2018, 41, 1061–1071. [Google Scholar] [CrossRef]
- Harland, R.M. In situ hybridization: An improved whole-mount method for Xenopus embryos. Methods Cell Biol. 1991, 36, 685–695. [Google Scholar] [PubMed]
- Hallonet, M.; Hollemann, T.; Wehr, R.; Jenkins, N.A.; Copeland, N.G.; Pieler, T.; Gruss, P. Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain. Development 1998, 125, 2599–2610. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Shioda, N.; Ueno, N. Bone morphogenetic protein acts as a ventral mesoderm modifier in early Xenopus embryos. Dev. Growth Differ. 1995, 37, 581–588. [Google Scholar] [CrossRef]
- Tahinci, E.; Symes, K. Distinct functions of Rho and Rac are required for convergent extension during Xenopus gastrulation. Dev. Biol. 2003, 259, 318–335. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Goutam, R.S.; Park, S.; Lee, U.; Kim, J. Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos. Cells 2021, 10, 2148. [Google Scholar] [CrossRef] [PubMed]
- Hemmati-Brivanlou, A.; Thomsen, G.H. Ventral mesodermal patterning in Xenopus embryos: Expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 1995, 17, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Fainsod, A.; Steinbeisser, H.; De Robertis, E.M. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J. 1994, 13, 5015–5025. [Google Scholar] [CrossRef] [PubMed]
- Hufton, A.L.; Vinayagam, A.; Suhai, S.; Baker, J.C. Genomic analysis of Xenopus organizer function. BMC Dev. Biol. 2006, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Yoon, J.; Lee, H.S.; Hwang, Y.S.; Cha, S.W.; Jeong, C.H.; Kim, J.I.; Park, J.B.; Lee, J.Y.; Kim, S.; et al. The function of heterodimeric AP-1 comprised of c-Jun and c-Fos in activin mediated Spemann organizer gene expression. PLoS ONE 2011, 6, e21796. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Kim, J.H.; Lee, S.Y.; Kim, S.; Park, J.B.; Lee, J.Y.; Kim, J. PV.1 induced by FGF-Xbra functions as a repressor of neurogenesis in Xenopus embryos. BMB Rep. 2014, 47, 673–678. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Lim, S.K.; Cha, S.W.; Yoon, J.; Lee, S.H.; Lee, H.S.; Park, J.B.; Lee, J.Y.; Kim, S.C.; Kim, J. Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos. Differentiation 2011, 82, 99–107. [Google Scholar] [CrossRef] [PubMed]
- You, J.S.; Singh, N.; Reyes-Ordonez, A.; Khanna, N.; Bao, Z.; Zhao, H.; Chen, J. ARHGEF3 Regulates Skeletal Muscle Regeneration and Strength through Autophagy. Cell Rep. 2021, 34, 108594. [Google Scholar] [CrossRef] [PubMed]
- Khanna, N.; Fang, Y.; Yoon, M.S.; Chen, J. XPLN is an endogenous inhibitor of mTORC2. Proc. Natl. Acad. Sci. USA 2013, 110, 15979–15984. [Google Scholar] [CrossRef] [Green Version]
- Kwan, K.M.; Kirschner, M.W. Xbra functions as a switch between cell migration and convergent extension in the Xenopus gastrula. Development 2003, 130, 1961–1972. [Google Scholar] [CrossRef] [Green Version]
- Wallingford, J.B.; Fraser, S.E.; Harland, R.M. Convergent extension: The molecular control of polarized cell movement during embryonic development. Dev. Cell 2002, 2, 695–706. [Google Scholar] [CrossRef]
- Sokol, S.Y. Analysis of Dishevelled signalling pathways during Xenopus development. Curr. Biol. 1996, 6, 1456–1467. [Google Scholar] [CrossRef] [Green Version]
- Clement, J.H.; Fettes, P.; Knochel, S.; Lef, J.; Knochel, W. Bone morphogenetic protein 2 in the early development of Xenopus laevis. Mech. Dev. 1995, 52, 357–370. [Google Scholar] [CrossRef]
- Dale, L.; Howes, G.; Price, B.M.; Smith, J.C. Bone morphogenetic protein 4: A ventralizing factor in early Xenopus development. Development 1992, 115, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Keller, R.; Danilchik, M. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 1988, 103, 193–209. [Google Scholar] [CrossRef] [PubMed]
- von der Hardt, S.; Bakkers, J.; Inbal, A.; Carvalho, L.; Solnica-Krezel, L.; Heisenberg, C.P.; Hammerschmidt, M. The Bmp gradient of the zebrafish gastrula guides migrating lateral cells by regulating cell-cell adhesion. Curr. Biol. 2007, 17, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Nishimatsu, S.; Thomsen, G.H. Ventral mesoderm induction and patterning by bone morphogenetic protein heterodimers in Xenopus embryos. Mech. Dev. 1998, 74, 75–88. [Google Scholar] [CrossRef]
- Cho, K.W.; Blumberg, B.; Steinbeisser, H.; De Robertis, E.M. Molecular nature of Spemann’s organizer: The role of the Xenopus homeobox gene goosecoid. Cell 1991, 67, 1111–1120. [Google Scholar] [CrossRef]
- Ding, Y.; Colozza, G.; Zhang, K.; Moriyama, Y.; Ploper, D.; Sosa, E.A.; Benitez, M.D.J.; De Robertis, E.M. Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. Dev. Biol. 2017, 426, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Popov, I.K.; Kwon, T.; Crossman, D.K.; Crowley, M.R.; Wallingford, J.B.; Chang, C. Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. Dev. Biol. 2017, 426, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Pera, E.M.; Ikeda, A.; Eivers, E.; De Robertis, E.M. Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev. 2003, 17, 3023–3028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canalis, E.; Economides, A.N.; Gazzerro, E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 2003, 24, 218–235. [Google Scholar] [CrossRef] [Green Version]
- Popov, I.K.; Ray, H.J.; Skoglund, P.; Keller, R.; Chang, C. The RhoGEF protein Plekhg5 regulates apical constriction of bottle cells during gastrulation. Development 2018, 145, dev168922. [Google Scholar] [CrossRef] [Green Version]
- Mullin, B.H.; Prince, R.L.; Mamotte, C.; Spector, T.D.; Hart, D.J.; Dudbridge, F.; Wilson, S.G. Further genetic evidence suggesting a role for the RhoGTPase-RhoGEF pathway in osteoporosis. Bone 2009, 45, 387–391. [Google Scholar] [CrossRef]
- Liu, T.H.; Zheng, F.; Cai, M.Y.; Guo, L.; Lin, H.X.; Chen, J.W.; Liao, Y.J.; Kung, H.F.; Zeng, Y.X.; Xie, D. The putative tumor activator ARHGEF3 promotes nasopharyngeal carcinoma cell pathogenesis by inhibiting cellular apoptosis. Oncotarget 2016, 7, 25836–25848. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Sequence (5′ to 3′) | References |
---|---|---|
Actin | F-GCTGACAGAATGCAGAAG | [36] |
R-TTGCTTGGAGGAGTGTGT | ||
Chordin | F-TTAGAGAGGAGAGCAACTCGGGCAAT | [39] |
R-GTGCTCCTGTTGCGAAACTCTACAGA | ||
Edd | F-CTCGCTCTGGACAAAACTC | [36] |
R-GAGCTTCTTGATGGGAATG | ||
Gata2 | F-AGGAACTTTCCAGGTGCATGCAGGAG | [36] |
R-CCGAGGTGCAAATTATTATGTTAC | ||
Globin | F-CATGGCTCTGCTGATCTGCCAACCAC | [36] |
R-CCCAGGCTGGTGAGCTGCCCTTGCTG | ||
Gsc | F-GCTGATTCCACCAGTGCCTCACCAG | [39] |
R-GGTCCTGTGCCTCCTCCTCCTCCTG | ||
Hoxb9 | F-TACTTACGGGCTTGGCTGGA | [36] |
R-AGCGTGTAACCAGTTGGCTG | ||
Mixer | F-CACCAGCCCAGCACTTAACC | [36] |
R-CAATGTCACATCAACTGAAG | ||
Ncam | F-CACAGTTCCACCAAATGC | [36] |
R-GGAATCAAGCGGTACAGA | ||
XVent1.1 (Ventx1.2) | F-TTCCCTTCAGCATGGTTCAAC | [40] |
R-GCATCTCCTTGGCATATTTGG | ||
PV.1 (Ventx1.1) | F-CCTTCAGCATGGTTCAACAG | [40] |
R-CATCCTTCTTCCTTGGCATC | ||
Wnt11 (Wnt11b) | F-TGACAGCTGCAACCTCATGT | Current study |
R-ACAGAGGGCTGTCAGTGCTT | ||
Xarhgef3.2 | F-ACCTCTCTCAAGAGTCACATCAC | Current study |
R-TACAGTAGCTGTCGTAGGAGTTC | ||
Xbra | F-GGATCGTTATCACCTCTG | [36] |
R-GTGTAGTCTGTAGCAGCA | ||
Xk81 | F-TGGTGTTGAACAAGTGCAGG | [41] |
R-ACCTCCTCGACAATGGTCTT | ||
Xnet1 | F-GACAAATTGGAGTACCTC | [28] |
R-CACCAAAGTCTCTTTTTTCTGCGG | ||
Xwgef | F-GAGGTGCCGGGGGAGGTTTTC | [27] |
R-GGGGGCCCGTCGCTGTAGTT | ||
Zic3 | F-TCTCAGGATCTGAACACCT | [36] |
R-CCCTATAAGACAAGGAATAC | ||
ODC | F-GTCAATGATGGAGTGTATGGATC | [39] |
R-TCCATTCCGCTCTCCTGAGCAC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.; Kumar, V.; Goutam, R.S.; Kim, S.-C.; Park, S.; Lee, U.; Kim, J. Bmp Signal Gradient Modulates Convergent Cell Movement via Xarhgef3.2 during Gastrulation of Xenopus Embryos. Cells 2022, 11, 44. https://doi.org/10.3390/cells11010044
Yoon J, Kumar V, Goutam RS, Kim S-C, Park S, Lee U, Kim J. Bmp Signal Gradient Modulates Convergent Cell Movement via Xarhgef3.2 during Gastrulation of Xenopus Embryos. Cells. 2022; 11(1):44. https://doi.org/10.3390/cells11010044
Chicago/Turabian StyleYoon, Jaeho, Vijay Kumar, Ravi Shankar Goutam, Sung-Chan Kim, Soochul Park, Unjoo Lee, and Jaebong Kim. 2022. "Bmp Signal Gradient Modulates Convergent Cell Movement via Xarhgef3.2 during Gastrulation of Xenopus Embryos" Cells 11, no. 1: 44. https://doi.org/10.3390/cells11010044
APA StyleYoon, J., Kumar, V., Goutam, R. S., Kim, S.-C., Park, S., Lee, U., & Kim, J. (2022). Bmp Signal Gradient Modulates Convergent Cell Movement via Xarhgef3.2 during Gastrulation of Xenopus Embryos. Cells, 11(1), 44. https://doi.org/10.3390/cells11010044