A Potential Route to Reduce Ischemia/Reperfusion Injury in Organ Preservation
Abstract
:1. Introduction
2. Hypothermic Solutions: Potential and Limitations
3. New Strategy to Protect Grafts from Ischemia/Reperfusion Injury
3.1. Trimetazidine
3.2. Tacrolimus
3.3. Carvedilol
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Obseervatory of Organ Donation and Transplantation. Available online: http://www.transplant-observatory.org/ (accessed on 18 July 2022).
- Lepoittevin, M.; Giraud, S.; Kerforne, T.; Barrou, B.; Badet, L.; Bucur, P.; Salame, E.; Goumard, C.; Savier, E.; Branchereau, J.; et al. Preservation of organs to be transplanted: An essential step in the transplant process. Int. J. Mol. Sci. 2022, 23, 4989. [Google Scholar] [CrossRef] [PubMed]
- Perico, N.; Cattaneo, D.; Sayegh, M.H.; Remuzzi, G. Delayed graft function in kidney transplantation. Lancet 2004, 364, 1814–1827. [Google Scholar] [CrossRef] [PubMed]
- Cavaille-Coll, M.; Bala, S.; Velidedeoglu, E.; Hernandez, A.; Archdeacon, P.; Gonzalez, G.; Neuland, C.; Meyer, J.; Albrecht, R. Summary of fda workshop on ischemia reperfusion injury in kidney transplantation. Am. J. Transplant. 2013, 13, 1134–1148. [Google Scholar] [CrossRef] [PubMed]
- Olthoff, K.M.; Kulik, L.; Samstein, B.; Kaminski, M.; Abecassis, M.; Emond, J.; Shaked, A.; Christie, J.D. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transplant. 2010, 16, 943–949. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, J.; Wei, Q.; Saeb-Parsy, K.; Xu, X. The role of ischemia/reperfusion injury in early hepatic allograft dysfunction. Liver Transplant. 2020, 26, 1034–1048. [Google Scholar] [CrossRef] [PubMed]
- Yarlagadda, S.G.; Coca, S.G.; Formica, R.N., Jr.; Poggio, E.D.; Parikh, C.R. Association between delayed graft function and allograft and patient survival: A systematic review and meta-analysis. Nephrol. Dial. Transplant. 2009, 24, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.B.; Xu, M.Q. Primary graft dysfunction after liver transplantation. Hepatobiliary Pancreat. Dis. Int. 2014, 13, 125–137. [Google Scholar] [CrossRef] [PubMed]
- McCormack, L.; Dutkowski, P.; El-Badry, A.M.; Clavien, P.A. Liver transplantation using fatty livers: Always feasible? J. Hepatol. 2011, 54, 1055–1062. [Google Scholar] [CrossRef]
- Selzner, M.; Clavien, P.A. Fatty liver in liver transplantation and surgery. Semin. Liver Dis. 2001, 21, 105–113. [Google Scholar] [CrossRef]
- Saidi, R.F.; Kenari, S.K. Liver ischemia/reperfusion injury: An overview. J. Invest. Surg. 2014, 27, 366–379. [Google Scholar] [CrossRef]
- Warmuzińska, N.; Łuczykowski, K.; Bojko, B. A review of current and emerging trends in donor graft-quality assessment techniques. J. Clin. Med. 2022, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Neri, A.A.; Dontas, I.A.; Iliopoulos, D.C.; Karatzas, T. Pathophysiological changes during ischemia-reperfusion injury in rodent hepatic steatosis. In Vivo 2020, 34, 953–964. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, J.M.; Knight, S.R.; Morgan, R.D.; Morris, P.J. Preservation solutions for static cold storage of kidney allografts: A systematic review and meta-analysis. Am. J. Transplant. 2012, 12, 896–906. [Google Scholar] [CrossRef]
- Szilagyi, A.L.; Matrai, P.; Hegyi, P.; Tuboly, E.; Pecz, D.; Garami, A.; Solymar, M.; Petervari, E.; Balasko, M.; Veres, G.; et al. Compared efficacy of preservation solutions on the outcome of liver transplantation: Meta-analysis. World J. Gastroenterol. 2018, 24, 1812–1824. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Feng, L.; Pan, M.; Gao, Y. Optimizing livers for transplantation using machine perfusion versus cold storage in large animal studies and human studies: A systematic review and meta-analysis. Biomed. Res. Int. 2018, 2018, 9180757. [Google Scholar] [CrossRef] [PubMed]
- Tingle, S.J.; Figueiredo, R.S.; Moir, J.A.; Goodfellow, M.; Talbot, D.; Wilson, C.H. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst. Rev. 2019, 3, CD011671. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Ding, Z.; He, Y.; Zhang, J.; Wang, X.; Yang, Z. Hypothermic machine perfusion versus static cold storage in deceased donor kidney transplantation: A systematic review and meta-analysis of randomized controlled trials. Artif. Organs 2019, 43, 478–489. [Google Scholar] [CrossRef]
- Belzer, F.O.; Southard, J.H. Principles of solid-organ preservation by cold storage. Transplantation 1988, 45, 673–676. [Google Scholar] [CrossRef]
- Saeb-Parsy, K.; Martin, J.L.; Summers, D.M.; Watson, C.J.E.; Krieg, T.; Murphy, M.P. Mitochondria as therapeutic targets in transplantation. Trends Mol. Med. 2021, 27, 185–198. [Google Scholar] [CrossRef]
- Vardanian, A.J.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Molecular mediators of liver ischemia and reperfusion injury: A brief review. Mol. Med. 2008, 14, 337–345. [Google Scholar] [CrossRef]
- Gracia-Sancho, J.; Casillas-Ramirez, A.; Peralta, C. Molecular pathways in protecting the liver from ischaemia/reperfusion injury: A 2015 update. Clin. Sci. 2015, 129, 345–362. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Y.; Yiang, G.T.; Liao, W.T.; Tsai, A.P.; Cheng, Y.L.; Cheng, P.W.; Li, C.Y.; Li, C.J. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol. Biochem. 2018, 46, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
- Casillas-Ramirez, A.; Mosbah, I.B.; Ramalho, F.; Rosello-Catafau, J.; Peralta, C. Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation. Life Sci. 2006, 79, 1881–1894. [Google Scholar] [CrossRef] [PubMed]
- Chazelas, P.; Steichen, C.; Favreau, F.; Trouillas, P.; Hannaert, P.; Thuillier, R.; Giraud, S.; Hauet, T.; Guillard, J. Oxidative stress evaluation in ischemia reperfusion models: Characteristics, limits and perspectives. Int. J. Mol. Sci. 2021, 22, 2366. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.M.; Coddington, D.; Bitter-Suermann, H. Rat liver preservation. I. The components of uw solution that are essential to its success. Transplantation 1990, 49, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Parsons, R.F.; Guarrera, J.V. Preservation solutions for static cold storage of abdominal allografts: Which is best? Curr. Opin. Organ. Transplant. 2014, 19, 100–107. [Google Scholar] [CrossRef]
- Stewart, Z.A. Uw solution: Still the “gold standard” for liver transplantation. Am. J. Transplant. 2015, 15, 295–296. [Google Scholar] [CrossRef]
- Adam, R.; Delvart, V.; Karam, V.; Ducerf, C.; Navarro, F.; Letoublon, C.; Belghiti, J.; Pezet, D.; Castaing, D.; Le Treut, Y.P.; et al. Compared efficacy of preservation solutions in liver transplantation: A long-term graft outcome study from the European liver transplant registry. Am. J. Transplant. 2015, 15, 395–406. [Google Scholar] [CrossRef]
- Ramella, S.G.; Hadj-Aissa, A.; Barbieux, A.; Steghens, J.P.; Colpart, J.J.; Zech, P.; Pozet, N. Evaluation of a high sodium-low potassium cold-storage solution by the isolated perfused rat kidney technique. Nephrol. Dial. Transplant. 1995, 10, 842–846. [Google Scholar]
- Ramella-Virieux, S.G.; Steghens, J.P.; Barbieux, A.; Zech, P.; Pozet, N.; Hadj-Aissa, A. Nifedipine improves recovery function of kidneys preserved in a high-sodium, low-potassium cold-storage solution: Study with the isolated perfused rat kidney technique. Nephrol. Dial. Transplant. 1997, 12, 449–455. [Google Scholar] [CrossRef]
- Ramella, S.; Hadj-Aïssa, A.; Ben Abdennebi, H.; Barbieux, A.; Steghens, J.P.; Colon, S.; Zech, P.; Pozet, N.; Colpart, J.J. Heh: A “high na+ -low k+” cold-storage solution--functional, metabolic, and histological study by the isolated perfused rat kidney technique. Transplant. Proc. 1996, 28, 352–353. [Google Scholar]
- Ben Abdennebi, H.; Steghens, J.P.; Margonari, J.; Ramella-Virieux, S.; Barbieux, A.; Boillot, O. High-na+ low-k+ uw cold storage solution reduces reperfusion injuries of the rat liver graft. Transplant. Int. 1998, 11, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Van der Plaats, A.; t Hart, N.A.; Morariu, A.M.; Verkerke, G.J.; Leuvenink, H.G.; Ploeg, R.J.; Rakhorst, G. Effect of university of wisconsin organ-preservation solution on haemorheology. Transplant. Int. 2004, 17, 227–233. [Google Scholar] [CrossRef]
- Morariu, A.M.; Plaats, A.V.; Oeveren, W.V.; A’t Hart, N.; Leuvenink, H.G.; Graaff, R.; Ploeg, R.J.; Rakhorst, G. Hyperaggregating effect of hydroxyethyl starch components and university of wisconsin solution on human red blood cells: A risk of impaired graft perfusion in organ procurement? Transplantation 2003, 76, 37–43. [Google Scholar] [CrossRef]
- Mosbah, I.B.; Franco-Gou, R.; Abdennebi, H.B.; Hernandez, R.; Escolar, G.; Saidane, D.; Rosello-Catafau, J.; Peralta, C. Effects of polyethylene glycol and hydroxyethyl starch in university of wisconsin preservation solution on human red blood cell aggregation and viscosity. Transplant. Proc. 2006, 38, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.Y.; Xiong, H.Y.; Yuan, Q.; Zeng, L.; Wang, L.M.; Zhu, Y.H. In vitro effects of polyethylene glycol in university of wisconsin preservation solution on human red blood cell aggregation and hemorheology. Clin. Hemorheol. Microcirc. 2011, 47, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Mosbah, I.B.; Zaouali, M.A.; Martel, C.; Bjaoui, M.; Abdennebi, H.B.; Hotter, G.; Brenner, C.; Rosello-Catafau, J. Igl-1 solution reduces endoplasmic reticulum stress and apoptosis in rat liver transplantation. Cell Death Dis. 2012, 3, e279. [Google Scholar] [CrossRef]
- Ben Abdennebi, H.; Steghens, J.P.; Hadj-Aissa, A.; Barbieux, A.; Ramella-Virieux, S.; Gharib, C.; Boillot, O. A preservation solution with polyethylene glycol and calcium: A possible multiorgan liquid. Transplant. Int. 2002, 15, 348–354. [Google Scholar] [CrossRef]
- Ben Abdennebi, H.; Elrassi, Z.; Scoazec, J.Y.; Steghens, J.P.; Ramella-Virieux, S.; Boillot, O. Evaluation of igl-1 preservation solution using an orthotopic liver transplantation model. World J. Gastroenterol. 2006, 12, 5326–5330. [Google Scholar] [CrossRef]
- Badet, L.; Ben Abdennebi, H.; Petruzzo, P.; McGregor, B.; Espa, M.; Hadj-Aissa, A.; Ramella-Virieux, S.; Steghens, J.P.; Portoghese, F.; Martin, X. Effect of igl-1, a new preservation solution, on kidney grafts (a pre-clinical study). Transplant. Int. 2005, 17, 815–821. [Google Scholar] [CrossRef]
- Dutheil, D.; Rioja-Pastor, I.; Tallineau, C.; Goujon, J.M.; Hauet, T.; Mauco, G.; Petit-Paris, I. Protective effect of peg 35,000 da on renal cells: Paradoxical activation of jnk signaling pathway during cold storage. Am. J. Transplant. 2006, 6, 1529–1540. [Google Scholar] [CrossRef] [PubMed]
- Pasut, G.; Panisello, A.; Folch-Puy, E.; Lopez, A.; Castro-Benitez, C.; Calvo, M.; Carbonell, T.; Garcia-Gil, A.; Adam, R.; Rosello-Catafau, J. Polyethylene glycols: An effective strategy for limiting liver ischemia reperfusion injury. World J. Gastroenterol. 2016, 22, 6501–6508. [Google Scholar] [CrossRef] [PubMed]
- Hauet, T.; Goujon, J.M.; Baumert, H.; Petit, I.; Carretier, M.; Eugene, M.; Vandewalle, A. Polyethylene glycol reduces the inflammatory injury due to cold ischemia/reperfusion in autotransplanted pig kidneys. Kidney Int. 2002, 62, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Mack, J.E.; Kerr, J.A.; Vreugdenhil, P.K.; Belzer, F.O.; Southard, J.H. Effect of polyethylene glycol on lipid peroxidation in cold-stored rat hepatocytes. Cryobiology 1991, 28, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ben Mosbah, I.; Rosello-Catafau, J.; Franco-Gou, R.; Abdennebi, H.B.; Saidane, D.; Ramella-Virieux, S.; Boillot, O.; Peralta, C. Preservation of steatotic livers in igl-1 solution. Liver Transplant. 2006, 12, 1215–1223. [Google Scholar] [CrossRef]
- Ben Abdennebi, H.; Zaouali, M.A.; Alfany-Fernandez, I.; Tabka, D.; Rosello-Catafau, J. How to protect liver graft with nitric oxide. World J. Gastroenterol. 2011, 17, 2879–2889. [Google Scholar] [CrossRef] [PubMed]
- Boudjema, K.; van Gulik, T.M.; Lindell, S.L.; Vreugdenhil, P.S.; Southard, J.H.; Belzer, F.O. Effect of oxidized and reduced glutathione in liver preservation. Transplantation 1990, 50, 948–951. [Google Scholar] [CrossRef] [PubMed]
- Van Breussegem, A.; van Pelt, J.; Wylin, T.; Heedfeld, V.; Zeegers, M.; Monbaliu, D.; Pirenne, J.; Vekemans, K. Presumed and actual concentrations of reduced glutathione in preservation solutions. Transplant. Proc. 2011, 43, 3451–3454. [Google Scholar] [CrossRef]
- Evans, P.J.; Tredger, J.M.; Dunne, J.B.; Halliwell, B. Catalytic metal ions and the loss of reduced glutathione from university of wisconsin preservation solution. Transplantation 1996, 62, 1046–1049. [Google Scholar] [CrossRef]
- Vreugdenhil, P.K.; Belzer, F.O.; Southard, J.H. Effect of cold storage on tissue and cellular glutathione. Cryobiology 1991, 28, 143–149. [Google Scholar] [CrossRef]
- Vajdova, K.; Graf, R.; Clavien, P.A. Atp-supplies in the cold-preserved liver: A long-neglected factor of organ viability. Hepatology 2002, 36, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Casella, G.; Leibig, M.; Schiele, T.M.; Schrepf, R.; Seelig, V.; Stempfle, H.U.; Erdin, P.; Rieber, J.; Konig, A.; Siebert, U.; et al. Are high doses of intracoronary adenosine an alternative to standard intravenous adenosine for the assessment of fractional flow reserve? Am. Heart J. 2004, 148, 590–595. [Google Scholar] [CrossRef]
- Pesonen, E.J.; Linder, N.; Raivio, K.O.; Sarnesto, A.; Lapatto, R.; Höckerstedt, K.; Mäkisalo, H.; Andersson, S. Circulating xanthine oxidase and neutrophil activation during human liver transplantation. Gastroenterology 1998, 114, 1009–1015. [Google Scholar] [CrossRef]
- Soares, R.O.S.; Losada, D.M.; Jordani, M.C.; Evora, P.; Castro, E.S.O. Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int. J. Mol. Sci. 2019, 20, 5034. [Google Scholar] [CrossRef] [PubMed]
- Chatauret, N.; Thuillier, R.; Hauet, T. Preservation strategies to reduce ischemic injury in kidney transplantation: Pharmacological and genetic approaches. Curr. Opin. Organ. Transplant. 2011, 16, 180–187. [Google Scholar] [CrossRef]
- Bejaoui, M.; Pantazi, E.; Folch-Puy, E.; Baptista, P.M.; Garcia-Gil, A.; Adam, R.; Rosello-Catafau, J. Emerging concepts in liver graft preservation. World J. Gastroenterol. 2015, 21, 396–407. [Google Scholar] [CrossRef]
- Zaouali, M.A.; Ben Abdennebi, H.; Padrissa-Altes, S.; Mahfoudh-Boussaid, A.; Rosello-Catafau, J. Pharmacological strategies against cold ischemia reperfusion injury. Expert Opin. Pharm. 2010, 11, 537–555. [Google Scholar] [CrossRef]
- Padala, S.K.; Lavelle, M.P.; Sidhu, M.S.; Cabral, K.P.; Morrone, D.; Boden, W.E.; Toth, P.P. Antianginal therapy for stable ischemic heart disease: A contemporary review. J. Cardiovasc. Pharm. 2017, 22, 499–510. [Google Scholar] [CrossRef]
- Kim, Y.H.; Her, A.Y.; Rha, S.W.; Choi, B.G.; Choi, S.Y.; Byun, J.K.; Mashaly, A.; Park, Y.; Jang, W.Y.; Kim, W.; et al. Impact of trimetazidine treatment on 5-year clinical outcomes in patients with significant coronary artery spasm: A propensity score matching study. Am. J. Cardiovasc. Drugs 2018, 18, 117–127. [Google Scholar] [CrossRef]
- Baumert, H.; Faure, J.P.; Zhang, K.; Petit, I.; Goujon, J.M.; Dutheil, D.; Favreau, F.; Barriere, M.; Tillement, J.P.; Mauco, G.; et al. Evidence for a mitochondrial impact of trimetazidine during cold ischemia and reperfusion. Pharmacology 2004, 71, 25–37. [Google Scholar] [CrossRef]
- Hauet, T.; Mothes, D.; Goujon, J.; Germonville, T.; Caritez, J.C.; Carretier, M.; Eugene, M.; Tillement, J. Trimetazidine reverses deleterious effects of ischemia-reperfusion in the isolated perfused pig kidney model. Nephron 1998, 80, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Sulikowski, T.; Domanski, L.; Ciechanowski, K.; Adler, G.; Pawlik, A.; Safranow, K.; Dziedziejko, V.; Chlubek, D.; Ciechanowicz, A. Effect of trimetazidine on xanthine oxidoreductase expression in rat kidney with ischemia--reperfusion injury. Arch. Med. Res. 2008, 39, 459–462. [Google Scholar] [CrossRef]
- Kallistratos, M.S.; Poulimenos, L.E.; Giannitsi, S.; Tsinivizov, P.; Manolis, A.J. Trimetazidine in the prevention of tissue ischemic conditions. Angiology 2019, 70, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Stanley, W.C.; Marzilli, M. Metabolic therapy in the treatment of ischaemic heart disease: The pharmacology of trimetazidine. Fundam. Clin. Pharm. 2003, 17, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Salducci, M.D.; Chauvet-Monges, A.M.; Tillement, J.P.; Albengres, E.; Testa, B.; Carrupt, P.; Crevat, A. Trimetazidine reverses calcium accumulation and impairment of phosphorylation induced by cyclosporine a in isolated rat liver mitochondria. J. Pharm. Exp. 1996, 277, 417–422. [Google Scholar]
- Domanski, L.; Sulikowski, T.; Safranow, K.; Pawlik, A.; Olszewska, M.; Chlubek, D.; Urasinska, E.; Ciechanowski, K. Effect of trimetazidine on the nucleotide profile in rat kidney with ischemia-reperfusion injury. Eur. J. Pharm. Sci. 2006, 27, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Mahfoudh-Boussaid, A.; Hadj Ayed Tka, K.; Zaouali, M.A.; Rosello-Catafau, J.; Ben Abdennebi, H. Effects of trimetazidine on the akt/enos signaling pathway and oxidative stress in an in vivo rat model of renal ischemia-reperfusion. Ren Fail. 2014, 36, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Zaouali, M.A.; Panisello, A.; Lopez, A.; Castro, C.; Folch, E.; Carbonell, T.; Rolo, A.; Palmeira, C.M.; Garcia-Gil, A.; Adam, R.; et al. Gsk3beta and vdac involvement in er stress and apoptosis modulation during orthotopic liver transplantation. Int. J. Mol. Sci. 2017, 18, 591. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, J.M.; Huang, H.; Kuznicki, M.; Zheng, S.; Sun, W.; Quan, N.; Wang, L.; Yang, H.; Guo, H.M.; et al. The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating ampk and erk signaling pathway. Metabolism 2016, 65, 122–130. [Google Scholar] [CrossRef]
- Ben Mosbah, I.; Casillas-Ramirez, A.; Xaus, C.; Serafin, A.; Rosello-Catafau, J.; Peralta, C. Trimetazidine: Is it a promising drug for use in steatotic grafts? World J. Gastroenterol. 2006, 12, 908–914. [Google Scholar] [CrossRef]
- Iskesen, I.; Saribulbul, O.; Cerrahoglu, M.; Var, A.; Nazli, Y.; Sirin, H. Trimetazidine reduces oxidative stress in cardiac surgery. Circ. J. 2006, 70, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Mahfoudh-Boussaid, A.; Zaouali, M.A.; Hauet, T.; Hadj-Ayed, K.; Miled, A.H.; Ghoul-Mazgar, S.; Saidane-Mosbahi, D.; Rosello-Catafau, J.; Ben Abdennebi, H. Attenuation of endoplasmic reticulum stress and mitochondrial injury in kidney with ischemic postconditioning application and trimetazidine treatment. J. Biomed. Sci. 2012, 19, 71. [Google Scholar] [CrossRef] [PubMed]
- Demir, A.; Ozutemiz, O.; Yildiz, C.; Yuce, G.; Tekeşin, O.; Ilter, T. The effect of trimetazidine on intrahepatic cholestasis caused by carmustine in rats. Hepatol. Res. 2001, 20, 133–143. [Google Scholar] [CrossRef]
- Elimadi, A.; Settaf, A.; Morin, D.; Sapena, R.; Lamchouri, F.; Cherrah, Y.; Tillement, J.P. Trimetazidine counteracts the hepatic injury associated with ischemia-reperfusion by preserving mitochondrial function. J. Pharm. Exp. 1998, 286, 23–28. [Google Scholar]
- Ruixing, Y.; Wenwu, L.; Al-Ghazali, R. Trimetazidine inhibits cardiomyocyte apoptosis in a rabbit model of ischemia-reperfusion. Transl. Res. 2007, 149, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Argaud, L.; Gomez, L.; Gateau-Roesch, O.; Couture-Lepetit, E.; Loufouat, J.; Robert, D.; Ovize, M. Trimetazidine inhibits mitochondrial permeability transition pore opening and prevents lethal ischemia-reperfusion injury. J. Mol. Cell Cardiol. 2005, 39, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Mahfoudh-Boussaid, A.; Zaouali, M.A.; Hadj-Ayed, K.; Miled, A.H.; Saidane-Mosbahi, D.; Rosello-Catafau, J.; Ben Abdennebi, H. Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1alpha in ischemic kidney: The role of nitric oxide. J. Biomed. Sci. 2012, 19, 7. [Google Scholar] [CrossRef]
- Pantazi, E.; Zaouali, M.A.; Bejaoui, M.; Folch-Puy, E.; Ben Abdennebi, H.; Rosello-Catafau, J. Role of sirtuins in ischemia-reperfusion injury. World J. Gastroenterol. 2013, 19, 7594–7602. [Google Scholar] [CrossRef] [PubMed]
- Pantazi, E.; Zaouali, M.A.; Bejaoui, M.; Folch-Puy, E.; Ben Abdennebi, H.; Varela, A.T.; Rolo, A.P.; Palmeira, C.M.; Rosello-Catafau, J. Sirtuin 1 in rat orthotopic liver transplantation: An igl-1 preservation solution approach. World J. Gastroenterol. 2015, 21, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Nogueiras, R.; Habegger, K.M.; Chaudhary, N.; Finan, B.; Banks, A.S.; Dietrich, M.O.; Horvath, T.L.; Sinclair, D.A.; Pfluger, P.T.; Tschop, M.H. Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism. Physiol. Rev. 2012, 92, 1479–1514. [Google Scholar] [CrossRef]
- Hori, Y.S.; Kuno, A.; Hosoda, R.; Horio, Y. Regulation of foxos and p53 by sirt1 modulators under oxidative stress. Plos One 2013, 8, e73875. [Google Scholar] [CrossRef]
- Zaouali, M.A.; Panisello, A.; Lopez, A.; Folch, E.; Castro-Benitez, C.; Adam, R.; Rosello-Catafau, J. Cross-talk between sirtuin 1 and high-mobility box 1 in steatotic liver graft preservation. Transplant. Proc. 2017, 49, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Faure, J.P.; Baumert, H.; Han, Z.; Goujon, J.M.; Favreau, F.; Dutheil, D.; Petit, I.; Barriere, M.; Tallineau, C.; Tillement, J.P.; et al. Evidence for a protective role of trimetazidine during cold ischemia: Targeting inflammation and nephron mass. Biochem. Pharmacol. 2003, 66, 2241–2250. [Google Scholar] [CrossRef]
- Faure, J.P.; Petit, I.; Zhang, K.; Dutheil, D.; Doucet, C.; Favreau, F.; Eugene, M.; Goujon, J.M.; Tillement, J.P.; Mauco, G.; et al. Protective roles of polyethylene glycol and trimetazidine against cold ischemia and reperfusion injuries of pig kidney graft. Am. J. Transplant. 2004, 4, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Hauet, T.; Bauza, G.; Richer, J.P.; Hebrard, W.; Carretier, M.; Eugene, M.; Tillement, J.P. Trimetazidine added to university of wisconsin during 48-hour cold preservation improves renal energetic status during reperfusion. Transplant. Proc. 2000, 32, 496–497. [Google Scholar] [CrossRef] [PubMed]
- Richer, J.P.; Baumert, H.; Gibelin, H.; Faure, J.P.; Hebrard, W.; Amor, I.B.; Carretier, M.; Eugene, M.; Tillement, J.P.; Hauet, T. Limitation of ischemic damage to the renal medulla by trimetazidine added to euro-collins solution: Evaluation in an autotransplant model. Transplant. Proc. 2000, 32, 477–478. [Google Scholar] [CrossRef] [PubMed]
- Hauet, T.; Tallineau, C.; Goujon, J.M.; Carretier, M.; Eugene, M.; Tillement, J.P. Efficiency of trimetazidine in renal dysfunction secondary to cold ischemia-reperfusion injury: A proposed addition to university of wisconsin solution. Cryobiology 1998, 37, 231–244. [Google Scholar] [PubMed]
- Hauet, T.; Bauza, G.; Goujon, J.M.; Caritez, J.C.; Carretier, M.; Eugene, M.; Tillement, J.P. Effects of trimetazidine on lipid peroxidation and phosphorus metabolites during cold storage and reperfusion of isolated perfused rat kidneys. J. Pharm. Exp. 1998, 285, 1061–1067. [Google Scholar]
- Doucet, C.; Dutheil, D.; Petit, I.; Zhang, K.; Eugene, M.; Touchard, G.; Wahl, A.; Seguin, F.; Milinkevitch, S.; Hauet, T.; et al. Influence of colloid, preservation medium and trimetazidine on renal medulla injury. Biochim. Biophys. Acta 2004, 1673, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Goujon, J.M.; Vandewalle, A.; Baumert, H.; Carretier, M.; Hauet, T. Influence of cold-storage conditions on renal function of autotransplanted large pig kidneys. Kidney Int. 2000, 58, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Ben Mosbah, I.; Massip-Salcedo, M.; Fernandez-Monteiro, I.; Xaus, C.; Bartrons, R.; Boillot, O.; Rosello-Catafau, J.; Peralta, C. Addition of adenosine monophosphate-activated protein kinase activators to university of wisconsin solution: A way of protecting rat steatotic livers. Liver Transplant. 2007, 13, 410–425. [Google Scholar] [CrossRef] [PubMed]
- Zaouali, M.A.; Ben Mosbah, I.; Boncompagni, E.; Ben Abdennebi, H.; Mitjavila, M.T.; Bartrons, R.; Freitas, I.; Rimola, A.; Rosello-Catafau, J. Hypoxia inducible factor-1alpha accumulation in steatotic liver preservation: Role of nitric oxide. World J. Gastroenterol. 2010, 16, 3499–3509. [Google Scholar] [CrossRef]
- Ong, S.C.; Gaston, R.S. Thirty years of tacrolimus in clinical practice. Transplantation 2021, 105, 484–495. [Google Scholar] [CrossRef]
- Harding, M.W.; Galat, A.; Uehling, D.E.; Schreiber, S.L. A receptor for the immunosuppressant fk506 is a cis-trans peptidyl-prolyl isomerase. Nature 1989, 341, 758–760. [Google Scholar] [CrossRef]
- Goto, T.; Kino, T.; Hatanaka, H.; Okuhara, M.; Kohsaka, M.; Aoki, H.; Imanaka, H. Fk 506: Historical perspectives. Transplant. Proc. 1991, 23, 2713–2717. [Google Scholar]
- Fruman, D.A.; Klee, C.B.; Bierer, B.E.; Burakoff, S.J. Calcineurin phosphatase activity in t lymphocytes is inhibited by fk 506 and cyclosporin a. Proc. Natl. Acad. Sci. USA 1992, 89, 3686–3690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krummrei, U.; Baulieu, E.E.; Chambraud, B. The fkbp-associated protein fap48 is an antiproliferative molecule and a player in t cell activation that increases il2 synthesis. Proc. Natl. Acad. Sci. USA 2003, 100, 2444–2449. [Google Scholar] [CrossRef] [PubMed]
- Staatz, C.E.; Tett, S.E. Clinical pharmacokinetics of once-daily tacrolimus in solid-organ transplant patients. Clin. Pharm. 2015, 54, 993–1025. [Google Scholar]
- Hemenway, C.S.; Heitman, J. Calcineurin. Structure, function, and inhibition. Cell Biochem. Biophys. 1999, 30, 115–151. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, A.; Su, M.S. Interaction of fkbp12-fk506 with calcineurin a at the b subunit-binding domain. J. Biol. Chem. 1995, 270, 15463–15466. [Google Scholar] [CrossRef]
- Emmel, E.A.; Verweij, C.L.; Durand, D.B.; Higgins, K.M.; Lacy, E.; Crabtree, G.R. Cyclosporin a specifically inhibits function of nuclear proteins involved in t cell activation. Science 1989, 246, 1617–1620. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martinez, S.; Redondo, J.M. Inhibitors of the calcineurin/nfat pathway. Curr. Med. Chem. 2004, 11, 997–1007. [Google Scholar] [PubMed]
- Garcia-Criado, F.J.; Lozano-Sanchez, F.; Fernandez-Regalado, J.; Valdunciel-Garcia, J.J.; Parreno-Manchado, F.; Silva-Benito, I.; Zambrano-Cuadrado, Y.; Gomez-Alonso, A. Possible tacrolimus action mechanisms in its protector effects on ischemia-reperfusion injury. Transplantation 1998, 66, 942–943. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.D.S.; Moss, A.A.; Mulligan, D.C. Effects of tacrolimus on ischemia-reperfusion injury. Liver Transplant. 2003, 9, 105–116. [Google Scholar] [CrossRef]
- Haines, D.D.; Bak, I.; Ferdinandy, P.; Mahmoud, F.F.; Al-Harbi, S.A.; Blasig, I.E.; Tosaki, A. Cardioprotective effects of the calcineurin inhibitor fk506 and the paf receptor antagonist and free radical scavenger, egb 761, in isolated ischemic/reperfused rat hearts. J. Cardiovasc. Pharm. 2000, 35, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Nito, C.; Ueda, M.; Inaba, T.; Katsura, K.; Katayama, Y. Fk506 ameliorates oxidative damage and protects rat brain following transient focal cerebral ischemia. Neurol. Res. 2011, 33, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Soda, Y.; el-Assal, O.N.; Yu, L.; Nagasue, N. Suppressed endothelin-1 production by fk506 and cyclosporin a in ischemia/reperfusion of rat small intestine. Surgery 1999, 125, 23–32. [Google Scholar] [CrossRef]
- Kaibori, M.; Sakitani, K.; Oda, M.; Kamiyama, Y.; Masu, Y.; Nishizawa, M.; Ito, S.; Okumura, T. Immunosuppressant fk506 inhibits inducible nitric oxide synthase gene expression at a step of nf-kappab activation in rat hepatocytes. J. Hepatol. 1999, 30, 1138–1145. [Google Scholar] [CrossRef]
- Kaibori, M.; Okumura, T.; Ito, S.; Oda, M.; Inoue, T.; Kamiyama, Y. Inhibition of inos induction by fk506, but not by cyclosporine, in rat hepatocytes. Transplant. Proc. 1999, 31, 804–805. [Google Scholar] [CrossRef]
- Li, X.; Bilali, A.; Qiao, R.; Paerhati, T.; Yang, Y. Association of the ppargamma/pi3k/akt pathway with the cardioprotective effects of tacrolimus in myocardial ischemic/reperfusion injury. Mol. Med. Rep. 2018, 17, 6759–6767. [Google Scholar]
- Kahraman, S.; Bambrick, L.L.; Fiskum, G. Effects of fk506 and cyclosporin a on calcium ionophore-induced mitochondrial depolarization and cytosolic calcium in astrocytes and neurons. J. Neurosci. Res. 2011, 89, 1973–1978. [Google Scholar] [CrossRef]
- Yokoyama, T.; Tanoue, T.; Hasegawa, E.; Ikeda, Y.; Ohta, S.; Omi, A.; Kudo, Y.; Uchino, H. Evaluation of the protective effects of cyclosporin a and fk506 on abnormal cytosolic and mitochondrial ca(2)(+) dynamics during ischemia and exposure to high glutamate concentration in mouse brain slice preparations. J. Pharm. Sci. 2012, 120, 228–240. [Google Scholar] [CrossRef]
- Blaheta, R.A.; Hailer, N.P.; Brude, N.; Wittig, B.; Leckel, K.; Oppermann, E.; Bachmann, M.; Harder, S.; Cinatl, J.; Scholz, M.; et al. In vitro analysis of verapamil-induced immunosuppression: Potent inhibition of t cell motility and lymphocytic transmigration through allogeneic endothelial cells. Transplantation 2000, 69, 588–597. [Google Scholar] [CrossRef]
- Squadrito, F.; Altavilla, D.; Squadrito, G.; Saitta, A.; Deodato, B.; Arlotta, M.; Minutoli, L.; Quartarone, C.; Ferlito, M.; Caputi, A.P. Tacrolimus limits polymorphonuclear leucocyte accumulation and protects against myocardial ischaemia- reperfusion injury. J. Mol. Cell Cardiol. 2000, 32, 429–440. [Google Scholar] [CrossRef]
- Kaibori, M.; Inoue, T.; Tu, W.; Oda, M.; Kwon, A.H.; Kamiyama, Y.; Okumura, T. Fk506, but not cyclosporin a, prevents mitochondrial dysfunction during hypoxia in rat hepatocytes. Life Sci. 2001, 69, 17–26. [Google Scholar] [CrossRef]
- Sakr, M.; Zetti, G.; McClain, C.; Gavaler, J.; Nalesnik, M.; Todo, S.; Starzl, T.; van Thiel, D. The protective effect of fk506 pretreatment against renal ischemia/reperfusion injury in rats. Transplantation 1992, 53, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Kawano, K.; Kim, Y.I.; Kai, T.; Ishii, T.; Tatsuma, T.; Morimoto, A.; Tamura, Y.; Kobayashi, M. Evidence that fk506 alleviates ischemia/reperfusion injury to the rat liver: In vivo demonstration for suppression of tnf-a production in response to endotoxemia. Eur. Surg. Res. 1994, 26, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.D.S.; Post, D.J.; Rodriguez-Davalos, M.I.; Douglas, D.D.; Moss, A.A.; Mulligan, D.C. Tacrolimus as a liver flush solution to ameliorate the effects of ischemia/reperfusion injury following liver transplantation. Liver Transplant. 2003, 9, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Kamiya, K.; Kodama, I. Carvedilol: Molecular and cellular basis for its multifaceted therapeutic potential. Cardiovasc. Drug Rev. 2001, 19, 152–171. [Google Scholar] [CrossRef]
- Farias, J.G.; Molina, V.M.; Carrasco, R.A.; Zepeda, A.B.; Figueroa, E.; Letelier, P.; Castillo, R.L. Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients 2017, 9, 966. [Google Scholar] [CrossRef]
- Abreu, R.M.; Santos, D.J.; Moreno, A.J. Effects of carvedilol and its analog bm-910228 on mitochondrial function and oxidative stress. J. Pharm. Exp. 2000, 295, 1022–1030. [Google Scholar]
- Lai, M.K. Editorial comment to carvedilol protects tubular epithelial cells from ischemia-reperfusion injury by inhibiting oxidative stress. Int. J. Urol. 2019, 17, 995. [Google Scholar] [CrossRef]
- Hayashi, T.; de Velasco, M.A.; Saitou, Y.; Nose, K.; Nishioka, T.; Ishii, T.; Uemura, H. Carvedilol protects tubular epithelial cells from ischemia-reperfusion injury by inhibiting oxidative stress. Int. J. Urol. 2010, 17, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Ben Mosbah, I.; Rosello-Catafau, J.; Alfany-Fernandez, I.; Rimola, A.; Parellada, P.P.; Mitjavila, M.T.; Lojek, A.; Ben Abdennebi, H.; Boillot, O.; Rodes, J.; et al. Addition of carvedilol to university wisconsin solution improves rat steatotic and nonsteatotic liver preservation. Liver Transplant. 2010, 16, 163–171. [Google Scholar] [CrossRef]
- Gasparova, Z.; Ondrejickova, O.; Gajdosikova, A.; Gajdosik, A.; Snirc, V.; Stolc, S. Oxidative stress induced by the fe/ascorbic acid system or model ischemia in vitro: Effect of carvedilol and pyridoindole antioxidant sme1ec2 in young and adult rat brain tissue. Interdiscip. Toxicol. 2010, 3, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Tanaka, M.; Sohmiya, M.; Yoshida, T.; Okamoto, K. Antioxidant properties of carvedilol: Inhibition of lipid peroxidation, protein oxidation and superoxide generation. Neurol. Res. 2003, 25, 749–753. [Google Scholar] [CrossRef]
- Tadolini, B.; Franconi, F. Carvedilol inhibition of lipid peroxidation. A new antioxidative mechanism. Free Radic. Res. 1998, 29, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Khandoudi, N.; Percevault-Albadine, J.; Bril, A. Comparative effects of carvedilol and metoprolol on cardiac ischemia-reperfusion injury. J. Cardiovasc. Pharm. 1998, 32, 443–451. [Google Scholar] [CrossRef]
- Singh, D.; Chander, V.; Chopra, K. Carvedilol attenuates ischemia-reperfusion-induced oxidative renal injury in rats. Fundam. Clin. Pharm. 2004, 18, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Chen, J.; Lopez, B.L.; Christopher, T.A.; Gu, J.; Lysko, P.; Ruffolo, R.R., Jr.; Ohlstein, E.H.; Ma, X.L.; Yue, T.L. Comparison of bisoprolol and carvedilol cardioprotection in a rabbit ischemia and reperfusion model. Eur. J. Pharm. 2000, 406, 109–116. [Google Scholar] [CrossRef]
- Akbas, H.; Ozden, M.; Kanko, M.; Maral, H.; Bulbul, S.; Yavuz, S.; Ozker, E.; Berki, T. Protective antioxidant effects of carvedilol in a rat model of ischaemia-reperfusion injury. J. Int. Med. Res. 2005, 33, 528–536. [Google Scholar] [CrossRef]
- Ma, X.L.; Yue, T.L.; Lopez, B.L.; Barone, F.C.; Christopher, T.A.; Ruffolo, R.R., Jr.; Feuerstein, G.Z. Carvedilol, a new beta adrenoreceptor blocker and free radical scavenger, attenuates myocardial ischemia-reperfusion injury in hypercholesterolemic rabbits. J. Pharm. Exp. 1996, 277, 128–136. [Google Scholar]
- Yue, T.L.; Wang, X.; Gu, J.L.; Ruffolo, R.R., Jr.; Feuerstein, G.Z. Carvedilol, a new vasodilating beta-adrenoceptor blocker, inhibits oxidation of low-density lipoproteins by vascular smooth muscle cells and prevents leukocyte adhesion to smooth muscle cells. J. Pharm. Exp. 1995, 273, 1442–1449. [Google Scholar]
- Hassan, M.I.; Ali, F.E.; Shalkami, A.S. Role of tlr-4/il-6/tnf-alpha, cox-ii and enos/inos pathways in the impact of carvedilol against hepatic ischemia reperfusion injury. Hum. Exp. Toxicol. 2021, 40, 1362–1373. [Google Scholar] [CrossRef]
- Hu, H.; Li, X.; Ren, D.; Tan, Y.; Chen, J.; Yang, L.; Chen, R.; Li, J.; Zhu, P. The cardioprotective effects of carvedilol on ischemia and reperfusion injury by ampk signaling pathway. Biomed. Pharm. 2019, 117, 109106. [Google Scholar] [CrossRef] [PubMed]
- Carreira, R.; Duarte, A.; Monteiro, P.; Santos, M.S.; Rego, A.C.; Oliveira, C.R.; Gonçalves, L.M.; Providência, L.A. Carvedilol protects ischemic cardiac mitochondria by preventing oxidative stress. Rev. Port. Cardiol. 2004, 23, 1447–1455. [Google Scholar] [PubMed]
- Yue, T.L.; Ma, X.L.; Wang, X.; Romanic, A.M.; Liu, G.L.; Louden, C.; Gu, J.L.; Kumar, S.; Poste, G.; Ruffolo, R.R., Jr.; et al. Possible involvement of stress-activated protein kinase signaling pathway and fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ. Res. 1998, 82, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Romeo, F.; Li, D.; Shi, M.; Mehta, J.L. Carvedilol prevents epinephrine-induced apoptosis in human coronary artery endothelial cells: Modulation of fas/fas ligand and caspase-3 pathway. Cardiovasc. Res. 2000, 45, 788–794. [Google Scholar] [CrossRef]
- Usta, E.; Mustafi, M.; Straub, A.; Ziemer, G. The nonselective beta-blocker carvedilol suppresses apoptosis in human cardiac tissue: A pilot study. Heart Surg. Forum 2010, 13, E218–E222. [Google Scholar] [CrossRef]
- Harima, M.; Arumugam, S.; Wen, J.; Pitchaimani, V.; Karuppagounder, V.; Afrin, M.R.; Sreedhar, R.; Miyashita, S.; Nomoto, M.; Ueno, K.; et al. Effect of carvedilol against myocardial injury due to ischemia-reperfusion of the brain in rats. Exp. Mol. Pathol. 2015, 98, 558–562. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Mohammed, W.I. Carvedilol induces the antiapoptotic proteins nrf2 and bcl2 and inhibits cellular apoptosis in aluminum-induced testicular toxicity in male wistar rats. Biomed. Pharm. 2021, 139, 111594. [Google Scholar] [CrossRef]
- Asanuma, H.; Minamino, T.; Sanada, S.; Takashima, S.; Ogita, H.; Ogai, A.; Asakura, M.; Liao, Y.; Asano, Y.; Shintani, Y.; et al. Beta-adrenoceptor blocker carvedilol provides cardioprotection via an adenosine-dependent mechanism in ischemic canine hearts. Circulation 2004, 109, 2773–2779. [Google Scholar] [CrossRef] [PubMed]
- Bank, A.J.; Kelly, A.S.; Thelen, A.M.; Kaiser, D.R.; Gonzalez-Campoy, J.M. Effects of carvedilol versus metoprolol on endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am. J. Hypertens. 2007, 20, 777–783. [Google Scholar] [CrossRef]
- Saijonmaa, O.; Metsarinne, K.; Fyhrquist, F. Carvedilol and its metabolites suppress endothelin-1 production in human endothelial cell culture. Blood Press. 1997, 6, 24–28. [Google Scholar] [CrossRef] [PubMed]
Component/Function | Cold Storage Solutions (CSSs) | Machine Perfusion Solutions (MPSs) | |||
---|---|---|---|---|---|
HTK | UW CSSs | Celsior | IGL-1 | UW MPSs | |
Osmotic | Manitol/Ketoglutarate | Raffinose/Lactobionate | Manitol/Lactobionate | Raffinose/Lactobionate | Glucose/Gluconate/Ribose |
Buffer | Histidine | PO4 | Histidine | PO4 | PO4/HEPES |
Oncotic | − | HES | − | PEG | HES |
Na+ | Low | Low | High | High | High |
K+ | Low | High | Low | Low | Low |
Antioxidant/IRI Protection | Tryptophan | Adenosine/ Glutathione/Allopurinol | Glutathione | Adenosine/Glutathione/ Allopurinol | Glutathione/Adenine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micó-Carnero, M.; Zaouali, M.A.; Rojano-Alfonso, C.; Maroto-Serrat, C.; Ben Abdennebi, H.; Peralta, C. A Potential Route to Reduce Ischemia/Reperfusion Injury in Organ Preservation. Cells 2022, 11, 2763. https://doi.org/10.3390/cells11172763
Micó-Carnero M, Zaouali MA, Rojano-Alfonso C, Maroto-Serrat C, Ben Abdennebi H, Peralta C. A Potential Route to Reduce Ischemia/Reperfusion Injury in Organ Preservation. Cells. 2022; 11(17):2763. https://doi.org/10.3390/cells11172763
Chicago/Turabian StyleMicó-Carnero, Marc, Mohamed Amine Zaouali, Carlos Rojano-Alfonso, Cristina Maroto-Serrat, Hassen Ben Abdennebi, and Carmen Peralta. 2022. "A Potential Route to Reduce Ischemia/Reperfusion Injury in Organ Preservation" Cells 11, no. 17: 2763. https://doi.org/10.3390/cells11172763
APA StyleMicó-Carnero, M., Zaouali, M. A., Rojano-Alfonso, C., Maroto-Serrat, C., Ben Abdennebi, H., & Peralta, C. (2022). A Potential Route to Reduce Ischemia/Reperfusion Injury in Organ Preservation. Cells, 11(17), 2763. https://doi.org/10.3390/cells11172763