CORK1, A LRR-Malectin Receptor Kinase, Is Required for Cellooligomer-Induced Responses in Arabidopsis thaliana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Medium and Conditions for Seedlings
2.2. EMS Mutagenesis of A. thaliana Seeds
2.3. Whole Genome Sequencing and SNP Analysis
2.4. Transcriptome Analysis
2.5. Phosphoproteomic Analysis
2.5.1. Sample Collection
2.5.2. In-Solution Digest
2.5.3. Phosphopeptide Enrichment
2.5.4. LC-MS/MS Analysis
2.5.5. Protein Database Search
2.6. ROS and [Ca2+]cyt Measurements
2.7. Nucleic Acid Isolation, PCR and RT-qPCR
2.8. Multiple Sequence Alignment
2.9. Plasmid Construction
2.10. Protein Expression, Extraction, Purification and Kinase Assay
2.11. Complementation of the COM Receptor Mutant
2.12. Transient Expression in A. thaliana
2.13. Microscopy
2.14. Statistical Tests
2.15. Data Availability
3. Results
3.1. Identification of CelloOligomer Receptor Kinase 1 (CORK1)
3.2. CORK1 Encodes a Functional Receptor Kinase
3.3. cork1 Mutant Failed to Produce ROS upon COM Perception
3.4. Upregulation of WRKY30 and WRKY40 mRNA Levels by COMs Is CORK1-Dependent
3.5. Two Phe Residues in the Malectin Domain Are Important for CT Response
3.6. Transcriptome Analysis Uncovered COM/CORK1 Responsive Genes
3.7. COM/CORK1-Mediated Changes in the Phosphoproteome Pattern in Roots
4. Discussion
4.1. LRR-Malectin Receptors Are the New Players in Cell Wall Surveillance
4.2. Crosstalk between CORK1 and Other Signaling Pathways
4.3. CT Regulates Metabolism of Aromatic Amino Acids and Secondary Metabolites
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. The Dynamic Plant Cell Wall. In Molecular Cell Biology, 4th ed.; WH Freeman and Company: New York, NY, USA, 2000. [Google Scholar]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef]
- Gibson, L.J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 2012, 9, 2749–2766. [Google Scholar] [CrossRef]
- Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef]
- Atmodjo, M.A.; Hao, Z.; Mohnen, D. Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol. 2013, 64, 747–779. [Google Scholar] [CrossRef]
- Ridley, B.L.; O’Neill, M.A.; Mohnen, D. Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57, 929–967. [Google Scholar] [CrossRef]
- Harholt, J.; Suttangkakul, A.; Vibe Scheller, H. Biosynthesis of pectin. Plant Physiol. 2010, 153, 384–395. [Google Scholar] [CrossRef]
- Gust, A.A.; Pruitt, R.; Nürnberger, T. Sensing danger: Key to activating plant immunity. Trends Plant Sci. 2017, 22, 779–791. [Google Scholar] [CrossRef]
- Hu, X.Y.; Neill, S.J.; Cai, W.M.; Tang, Z.C. Induction of defence gene expression by oligogalacturonic acid requires increases in both cytosolic calcium and hydrogen peroxide in Arabidopsis thaliana. Cell Res. 2004, 14, 234–240. [Google Scholar] [CrossRef]
- Galletti, R.; Ferrari, S.; De Lorenzo, G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol. 2011, 157, 804–814. [Google Scholar] [CrossRef]
- Souza C de, A.; Li, S.; Lin, A.Z.; Boutrot, F.; Grossmann, G.; Zipfel, C.; Somerville, S.C. Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Physiol. 2017, 173, 2383–2398. [Google Scholar] [CrossRef] [Green Version]
- Claverie, J.; Balacey, S.; Lemaître-Guillier, C.; Brulé, D.; Chiltz, A.; Granet, L.; Noirot, E.; Daire, X.; Darblade, B.; Héloir, M.-C.; et al. The cell wall-derived xyloglucan is a new DAMP triggering plant immunity in Vitis vinifera and Arabidopsis thaliana. Front. Plant Sci. 2018, 9, 1725. [Google Scholar] [CrossRef]
- Johnson, J.M.; Thürich, J.; Petutschnig, E.K.; Altschmied, L.; Meichsner, D.; Sherameti, I.; Dindas, J.; Mrozinska, A.; Paetz, C.; Scholz, S.S.; et al. A Poly(A) ribonuclease controls the cellotriose-based interaction between Piriformospora indica and its host Arabidopsis. Plant Physiol. 2018, 176, 2496–2514. [Google Scholar] [CrossRef] [PubMed]
- Mélida, H.; Bacete, L.; Ruprecht, C.; Rebaque, D.; del Hierro, I.; López, G.; Brunner, F.; Pfrengle, F.; Molina, A. Arabinoxylan-oligosaccharides act as damage associated molecular patterns in plants regulating disease resistance. Front. Plant Sci. 2020, 11, 1210. [Google Scholar] [CrossRef]
- Yang, C.; Liu, R.; Pang, J.; Ren, B.; Zhou, H.; Wang, G.; Wang, E.; Liu, J. Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice. Nat. Commun. 2021, 12, 2178. [Google Scholar] [CrossRef]
- Rebaque, D.; del Hierro, I.; López, G.; Bacete, L.; Vilaplana, F.; Dallabernardina, P.; Pfrengle, F.; Jordá, L.; Sánchez-Vallet, A.; Pérez, R.; et al. Cell wall-derived mixed-linked β-1,3/1,4-glucans trigger immune responses and disease resistance in plants. Plant J. 2021, 106, 601–615. [Google Scholar] [CrossRef] [PubMed]
- He, Z.H.; Fujiki, M.; Kohorn, B.D. A cell wall-associated, receptor-like protein kinase. J. Biol. Chem. 1996, 271, 19789–19793. [Google Scholar] [CrossRef] [PubMed]
- Brutus, A.; Sicilia, F.; Macone, A.; Cervone, F.; De Lorenzo, G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc. Natl. Acad. Sci. USA 2010, 107, 9452–9457. [Google Scholar] [CrossRef]
- Escobar-Restrepo, J.-M.; Huck, N.; Kessler, S.; Gagliardini, V.; Gheyselinck, J.; Yang, W.-C.; Grossniklaus, U. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 2007, 317, 656–660. [Google Scholar] [CrossRef]
- Haruta, M.; Sabat, G.; Stecker, K.; Minkoff, B.B.; Sussman, M.R. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 2014, 343, 408–411. [Google Scholar] [CrossRef]
- Feng, W.; Kita, D.; Peaucelle, A.; Cartwright, H.N.; Doan, V.; Duan, Q.; Liu, M.-C.; Maman, J.; Steinhorst, L.; Schmitz-Thom, I.; et al. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 2018, 28, 666–675.e5. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Lin, W.; Zhou, X.; Guo, J.; Dang, X.; Li, B.; Lin, D.; Yang, Z. Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr. Biol. 2022, 32, 508–517.e3. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Knight, M.R.; Campbell, A.K.; Smith, S.M.; Trewavas, A.J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 1991, 352, 524–526. [Google Scholar] [CrossRef]
- Kim, Y.; Schumaker, K.S.; Zhu, J.-K. EMS mutagenesis of Arabidopsis. Methods Mol. Biol. 2006, 323, 101–103. [Google Scholar] [PubMed]
- Leyser, H.M.O.; Furner, I.J. EMS mutagenesis of Arabidopsis. In Arabidopsis: The Compleat Guide; Version 1.4; 1993; Available online: http://www.arabidopsis.org/download_files/Protocols/compleat_guide/6_EMS_mutagenesis.pdf (accessed on 15 September 2022).
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Wachsman, G.; Modliszewski, J.L.; Valdes, M.; Benfey, P.N. A SIMPLE pipeline for mapping point mutations. Plant Physiol. 2017, 174, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.-P.; Mushayamaha, T.; Thomas, P.D. PANTHER version, 16, a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021, 49, D394–D403. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Wessel, D.; Flügge, U.I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 1984, 138, 141–143. [Google Scholar] [CrossRef]
- Vadassery, J.; Ranf, S.; Drzewiecki, C.; Mithöfer, A.; Mazars, C.; Scheel, D.; Lee, J.; Oelmüller, R. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J. Cell Mol. Biol. 2009, 59, 193–206. [Google Scholar] [CrossRef]
- Vadassery, J.; Oelmüller, R. Calcium signaling in pathogenic and beneficial plant microbe interactions: What can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana. Plant Signal. Behav. 2009, 4, 1024–1027. [Google Scholar] [CrossRef]
- Doyle, J.J. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Karimi, M.; Inzé, D.; Depicker, A. GATEWAYTM vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002, 7, 193–195. [Google Scholar] [CrossRef]
- Yoo, S.-D.; Cho, Y.-H.; Sheen, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007, 2, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Bertani, G. Studies on lysogenesis I.: The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 1951, 62, 293–300. [Google Scholar] [CrossRef]
- Wang, X.; Hwang, S.-Y.; Cong, W.-T.; Jin, L.-T.; Choi, J.-K. Phosphoprotein staining for sodium dodecyl sulfate-polyacrylamide gel electrophoresis using fluorescent reagent morin hydrate. Anal. Biochem. 2013, 435, 19–26. [Google Scholar] [CrossRef]
- Zhang, X.; Henriques, R.; Lin, S.-S.; Niu, Q.-W.; Chua, N.-H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 2006, 1, 641–646. [Google Scholar] [CrossRef]
- Wang, L.; Albert, M.; Einig, E.; Fürst, U.; Krust, D.; Felix, G. The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nat. Plants 2016, 2, 16185. [Google Scholar] [CrossRef]
- Tseng, Y.-H.; Rouina, H.; Groten, K.; Rajani, P.; Furch, A.C.U.; Reichelt, M.; Baldwin, I.T.; Nataraja, K.N.; Uma Shaanker, R.; Oelmüller, R. An Endophytic Trichoderma Strain Promotes Growth of Its Hosts and Defends Against Pathogen Attack. Front. Plant Sci. 2020, 11, 573670. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in, 2022, a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef]
- Boraston, A.B.; Bolam, D.N.; Gilbert, H.J.; Davies, G.J. Carbohydrate-binding modules: Fine-tuning polysaccharide recognition. Biochem. J. 2004, 382, 769–781. [Google Scholar] [CrossRef]
- Pires, V.M.R.; Henshaw, J.L.; Prates, J.A.M.; Bolam, D.N.; Ferreira, L.M.A.; Fontes, C.M.G.A.; Henrissat, B.; Planas, A.; Gilbert, H.J.; Czjzek, M. The crystal structure of the family 6 carbohydrate binding module from Cellvibrio mixtus endoglucanase 5a in complex with oligosaccharides reveals two distinct binding sites with different ligand specificities. J. Biol. Chem. 2004, 279, 21560–21568. [Google Scholar] [CrossRef]
- Schallus, T.; Fehér, K.; Sternberg, U.; Rybin, V.; Muhle-Goll, C. Analysis of the specific interactions between the lectin domain of malectin and diglucosides. Glycobiology 2010, 20, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pérez, F.; Vivar, T.; Pomar, F.; Pedreño, M.A.; Novo-Uzal, E. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana. J. Plant Physiol. 2015, 175, 86–94. [Google Scholar] [CrossRef]
- Barros, J.; Escamilla-Trevino, L.; Song, L.; Rao, X.; Serrani-Yarce, J.C.; Palacios, M.D.; Engle, N.; Choudhury, F.K.; Tschaplinski, T.J.; Venables, B.J.; et al. 4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nat. Commun. 2019, 10, 1994. [Google Scholar] [CrossRef]
- Asai, T.; Tena, G.; Plotnikova, J.; Willmann, M.R.; Chiu, W.-L.; Gomez-Gomez, L.; Boller, T.; Ausubel, F.M.; Sheen, J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 2002, 415, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ehrhardt, D.W.; Somerville, C.R. Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase. Proc. Natl. Acad. Sci. USA 2010, 107, 17188–17193. [Google Scholar] [CrossRef]
- Jones, D.M.; Murray, C.M.; Ketelaar, K.J.; Thomas, J.J.; Villalobos, J.A.; Wallace, I.S. The emerging role of protein phosphorylation as a critical regulatory mechanism controlling cellulose biosynthesis. Front. Plant Sci. 2016, 7, 684. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lei, L.; Yingling, Y.G.; Gu, Y. Microtubules and cellulose biosynthesis: The emergence of new players. Curr. Opin. Plant Biol. 2015, 28, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Endler, A.; Kesten, C.; Schneider, R.; Zhang, Y.; Ivakov, A.; Froehlich, A.; Funke, N.; Persson, S. A mechanism for sustained cellulose synthesis during salt stress. Cell 2015, 162, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Speicher, T.L.; Li, P.Z.; Wallace, I.S. Phosphoregulation of the Plant Cellulose Synthase Complex and Cellulose Synthase-Like Proteins. Plants 2018, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Li, S.; Gu, Y. Cellulose synthase interactive protein 1 (CSI1) mediates the intimate relationship between cellulose microfibrils and cortical microtubules. Plant Signal. Behav. 2012, 7, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Singh, A.; Bashline, L.; Li, S.; Yingling, Y.G.; Gu, Y. CELLULOSE SYNTHASE INTERACTIVE1 is required for fast recycling of cellulose synthase complexes to the plasma membrane in Arabidopsis. Plant Cell 2015, 27, 2926–2940. [Google Scholar] [CrossRef] [PubMed]
- Stefano, G.; Renna, L.; Rossi, M.; Azzarello, E.; Pollastri, S.; Brandizzi, F.; Baluska, F.; Mancuso, S. AGD5 is a GTPase-activating protein at the trans-Golgi network. Plant J. Cell Mol. Biol. 2010, 64, 790–799. [Google Scholar] [CrossRef]
- Kirchhelle, C.; Garcia-Gonzalez, D.; Irani, N.G.; Jérusalem, A.; Moore, I. Two mechanisms regulate directional cell growth in Arabidopsis lateral roots. eLife 2019, 8, e47988. [Google Scholar] [CrossRef]
- Hirano, T.; Matsuzawa, T.; Takegawa, K.; Sato, M.H. Loss-of-function and gain-of-function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic developmental abnormalities in Arabidopsis. Plant Physiol. 2011, 155, 797–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brillada, C.; Zheng, J.; Krüger, F.; Rovira-Diaz, E.; Askani, J.C.; Schumacher, K.; Rojas-Pierce, M. Phosphoinositides control the localization of HOPS subunit VPS41, which together with VPS33 mediates vacuole fusion in plants. Proc. Natl. Acad. Sci. USA 2018, 115, E8305–E8314. [Google Scholar] [CrossRef]
- Frick, E.M.; Strader, L.C. Kinase MPK17 and the peroxisome division factor PMD1 influence salt-induced peroxisome proliferation. Plant Physiol. 2018, 176, 340–351. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Wang, X.; Liu, N.; Xu, B.; Peng, Q.; Guo, Z.; Fan, B.; Zhu, C.; Chen, Z. Arabidopsis endoplasmic reticulum-localized UBAC2 proteins interact with PAMP-INDUCED COILED-COIL to regulate pathogen-induced callose deposition and plant immunity. Plant Cell 2019, 31, 153–171. [Google Scholar] [CrossRef]
- Pattathil, S.; Harper, A.D.; Bar-Peled, M. Biosynthesis of UDP-xylose: Characterization of membrane-bound AtUxs2. Planta 2005, 221, 538–548. [Google Scholar] [CrossRef]
- Kuang, B.; Zhao, X.; Zhou, C.; Zeng, W.; Ren, J.; Ebert, B.; Beahan, C.T.; Deng, X.; Zeng, Q.; Zhou, G.; et al. Role of UDP-glucuronic acid decarboxylase in xylan biosynthesis in Arabidopsis. Mol. Plant 2016, 9, 1119–1131. [Google Scholar] [CrossRef]
- Zhong, R.; Teng, Q.; Haghighat, M.; Yuan, Y.; Furey, S.T.; Dasher, R.L.; Ye, Z.-H. Cytosol-localized UDP-xylose synthases provide the major source of UDP-Xylose for the biosynthesis of xylan and xyloglucan. Plant Cell Physiol. 2017, 58, 156–174. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Wu, J.H.; Xiao, W.H.; Chen, W.; Chen, Q.H.; Fan, T.; Xie, C.P.; Tian, C.-E. Arabidopsis IQM4, a novel calmodulin-binding protein, is involved with seed dormancy and germination in Arabidopsis. Front. Plant Sci. 2018, 9, 721. [Google Scholar] [CrossRef]
- Chen, D.-H.; Liu, H.-P.; Li, C.-L. Calcium-dependent protein kinase CPK9 negatively functions in stomatal abscisic acid signaling by regulating ion channel activity in Arabidopsis. Plant Mol. Biol. 2019, 99, 113–122. [Google Scholar] [CrossRef]
- Bi, G.; Zhou, Z.; Wang, W.; Li, L.; Rao, S.; Wu, Y.; Zhang, X.; Menke, F.L.H.; Chen, S.; Zhou, J.-M. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell 2018, 30, 1543–1561. [Google Scholar] [CrossRef]
- Huang, S.; Chen, X.; Zhong, X.; Li, M.; Ao, K.; Huang, J.; Li, X. Plant TRAF proteins regulate NLR immune receptor turnover. Cell Host Microbe 2016, 19, 204–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, F.; Mizoguchi, T.; Yoshida, R.; Ichimura, K.; Shinozaki, K. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol. Cell 2011, 41, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Neriya, Y.; Keima, T.; Iwabuchi, N.; Koinuma, H.; Hagiwara-Komoda, Y.; Ishikawa, K.; Himeno, M.; Maejima, K.; Yamaji, Y.; et al. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana. Plant J. Cell Mol. Biol. 2016, 88, 120–131. [Google Scholar] [CrossRef]
- Wu, G.; Liu, S.; Zhao, Y.; Wang, W.; Kong, Z.; Tang, D. ENHANCED DISEASE RESISTANCE4 associates with CLATHRIN HEAVY CHAIN2 and modulates plant immunity by regulating relocation of EDR1 in Arabidopsis. Plant Cell 2015, 27, 857–873. [Google Scholar] [CrossRef]
- Xie, M.; Sun, J.; Gong, D.; Kong, Y. The Roles of Arabidopsis C1-2i subclass of C2H2-type zinc-finger transcription factors. Genes 2019, 10, 653. [Google Scholar] [CrossRef] [PubMed]
- Schallus, T.; Jaeckh, C.; Fehér, K.; Palma, A.S.; Liu, Y.; Simpson, J.C.; Mackeen, M.; Stier, G.; Gibson, T.J.; Feizi, T.; et al. Malectin: A novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol. Biol. Cell 2008, 19, 3404–3414. [Google Scholar] [CrossRef]
- Galli, C.; Bernasconi, R.; Soldà, T.; Calanca, V.; Molinari, M. Malectin participates in a backup glycoprotein quality control pathway in the mammalian ER. PLoS ONE 2011, 6, e16304. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Qin, S.-Y.; Matsumoto, N.; Yamamoto, K. Association of malectin with ribophorin I is crucial for attenuation of misfolded glycoprotein secretion. Biochem. Biophys. Res. Commun. 2014, 454, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Tannous, A.; Pisoni, G.B.; Hebert, D.N.; Molinari, M. N-linked sugar-regulated protein folding and quality control in the ER. Semin. Cell Dev. Biol. 2015, 41, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, H.J.; Knox, J.P.; Boraston, A.B. Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr. Opin. Struct. Biol. 2013, 23, 669–677. [Google Scholar] [CrossRef]
- Duan, C.-J.; Feng, Y.-L.; Cao, Q.-L.; Huang, M.-Y.; Feng, J.-X. Identification of a novel family of carbohydrate-binding modules with broad ligand specificity. Sci. Rep. 2016, 6, 19392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussan, R.H.; Dubery, I.A.; Piater, L.A. Identification of MAMP-responsive plasma membrane-associated proteins in Arabidopsis thaliana following challenge with different LPS chemotypes from Xanthomonas campestris. Pathogens 2020, 9, 787. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Goring, D.R. Two subgroups of receptor-like kinases promote early compatible pollen responses in the Arabidopsis thaliana pistil. J. Exp. Bot. 2021, 72, 1198–1211. [Google Scholar] [CrossRef]
- Li, X.; Sanagi, M.; Lu, Y.; Nomura, Y.; Stolze, S.C.; Yasuda, S.; Saijo, Y.; Schulze, W.X.; Feil, R.; Stitt, M.; et al. Protein phosphorylation dynamics under carbon/nitrogen-nutrient stress and identification of a cell death-related receptor-like kinase in Arabidopsis. Front. Plant Sci. 2020, 11, 377. [Google Scholar] [CrossRef]
- Qutob, D.; Kemmerling, B.; Brunner, F.; Küfner, I.; Engelhardt, S.; Gust, A.A.; Luberacki, B.; Seitz, H.U.; Stahl, D.; Rauhut, T.; et al. Phytotoxicity and innate immune responses induced by Nep1-Like proteins. Plant Cell 2006, 18, 3721–3744. [Google Scholar] [CrossRef]
- Hok, S.; Allasia, V.; Andrio, E.; Naessens, E.; Ribes, E.; Panabières, F.; Attard, A.; Ris, N.; Clément, M.; Barlet, X.; et al. The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in Arabidopsis. Plant Physiol. 2014, 166, 1506–1518. [Google Scholar] [CrossRef]
- Xu, P.; Xu, S.-L.; Li, Z.-J.; Tang, W.; Burlingame, A.L.; Wang, Z.-Y. A brassinosteroid-signaling kinase interacts with multiple receptor-like kinases in Arabidopsis. Mol. Plant 2014, 7, 441–444. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Z.; Wu, D.; Yu, F. RALF-FERONIA signaling: Linking plant immune response with cell growth. Plant Commun. 2020, 1, 100084. [Google Scholar] [CrossRef]
- Yang, H.; Wang, D.; Guo, L.; Pan, H.; Yvon, R.; Garman, S.; Wu, H.-M.; Cheung, A.Y. Malectin/Malectin-like domain-containing proteins: A repertoire of cell surface molecules with broad functional potential. Cell Surf. 2021, 7, 100056. [Google Scholar] [CrossRef] [PubMed]
- Scarpeci, T.E.; Zanor, M.I.; Mueller-Roeber, B.; Valle, E.M. Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Mol. Biol. 2013, 83, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-J.; Huang, S.; Zhang, A.; Guo, P.; Liu, Y.; Xu, C.; Cong, W.; Liu, B.; Xu, Z.-Y. JMJ17-WRKY40 and HY5-ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis. New Phytol. 2021, 230, 567–584. [Google Scholar] [CrossRef]
- Wu, Y.; Xun, Q.; Guo, Y.; Zhang, J.; Cheng, K.; Shi, T.; He, K.; Hou, S.; Gou, X.; Li, J. Genome-wide expression pattern analyses of the arabidopsis leucine-rich repeat receptor-like kinases. Mol. Plant 2016, 9, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Bednarek, P. Chemical warfare or modulators of defence responses—The function of secondary metabolites in plant immunity. Curr. Opin. Plant Biol. 2012, 15, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, A.; Hashimoto, Y.; Tanaka, C.; Dubouzet, J.G.; Nakao, T.; Matsuda, F.; Nishioka, T.; Miyagawa, H.; Wakasa, K. The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J. Cell Mol. Biol. 2008, 54, 481–495. [Google Scholar] [CrossRef]
- Consonni, C.; Bednarek, P.; Humphry, M.; Francocci, F.; Ferrari, S.; Harzen, A.; Ver Loren van Themaat, E.; Panstruga, R. Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiol. 2010, 152, 1544–1561. [Google Scholar] [CrossRef]
- Hiruma, K.; Fukunaga, S.; Bednarek, P.; Piślewska-Bednarek, M.; Watanabe, S.; Narusaka, Y.; Shirasu, K.; Takano, Y. Glutathione and tryptophan metabolism are required for Arabidopsis immunity during the hypersensitive response to hemibiotrophs. Proc. Natl. Acad. Sci. USA 2013, 110, 9589–9594. [Google Scholar] [CrossRef]
- Clay, N.K.; Adio, A.M.; Denoux, C.; Jander, G.; Ausubel, F.M. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 2009, 323, 95–101. [Google Scholar] [CrossRef]
- Underwood, W.; Somerville, S.C. Phosphorylation is required for the pathogen defense function of the Arabidopsis PEN3 ABC transporter. Plant Signal. Behav. 2017, 12, e1379644. [Google Scholar] [CrossRef]
- Vadassery, J.; Reichelt, M.; Hause, B.; Gershenzon, J.; Boland, W.; Mithöfer, A. CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol. 2012, 159, 1159–1175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, D.; Elberse, J.; Qi, L.; Shi, W.; Peng, Y.-L.; Schuurink, R.C.; Van den Ackerveken, G.; Liu, J. Structure-guided analysis of Arabidopsis JASMONATE-INDUCED OXYGENASE (JOX) 2 reveals key residues for recognition of jasmonic acid substrate by plant JOXs. Mol. Plant 2021, 14, 820–828. [Google Scholar] [CrossRef]
- Caarls, L.; Elberse, J.; Awwanah, M.; Ludwig, N.R.; de Vries, M.; Zeilmaker, T.; Van Wees, S.C.M.; Schuurink, R.C.; Van den Ackerveken, G. Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proc. Natl. Acad. Sci. USA 2017, 114, 6388–6393. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, E.; Marquis, V.; Poirier, L.; Aubert, Y.; Zumsteg, J.; Ménard, R.; Miesch, L.; Heitz, T. Jasmonic Acid Oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea Infection. Mol. Plant 2017, 10, 1159–1173. [Google Scholar] [CrossRef] [Green Version]
Process | Accession No. | Annotation | log2FoldChange | padj |
---|---|---|---|---|
Tryptophan biosynthesis | AT3G54640 | TSA1 | 2.93 | 1.54 × 10−46 |
AT5G05730 | ASA1 | 3.83 | 4.27 × 10−67 | |
AT1G25220 | ASB1 | 3.43 | 8.09 × 10−83 | |
Flagellin perception/callose deposition/wall thickening/indolic glucosinolate biosynthesis | AT5G46330 | FLS2 | 1.93 | 6.18 × 10−11 |
AT2G19190 | FRK1 | 2.22 | 4.26 × 10−15 | |
AT4G23550 | WRKY29 | 1.37 | 4.38 × 10−10 | |
AT1G18570 | MYB51 | 3.67 | 1.76 × 10−45 | |
AT1G24100 | UGT74B1 | 2.23 | 4.37 × 10−31 | |
AT5G57220 | CYP81F2 | 3.59 | 8.92 × 10−11 | |
AT4G31500 | CYP83B1/SUR2 | 2.79 | 8.38 × 10−29 | |
AT1G59870 | ABCG36 | 1.46 | 2.00 × 10−9 | |
AT2G44490 | PEN2 | 0.89 | 2.35 × 10−7 | |
AT4G03550 | PMR4 | 0.73 | 2.97 × 10−4 | |
Camalexin biosynthesis | AT3G26830 | CYP71B15/PAD3 | 1.89 | 3.08 × 10−4 |
Jasmonic acid biosynthesis | AT1G55020 | LOX1 | 1.87 | 5.91 × 10−61 |
AT1G17420 | LOX3 | 3.53 | 2.31 × 10−6 | |
AT1G72520 | LOX4 | 2.44 | 1.69 × 10−18 | |
Glucosinolate biosynthesis | AT1G74100 | SOT16 | 2.52 | 3.37 × 10−35 |
AT1G18590 | SOT17 | 2.78 | 2.18 × 10−25 | |
Phenylpropanoid metabolism/biosynthesis | AT2G37040 | PAL1 | 1.55 | 2.79 × 10−15 |
AT2G30490 | C4H | 1.65 | 1.75 × 10−20 | |
AT1G51680 | 4CL1 | 2.08 | 7.53 × 10−26 | |
AT1G67980 | CCOAOMT | 3.67 | 6.47 × 10−5 | |
AT4G34230 | CAD5 | 1.60 | 6.77 × 10−10 | |
AT1G14540 | PER4 | 2.44 | 1.93 × 10−22 | |
Leaf senescence | AT5G24110 | WRKY30 | 3.29 | 7.20 × 10−16 |
ABA signaling | AT1G80840 | WRKY40 | 2.75 | 6.59 × 10−9 |
Plant-pathogen interaction | AT2G19990 | PR-1-Like | -2.62 | 1.59 × 10−6 |
Comparison | UniProt Accession No. | Annotation | Peptide Sequence | Modifications in Proteins | Corrected Fold Change | Ratio-Adjusted p-Value |
---|---|---|---|---|---|---|
5 min | Q9XIE2 | ABCG36 | RTQSVNDDEEALK | Q9XIE2 1xPhospho [S45(100)] | 10.64 | 1.74 × 10−2 |
Q9XIE2 | ABCG36 | TQSVNDDEEALK | Q9XIE2 1xPhospho [S45(100)] | 6.97 | 8.76 × 10−3 | |
Q9XIE2 | ABCG36 | NIEDIFSSGSR | Q9XIE2 1xPhospho [S40(99.4)] | 4.32 | 9.41 × 10−3 | |
Q9XIE2 | ABCG36 | NIEDIFSSGSRR | Q9XIE2 1xPhospho [S40(99.7)] | 2.50 | 4.26 × 10−4 | |
Q9FL69 | AGD5 | MESAATPVER | Q9FL69 1xPhospho [T206(100)] | 17.18 | 1.18 × 10−2 | |
Q9C636 | CC1 | TDSEVTSLAASSPARSPR | Q9C636 2xPhospho [S16(100); S20(100)] | 2.36 | 4.08 × 10−2 | |
Q9C636 | CC1 | TDSEVTSLAASSPARSPR | Q9C636 1xPhospho [S20(100)] | 2.24 | 2.01 × 10−2 | |
F4ISU2 | PICC | DIDLSFSSPTKR | F4ISU2 1xPhospho [S1274(99.6)] | 5.71 | 3.55 × 10−3 | |
F4ISU2 | PICC | SRDIDLSFSSPTK | F4ISU2 1xPhospho [S1274(100)] | 3.28 | 8.22 × 10−3 | |
F4ISU2 | PICC | DIDLSFSSPTK | F4ISU2 1xPhospho [S1274(99.7)] | 2.80 | 1.89 × 10−2 | |
Q941L0 | CESA3 | RLPYSSDVNQSPNR | Q941L0 1xPhospho [S176(100)] | 2.80 | 3.76 × 10−3 | |
Q38868 | CPK9 | AAAAAPGLSPK | Q38868 1xPhospho [S69(100)] | 4.10 | 6.33 × 10−3 | |
F4IIM1 | CSI1 | MHDSEPPTPHSTTK | F4IIM1 1xPhospho [T37(100)] | 6.28 | 2.56 × 10−2 | |
Q9FMM3 | EXA1 | VLSSPVVTQASHK | Q9FMM3 1xPhospho [S1553(99.6)] | 4.87 | 3.21 × 10−4 | |
Q9LUM0 | FAB1B | VAYPVSPALPSK | Q9LUM0 1xPhospho [S1321(100)] | 15.97 | 4.24 × 10−4 | |
Q9SCZ4 | FER | TGPTLDHTHVSTVVK | Q9SCZ4 1xPhospho [S695(99.2)] | 6.69 | 4.92 × 10−3 | |
O64851 | IQM4 | FPSPYGPIPSPRPSPR | O64851 2xPhospho [S505(100); S509(100)] | 921.45 | 2.27 × 10−3 | |
F4JVX1; O64851 | IQM4 | LAYMGIPSPR | F4JVX1 1xPhospho [S520(100)]; O64851 1xPhospho [S525(100)] | 45.79 | 1.31 × 10−5 | |
Q9FFF6 | JOX2 | SHVESHISPR | Q9FFF6 1xPhospho [S369(100)] | 4.19 | 2.42 × 10−4 | |
F4HRJ4 | MAPKKK3 | VASTSLPK | F4HRJ4 1xPhospho [T/S] | 2.32 | 1.68 × 10−2 | |
B3H653 | MPK3 | EATNLIPSPR | B3H653 1xPhospho [S16(100)] | 17.07 | 1.53 × 10−2 | |
Q39026 | MPK6 | VTSESDFMTEYVVTR | Q39026 1xPhospho [Y223(100)] | 239.27 | 4.67 × 10−3 | |
Q39026 | MPK6 | VTSESDFMTEYVVTR | Q39026 1xPhospho [T221(100)] | 29.15 | 3.22 × 10−3 | |
P28187 | RABA5C | QLNSDSYKEELTVNR | P28187 1xPhospho [S186(100)] | 2.21 | 2.47 × 10−2 | |
Q9FIJ0 | RBOHD | ILSQMLSQK | Q9FIJ0 1xPhospho [S347(100)] | −29.59 | 3.20 × 10−3 | |
Q94F62; Q94AG2 | SERK1 | DTHVTTAVR | Q94F62 1xPhospho [T450(99.5)]; Q94AG2 1xPhospho [T463(99.5)] | 15.22 | 8.50 × 10−4 | |
Q39233 | SYP21 | MSFQDLEAGTRSPAPNR | Q39233 1xMet-loss+Acetyl [N-Term]; 1xPhospho [S12(99.2)] | 65.82 | 1.67 × 10−4 | |
A8MQL1 | TRAF1B | STAVLSSPR | A8MQL1 1xPhospho [S716(100)] | 9.72 | 1.53 × 10−4 | |
F4KHU8 | UXS3 | QNTTKPPPSPSPLR | F4KHU8 1xPhospho [S31(100)] | 3.13 | 4.96 × 10−3 | |
Q39160 | XI-1 | AGATGSITTPR | Q39160 1xPhospho [T1195(100)] | 5.97 | 2.51 × 10−2 | |
15 min | Q9FL69 | AGD5 | MESAATPVER | Q9FL69 1xPhospho [T206(100)] | 16.41 | 6.12 × 10−5 |
F4ISU2 | PICC | DIDLSFSSPTKR | F4ISU2 1xPhospho [S1274(99.6)] | 5.71 | 3.55 × 10−3 | |
F4ISU2 | PICC | DIDLSFSSPTKR | F4ISU2 1xPhospho [S1274(99.6)] | 5.40 | 4.15 × 10−2 | |
F4ISU2 | PICC | DIDLSFSSPTK | F4ISU2 1xPhospho [S1274(99.7)] | 4.42 | 2.98 × 10−2 | |
Q38868 | CPK9 | AAAAAPGLSPK | Q38868 1xPhospho [S69(100)] | 5.02 | 1.51 × 10−2 | |
Q9FHK4 | EDR4 | SLQLEGPGGR | Q9FHK4 1xPhospho [S322(100)] | 5.44 | 7.39 × 10−3 | |
Q9FMM3 | EXA1 | MTTSSHPPPSPVPTTQK | Q9FMM3 1xPhospho [S1449(100)] | 43.54 | 1.45 × 10−2 | |
F4JVX1; O64851 | IQM4 | LAYMGIPSPR | F4JVX1 1xPhospho [S520(100)]; O64851 1xPhospho [S525(100)] | 844.25 | 6.30 × 10−5 | |
F4JVX1; O64851 | IQM4 | LAYMGIPSPR | F4JVX1 1xPhospho [S520(100)]; O64851 1xPhospho [S525(100)] | 99.10 | 1.57 × 10−3 | |
O64851 | IQM4 | FPSPYGPIPSPRPSPR | O64851 2xPhospho [S505(100); S509(100)] | 355.82 | 3.33 × 10−5 | |
Q84M93 | MPK17 | LEEHNDDEEEHNSPPHQR | Q84M93 1xPhospho [S397(100)] | 51.33 | 5.67 × 10−3 | |
B3H653 | MPK3 | EATNLIPSPR | B3H653 1xPhospho [S16(100)] | 196.12 | 3.60 × 10−2 | |
Q39026 | MPK6 | VTSESDFMTEYVVTR | Q39026 1xPhospho [T221(100)] | 33.63 | 6.00 × 10−4 | |
Q9LM33 | MPK8 | HHASLPR | Q9LM33 1xPhospho [S495(100)] | −3.12 | 8.53 × 10−3 | |
Q9LRP1 | NPSN13 | ELKDEEARNSPEVNK | Q9LRP1 1xPhospho [S74(100)] | −184.99 | 1.13 × 10−2 | |
Q93YU5 | SEC8 | ASQHDINTPR | Q93YU5 1xPhospho [T482(100)] | 88.63 | 1.71 × 10−2 | |
A8MQL1 | TRAF1B | STAVLSSPR | A8MQL1 1xPhospho [S716(100)] | −3.01 | 2.55 × 10−2 | |
F4KHU8 | UXS3 | QNTTKPPPSPSPLR | F4KHU8 1xPhospho [S31(100)] | 4.48 | 1.22 × 10−2 | |
Q9SN95 | UXS5 | QTSPKPPPSPSPLR | Q9SN95 2xPhospho [S15(100); T/S] | 3.13 | 1.18 × 10−2 | |
P93043 | VPS41 | REDNNRSSFSQR | P93043 1xPhospho [S860(99.7)] | 351.09 | 7.54 × 10−3 | |
Q96289 | ZAT10 | MALEALTSPR | Q96289 1xMet-loss+Acetyl [N-Term]; 1xPhospho [S8(100)] | 2765.33 | 1.77 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, Y.-H.; Scholz, S.S.; Fliegmann, J.; Krüger, T.; Gandhi, A.; Furch, A.C.U.; Kniemeyer, O.; Brakhage, A.A.; Oelmüller, R. CORK1, A LRR-Malectin Receptor Kinase, Is Required for Cellooligomer-Induced Responses in Arabidopsis thaliana. Cells 2022, 11, 2960. https://doi.org/10.3390/cells11192960
Tseng Y-H, Scholz SS, Fliegmann J, Krüger T, Gandhi A, Furch ACU, Kniemeyer O, Brakhage AA, Oelmüller R. CORK1, A LRR-Malectin Receptor Kinase, Is Required for Cellooligomer-Induced Responses in Arabidopsis thaliana. Cells. 2022; 11(19):2960. https://doi.org/10.3390/cells11192960
Chicago/Turabian StyleTseng, Yu-Heng, Sandra S. Scholz, Judith Fliegmann, Thomas Krüger, Akanksha Gandhi, Alexandra C. U. Furch, Olaf Kniemeyer, Axel A. Brakhage, and Ralf Oelmüller. 2022. "CORK1, A LRR-Malectin Receptor Kinase, Is Required for Cellooligomer-Induced Responses in Arabidopsis thaliana" Cells 11, no. 19: 2960. https://doi.org/10.3390/cells11192960
APA StyleTseng, Y.-H., Scholz, S. S., Fliegmann, J., Krüger, T., Gandhi, A., Furch, A. C. U., Kniemeyer, O., Brakhage, A. A., & Oelmüller, R. (2022). CORK1, A LRR-Malectin Receptor Kinase, Is Required for Cellooligomer-Induced Responses in Arabidopsis thaliana. Cells, 11(19), 2960. https://doi.org/10.3390/cells11192960