Metabolomic Profiling in Patients with Heart Failure and Exercise Intolerance: Kynurenine as a Potential Biomarker
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Muscle Strength and Endurance
2.3. Serum Analyses
2.4. Metabolomic Analysis
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Metabolomic Characteristics
3.3. Metabolomic Profile in Patients with HF and RME
Kynurenine as a Potential Biomarker of RME
4. Discussion
4.1. The Metabolism of AAs in Patients with HF and the Role of Kyn in Detecting Patients with RME
4.2. Fatty Acid Metabolism in Patients with HF
4.3. Metabolomic Profile of Patients with HF and RME
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maeder, M.T.; Thompson, B.R.; Brunner-La Rocca, H.P.; Kaye, D.M. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J. Am. Coll. Cardiol. 2010, 56, 855–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masoudi, F.A.; Rumsfeld, J.S.; Havranek, E.P.; House, J.A.; Peterson, E.D.; Krumholz, H.M.; Spertus, J.A. Cardiovascular Outcomes Research Consortium. Age, functional capacity, and health-related quality of life in patients with heart failure. J. Card. Fail. 2004, 10, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Bekfani, T.; Nisser, J.; Derlien, S.; Hamadanchi, A.; Frob, E.; Dannberg, G.; Lichtenauer, M.; Smolenski, U.C.; Lehmann, G.; Mobius-Winkler, S.; et al. Psychosocial factors, mental health, and coordination capacity in patients with heart failure with preserved ejection fraction compared with heart failure with reduced ejection fraction. ESC Heart Fail. 2021, 8, 3268–3278. [Google Scholar] [CrossRef] [PubMed]
- Bekfani, T.; Pellicori, P.; Morris, D.A.; Ebner, N.; Valentova, M.; Steinbeck, L.; Wachter, R.; Elsner, S.; Sliziuk, V.; Schefold, J.C.; et al. Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life. Int. J. Cardiol. 2016, 222, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Fulster, S.; Tacke, M.; Sandek, A.; Ebner, N.; Tschope, C.; Doehner, W.; Anker, S.D.; von Haehling, S. Muscle wasting in patients with chronic heart failure: Results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur. Heart J. 2013, 34, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Agudelo, L.Z.; Femenia, T.; Orhan, F.; Porsmyr-Palmertz, M.; Goiny, M.; Martinez-Redondo, V.; Correia, J.C.; Izadi, M.; Bhat, M.; Schuppe-Koistinen, I.; et al. Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 2014, 159, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Gibney, S.M.; McGuinness, B.; Prendergast, C.; Harkin, A.; Connor, T.J. Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav. Immun. 2013, 28, 170–181. [Google Scholar] [CrossRef]
- Bekfani, T.; Bekhite Elsaied, M.; Derlien, S.; Nisser, J.; Westermann, M.; Nietzsche, S.; Hamadanchi, A.; Frob, E.; Westphal, J.; Haase, D.; et al. Skeletal Muscle Function, Structure, and Metabolism in Patients With Heart Failure With Reduced Ejection Fraction and Heart Failure With Preserved Ejection Fraction. Circ. Heart Fail. 2020, 13, e007198. [Google Scholar] [CrossRef]
- Marcinkiewicz-Siemion, M.; Ciborowski, M.; Ptaszynska-Kopczynska, K.; Szpakowicz, A.; Lisowska, A.; Jasiewicz, M.; Waszkiewicz, E.; Kretowski, A.; Musial, W.J.; Kaminski, K.A. LC-MS-based serum fingerprinting reveals significant dysregulation of phospholipids in chronic heart failure. J. Pharm. Biomed. Anal. 2018, 154, 354–363. [Google Scholar] [CrossRef]
- Zordoky, B.N.; Sung, M.M.; Ezekowitz, J.; Mandal, R.; Han, B.; Bjorndahl, T.C.; Bouatra, S.; Anderson, T.; Oudit, G.Y.; Wishart, D.S.; et al. Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS ONE 2015, 10, e0124844. [Google Scholar] [CrossRef]
- Konishi, M.; Ebner, N.; Springer, J.; Schefold, J.C.; Doehner, W.; Dschietzig, T.B.; Anker, S.D.; von Haehling, S. Impact of Plasma Kynurenine Level on Functional Capacity and Outcome in Heart Failure- Results From Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Circ. J. 2016, 81, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, M.; Labarthe, F.; Fortier, A.; Bouchard, B.; Thompson Legault, J.; Bolduc, V.; Rigal, O.; Chen, J.; Ducharme, A.; Crawford, P.A.; et al. Circulating acylcarnitine profile in human heart failure: A surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H768–H781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, S.; Giamarellos-Bourboulis, E.J.; Pelekanou, A.; Marioli, A.; Baziaka, F.; Tsangaris, I.; Bauer, M.; Kiehntopf, M. Metabolite Profiles in Sepsis: Developing Prognostic Tools Based on the Type of Infection. Crit. Care Med. 2016, 44, 1649–1662. [Google Scholar] [CrossRef]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [Green Version]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Ikegami, R.; Shimizu, I.; Yoshida, Y.; Minamino, T. Metabolomic Analysis in Heart Failure. Circ. J. 2018, 82, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Tuunanen, H.; Knuuti, J. Metabolic remodelling in human heart failure. Cardiovasc. Res. 2011, 90, 251–257. [Google Scholar] [CrossRef] [Green Version]
- De Jong, K.A.; Lopaschuk, G.D. Complex Energy Metabolic Changes in Heart Failure With Preserved Ejection Fraction and Heart Failure With Reduced Ejection Fraction. Can. J. Cardiol. 2017, 33, 860–871. [Google Scholar] [CrossRef]
- Kato, T.; Niizuma, S.; Inuzuka, Y.; Kawashima, T.; Okuda, J.; Tamaki, Y.; Iwanaga, Y.; Narazaki, M.; Matsuda, T.; Soga, T.; et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ. Heart Fail. 2010, 3, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Olson, K.C.; Gao, C.; Prosdocimo, D.A.; Zhou, M.; Wang, Z.; Jeyaraj, D.; Youn, J.Y.; Ren, S.; Liu, Y.; et al. Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation 2016, 133, 2038–2049. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.J.; Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014, 10, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Fujiwara, M.; Yoshida, R.; Hayaishi, O. Stereospecificity of hepatic L-tryptophan 2,3-dioxygenase. Biochem. J. 1980, 189, 393–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Liu, D.; Song, P.; Zou, M.H. Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front. Biosci. 2015, 20, 1116–1143. [Google Scholar]
- Laurans, L.; Venteclef, N.; Haddad, Y.; Chajadine, M.; Alzaid, F.; Metghalchi, S.; Sovran, B.; Denis, R.G.P.; Dairou, J.; Cardellini, M.; et al. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat. Med. 2018, 24, 1113–1120. [Google Scholar] [CrossRef]
- Metghalchi, S.; Ponnuswamy, P.; Simon, T.; Haddad, Y.; Laurans, L.; Clement, M.; Dalloz, M.; Romain, M.; Esposito, B.; Koropoulis, V.; et al. Indoleamine 2,3-Dioxygenase Fine-Tunes Immune Homeostasis in Atherosclerosis and Colitis through Repression of Interleukin-10 Production. Cell Metab. 2015, 22, 460–471. [Google Scholar] [CrossRef] [Green Version]
- Melhem, N.J.; Chajadine, M.; Gomez, I.; Howangyin, K.Y.; Bouvet, M.; Knosp, C.; Sun, Y.; Rouanet, M.; Laurans, L.; Cazorla, O.; et al. Endothelial Cell Indoleamine 2, 3-Dioxygenase 1 Alters Cardiac Function After Myocardial Infarction Through Kynurenine. Circulation 2021, 143, 566–580. [Google Scholar] [CrossRef]
- Koves, T.R.; Ussher, J.R.; Noland, R.C.; Slentz, D.; Mosedale, M.; Ilkayeva, O.; Bain, J.; Stevens, R.; Dyck, J.R.; Newgard, C.B.; et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008, 7, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.; Leone, T.C.; Keller, M.P.; Martin, O.J.; Broman, A.T.; Nigro, J.; Kapoor, K.; Koves, T.R.; Stevens, R.; Ilkayeva, O.R.; et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: A multisystems approach. Circ. Heart Fail. 2014, 7, 1022–1031. [Google Scholar] [CrossRef] [Green Version]
- Bedi, K.C., Jr.; Snyder, N.W.; Brandimarto, J.; Aziz, M.; Mesaros, C.; Worth, A.J.; Wang, L.L.; Javaheri, A.; Blair, I.A.; Margulies, K.B.; et al. Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure. Circulation 2016, 133, 706–716. [Google Scholar] [CrossRef] [Green Version]
- Koves, T.R.; Li, P.; An, J.; Akimoto, T.; Slentz, D.; Ilkayeva, O.; Dohm, G.L.; Yan, Z.; Newgard, C.B.; Muoio, D.M. Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J. Biol. Chem. 2005, 280, 33588–33598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fingerhut, R.; Roschinger, W.; Muntau, A.C.; Dame, T.; Kreischer, J.; Arnecke, R.; Superti-Furga, A.; Troxler, H.; Liebl, B.; Olgemoller, B.; et al. Hepatic carnitine palmitoyltransferase I deficiency: Acylcarnitine profiles in blood spots are highly specific. Clin. Chem. 2001, 47, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Ussher, J.R.; Elmariah, S.; Gerszten, R.E.; Dyck, J.R. The Emerging Role of Metabolomics in the Diagnosis and Prognosis of Cardiovascular Disease. J. Am. Coll. Cardiol. 2016, 68, 2850–2870. [Google Scholar] [CrossRef] [PubMed]
HFpEF N = 17 | HFrEF N = 18 | HC N = 20 | p-Value | |
---|---|---|---|---|
Age (years) | 71 ± 6 | 68 ± 9 | 66 ± 7 | 0.1 |
Sex (m/f) f% | 8/9 (53%) ‡ | 15/3 (17%) † | 7/13 (65%) | 0.0001 |
BMI (kg/m2) | 28.7 ± 4.6 | 27.9 ± 5.3 | 26.4 ± 4.2 | 0.2 |
NYHA (II/III) % | (76.5/23.5) ∗ | (83.3/16.7) † | (0/0) | 0.0001 |
LVEF (%) | 62.0 [53.0–66.0] ‡ | 30.0 [23.5–32.5] † | 61.0 [57.3–66.3] | 0.0001 |
LAVI (ml/m2) | 34.1 ± 7.1 ∗,‡ | 44.9 ± 19.0† | 17.2 ± 8.3 | <0.0001 |
E/e’ | 13.1 [10.6–15.3] ∗,‡ | 15.9 [13.9–24.5] † | 9.8 [8.1–11.8] | 0.001 |
BNP (pg/mL) | 128 [73–218] ∗,‡ | 317 [181–430] † | 35.5 [25.3–56.5] | <0.0001 |
GFR (mL/min) | 72.4 [67.5–82.2] | 84.5 [60.1–94.4] | 85.3 [70.9–94.3] | 0.11 |
AST (µmol/L) | 0.41 [0.38–0.46] | 0.45 [0.41–0.57] | 0.47 [0.40–0.50] | 0.14 |
ALT (µmol/L) | 0.35 [0.30–0.55] | 0.43 [0.30–0.57] | 0.37 [0.29–0.46] | 0.71 |
Endurance of Left Quadriceps ≤ (88.99 Nm/kg) Mean Value N = 29 | Endurance of Left Quadriceps > (88.99 Nm/kg) Mean Value N = 25 | p-Value | |
---|---|---|---|
Age (years) | 70 ± 8 | 66 ± 7 | 0.08 |
Sex (m/f) | 15/14 | 15/10 | 0.59 |
Alanine (µM) | 431 ± 144 | 535 ± 139 | 0.010 |
Arginine (µM) | 66.75 ± | 31.06 ± | 0.009 |
Glutamate (µM) | 65.20 [52.40–108] | 110 [69.55–157] | 0.039 |
Glycine (µM) | 197 [137–306] | 303 [197–437] | 0.09 |
Ornithine (µM) | 109 [87.60–132] | 140 [112–178] | 0.008 |
Proline (µM) | 272 ± 65.00 | 307 ± 59.08 | 0.05 |
Serine (µM) | 94.00 ± 41.13 | 119 ± 35.18 | 0.020 |
Kynurenine/Tryptophan (µM) | 0.06 ± 0.03 | 0.04 ± 0.02 | 0.001 |
Kynurenine (µM) | 4.01 ± 1.92 | 2.43 ± 1.27 | <0.0001 |
short-chain ACs (µM) | 0.10 [0.08–0.13] | 0.08 [0.07–0.1] | 0.017 |
medium-chain ACs (µM) | 0.11 [0.08–0.37] | 0.10 [0.08–0.66] | 0.80 |
long-chain ACs (µM) | 0.05 [0.04–0.06] | 0.05 [0.04–0.07] | 0.67 |
GDF-15 (pg/mL) | 838 [615–1073] | 621 [508–790] | 0.005 |
6-MWT (m) | 517 [383–555] | 572 [520–614] | 0.002 |
RME (≤74.77 Nm/kg) N = 10 | PME (>74.77 Nm/kg) N = 6 | p-Value | |
---|---|---|---|
Age (years) | 72 ± 7 | 69 ± 7 | 0.38 |
Sex (m/f) | 3/7 | 5/1 | 0.12 |
Alanine (µM) | 347 ± 151 | 518 ± 121 | 0.034 |
Asparagine (µM) | 54.84 ± 11.47 | 42.88 ± 4.91 | 0.031 |
Kynurenine (µM) | 4.10 ± 0.77 | 3.13 ± 0.91 | 0.040 |
C0 (µM) | 34.70 [31.30–37.43] | 39.45 [36.0–67.05] | 0.09 |
C14:1-OH (µM) | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.009 |
C14:2-OH (µM) | 0.01 ± 0.01 | 0.03 ± 0.01 | 0.002 |
C16:2-OH (µM) | 0.02 [0.01–0.05] | 0.13 [0.09–0.19] | 0.005 |
C18:1 (µM) | 0.16 [0.11–0.20] | 0.20 [0.20–0.31] | 0.011 |
C18:1-OH (µM) | 0.03 [0.02–0.04] | 0.11 [0.06–0.17] | 0.016 |
C0/(C16 + C18) | 254 ± 103 | 486 ± 122 | 0.001 |
Medium-/long-chain ACs | 2.43 [1.75–11.98] | 42.30 [28.10–49.28] | 0.022 |
Medium-chain ACs (µM) | 0.12 [0.08–0.33] | 0.75 [0.40–0.81] | 0.011 |
Long-chain ACs (µM) | 0.05 ± 0.01 | 0.07 ± 0.03 | 0.031 |
Unsaturated ACs (µM] | 0.07 ± 0.02 | 0.11 ± 0.02 | 0.005 |
RME (≤87.34 Nm/kg) N = 12 | PME (>87.34 Nm/kg) N = 6 | p-Value | |
---|---|---|---|
Age (years) | 71 ± 8 | 62 ± 5 | 0.022 |
Sex (m/f) | 10/2 | 5/1 | 1.00 |
Leucine (µM) | 151 ± 34.6 | 210 ± 77.27 | 0.036 |
Proline (µM) | 268 ± 43.18 | 346 ± 33.23 | 0.001 |
Threonine (µM) | 101 ± 21.49 | 134 ± 35.0 | 0.024 |
Kynurenine (µM) | 5.22 ± 1.94 | 3.74 ± 0.36 | 0.09 |
Valine (µM) | 283 ± 53.47 | 359 ± 82.16 | 0.030 |
Essential amino acids (µM) | 132 ± 17.93 | 164 ± 38.01 | 0.027 |
Heading | Univariate | Multivariable | ||||
---|---|---|---|---|---|---|
B | 95% CI | p-Value | B | 95% CI | p-Value | |
Alanine (µM) | 0.08 | 0.02, 0.13 | 0.013 | 0.21 | 0.12 | |
Asparagine (µM) | 0.04 | −0.60, 0.67 | 0.90 | |||
Glutamate (µM) | 0.18 | 0.01, 0.34 | 0.035 | 0.10 | 0.53 | |
Glycine (µM) | 0.03 | −0.02, 0.08 | 0.28 | |||
Ornithine (µM) | 0.25 | 0.02, 0.49 | 0.036 | 0.11 | 0.45 | |
Phenylalanine (µM) | −0.21 | −0.96, 0.53 | 0.57 | |||
Tryptophan (µM) | 0.08 | −0.52, 0.69 | 0.78 | |||
Valine (µM) | −0.02 | −0.12, 0.09 | 0.78 | |||
Essential amino acids (µM) | 0.04 | −0.24, 0.33 | 0.76 | |||
Kynurenine (µM) | −7.62 | −12.31, −2.93 | 0.002 | −8.20 | −13.01, −3.30 | 0.001 |
Spermidine (µM) | −45.77 | −189, 97.76 | 0.53 | |||
Spermine (µM) | −133 | −262, −4.60 | 0.043 | 0.02 | 0.91 | |
Short-chain ACs | −159 | −347, 29.25 | 0.096 | -0.07 | 0.60 | |
Medium-chain ACs | 0.98 | −27.50, 29.46 | 0.95 | |||
Long-chain ACs | 152 | −263, 567 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekfani, T.; Bekhite, M.; Neugebauer, S.; Derlien, S.; Hamadanchi, A.; Nisser, J.; Hilse, M.S.; Haase, D.; Kretzschmar, T.; Wu, M.-F.; et al. Metabolomic Profiling in Patients with Heart Failure and Exercise Intolerance: Kynurenine as a Potential Biomarker. Cells 2022, 11, 1674. https://doi.org/10.3390/cells11101674
Bekfani T, Bekhite M, Neugebauer S, Derlien S, Hamadanchi A, Nisser J, Hilse MS, Haase D, Kretzschmar T, Wu M-F, et al. Metabolomic Profiling in Patients with Heart Failure and Exercise Intolerance: Kynurenine as a Potential Biomarker. Cells. 2022; 11(10):1674. https://doi.org/10.3390/cells11101674
Chicago/Turabian StyleBekfani, Tarek, Mohamed Bekhite, Sophie Neugebauer, Steffen Derlien, Ali Hamadanchi, Jenny Nisser, Marion S. Hilse, Daniela Haase, Tom Kretzschmar, Mei-Fang Wu, and et al. 2022. "Metabolomic Profiling in Patients with Heart Failure and Exercise Intolerance: Kynurenine as a Potential Biomarker" Cells 11, no. 10: 1674. https://doi.org/10.3390/cells11101674
APA StyleBekfani, T., Bekhite, M., Neugebauer, S., Derlien, S., Hamadanchi, A., Nisser, J., Hilse, M. S., Haase, D., Kretzschmar, T., Wu, M. -F., Lichtenauer, M., Kiehntopf, M., von Haehling, S., Schlattmann, P., Lehmann, G., Franz, M., Möbius-Winkler, S., & Schulze, C. (2022). Metabolomic Profiling in Patients with Heart Failure and Exercise Intolerance: Kynurenine as a Potential Biomarker. Cells, 11(10), 1674. https://doi.org/10.3390/cells11101674