Dexras1 Induces Dysdifferentiation of Oligodendrocytes and Myelin Injury by Inhibiting the cAMP-CREB Pathway after Subarachnoid Hemorrhage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Study Design
2.2. SAH Model Conducted by Means of Endovascular Perforation
2.3. Drug and Lentiviral Vector Administration
2.3.1. Lentiviral Transfections for the In Vitro Model of SAH
2.3.2. Dexras1 Up- and Downregulation in the In Vivo Model of SAH
2.4. Evaluation of Short-Term Neurobehavioral Functions and Brain Water Content Detect
2.5. Morris Water Maze (MWM)
2.6. Cell Culture of Primary Cortical Neurons
2.7. Incubation of Neuronal Cells with Oxyhemoglobin for the Model of SAH In Vitro
2.8. In Vitro Culture of OLN-93 Rat Oligodendroglia Cells
2.9. Differentiation of OLN-93 Cells
2.10. OLN-93 Cell Differentiation in Co-Culture with Neurons in an In Vitro Model of SAH
2.11. Western Blot Analysis
2.12. Double Immunofluorescence Staining
2.13. RNA Isolation and Quantitative RT-PCR
2.14. Enzyme-Linked Immunosorbent Assay (ELISA)
2.15. Transmission Electron Microscopy (TEM)
2.16. Statistical Analysis
3. Results
3.1. Differentiation Disorders of Oligodendrocyte Precursor Cells and Myelin Damage after Subarachnoid Hemorrhage
3.2. Dexras1, TNF-α, and IL-1β Brain Expression Was Raised along with Glial Cell Activation after SAH In Vivo
3.3. The Role of Dexras1 in Glial Cell Activation, Cerebral White Matter Demyelination, and Differentiation of Oligodendrocyte Precursor Cells after SAH In Vivo
3.4. Dexras1 Significantly Aggravated Neurological Deficits after SAH In Vivo
3.5. Dysdifferentiation of Oligodendrocyte Precursor Cells Occurred in the In Vitro SAH and Was Susceptible to Dextras1 Modulation
3.6. Dexras1 May Inhibit the Differentiation of Oligodendrocyte Precursor Cells through the cAMP-CREB Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lawton, M.T.; Vates, G.E. Subarachnoid Hemorrhage. N. Engl. J. Med. 2017, 377, 257–266. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Schweizer, T.A. Spontaneous subarachnoid haemorrhage. Lancet 2017, 389, 655–666. [Google Scholar] [CrossRef]
- Chen, S.; Feng, H.; Sherchan, P.; Klebe, D.; Zhao, G.; Sun, X.; Zhang, J.; Tang, J.; Zhang, J.H. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog. Neurobiol. 2014, 115, 64–91. [Google Scholar] [CrossRef]
- Cahill, W.J.; Calvert, J.H.; Zhang, J.H. Mechanisms of early brain injury after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 2006, 26, 1341–1353. [Google Scholar] [CrossRef] [PubMed]
- Egashira, Y.; Zhao, H.; Hua, Y.; Keep, R.F.; Xi, G. White Matter Injury After Subarachnoid Hemorrhage: Role of Blood-Brain Barrier Disruption and Matrix Metalloproteinase-9. Stroke 2015, 46, 2909–2915. [Google Scholar] [CrossRef]
- Wong, G.K.; Lam, S.W.; Wong, A.; Mok, V.; Siu, D.; Ngai, K.; Poon, W.S. Early MoCA-assessed cognitive impairment after aneurysmal subarachnoid hemorrhage and relationship to 1-year functional outcome. Transl. Stroke Res. 2014, 5, 286–291. [Google Scholar] [CrossRef]
- Iadecola, C.; Park, L.; Capone, C. Threats to the mind: Aging, amyloid, and hypertension. Stroke 2009, 40 (Suppl. S3), S40–S44. [Google Scholar] [CrossRef]
- Kuhlmann, T.; Miron, V.; Cui, Q.; Wegner, C.; Antel, J.; Bruck, W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 2008, 131 Pt 7, 1749–1758. [Google Scholar] [CrossRef]
- Khan, R.S.; Baumann, B.; Dine, K.; Song, Y.; Dunaief, J.L.; Kim, S.F.; Shindler, K.S. Dexras1 Deletion and Iron Chelation Promote Neuroprotection in Experimental Optic Neuritis. Sci. Rep. 2019, 9, 11664. [Google Scholar] [CrossRef]
- Fang, M.; Jaffrey, S.R.; Sawa, A.; Ye, K.; Luo, X.; Snyder, S.H. Dexras1: A G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 2000, 28, 183–193. [Google Scholar] [CrossRef]
- Greenwood, M.P.; Greenwood, M.; Mecawi, A.S.; Antunes-Rodrigues, J.; Paton, J.F.; Murphy, D. Rasd1, a small G protein with a big role in the hypothalamic response to neuronal activation. Mol. Brain 2016, 9, 1. [Google Scholar] [CrossRef]
- Duris, K.; Manaenko, A.; Suzuki, H.; Rolland, W.B.; Krafft, P.R.; Zhang, J.H. α7 nicotinic acetylcholine receptor agonist PNU-282987 attenuates early brain injury in a perforation model of subarachnoid hemorrhage in rats. Stroke 2011, 42, 3530–3536. [Google Scholar] [CrossRef] [PubMed]
- Mielke, D.; Bleuel, K.; Stadelmann, C.; Rohde, V.; Malinova, V. The ESAS-score: A histological severity grading system of subarachnoid hemorrhage using the modified double hemorrhage model in rats. PLoS ONE 2020, 15, e0227349. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, T.; Ayer, R.; Jadhav, V.; Zhang, J.H. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J. Neurosci. Methods 2008, 167, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.A.; Unti, M.J.; Aleshe, B.; Brown, D.; Osborne, K.S.; Koziol, C.; Ayoub, P.G.; Smith, O.B.; O’Brien, R.; Tam, C.; et al. Improved Titer and Gene Transfer by Lentiviral Vectors Using Novel, Small β-Globin Locus Control Region Elements. Mol. Therapy. 2020, 28, 328–340. [Google Scholar] [CrossRef]
- Lou, G.; Chen, L.; Xia, C.; Wang, W.; Qi, J.; Li, A.; Zhao, L.; Chen, Z.; Zheng, M.; Liu, Y. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. J. Exp. Clin. Cancer Res. 2020, 39, 4. [Google Scholar] [CrossRef]
- Huang, J.Z.; Ren, Y.; Jiang, Y.; Shen, S.Y.; Ding, J.; Hua, F. GluR1 protects hypoxic ischemic brain damage via activating Akt signaling pathway in neonatal rats. Eur. Rev. Med Pharmacol. Sci. 2018, 22, 8857–8865. [Google Scholar]
- Mo, J.; Enkhjargal, B.; Travis, Z.D.; Zhou, K.; Wu, P.; Zhang, G.; Zhu, Q.; Zhang, T.; Peng, J.; Xu, W.; et al. AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats. Redox Biol. 2019, 20, 75–86. [Google Scholar] [CrossRef]
- Zhao, Q.; Che, X.; Zhang, H.; Fan, P.; Tan, G.; Liu, L.; Jiang, D.; Zhao, J.; Xiang, X.; Liang, Y.; et al. Thioredoxin-interacting protein links endoplasmic reticulum stress to inflammatory brain injury and apoptosis after subarachnoid haemorrhage. J. Neuroinflamm. 2017, 14, 104. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Yang, S.; Wang, H.; Qiao, Z.; Zhao, H.; Qu, Z. CIRBP Ameliorates Neuronal Amyloid Toxicity via Antioxidative and Antiapoptotic Pathways in Primary Cortical Neurons. Oxidative Med. Cell. Longev. 2020, 2020, 2786139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wu, P.; Zhang, J.H.; Li, Y.; Xu, S.; Wang, C.; Wang, L.; Zhang, G.; Dai, J.; Zhu, S.; et al. Docosahexaenoic Acid Alleviates Oxidative Stress-Based Apoptosis Via Improving Mitochondrial Dynamics in Early Brain Injury After Subarachnoid Hemorrhage. Cell. Mol. Neurobiol. 2018, 38, 1413–1423. [Google Scholar] [CrossRef] [PubMed]
- Van Meeteren, M.E.; Koetsier, M.A.; Dijkstra, C.D.; van Tol, E.A. Markers for OLN-93 oligodendroglia differentiation. Brain research. Dev. Brain Res. 2005, 156, 78–86. [Google Scholar] [CrossRef]
- Choi, E.H.; Xu, Y.; Medynets, M.; Monaco, M.C.G.; Major, E.O.; Nath, A.; Wang, T. Activated T cells induce proliferation of oligodendrocyte progenitor cells via release of vascular endothelial cell growth factor-A. Glia 2018, 66, 2503–2513. [Google Scholar] [CrossRef]
- Yang, C.; Li, T.; Xue, H.; Wang, L.; Deng, L.; Xie, Y.; Bai, X.; Xin, D.; Yuan, H.; Qiu, J.; et al. Inhibition of Necroptosis Rescues SAH-Induced Synaptic Impairments in Hippocampus via CREB-BDNF Pathway. Front. Neurosci. 2018, 12, 990. [Google Scholar] [CrossRef]
- Simard, J.M.; Tosun, C.; Ivanova, S.; Kurland, D.B.; Hong, C.; Radecki, L.; Gisriel, C.; Mehta, R.; Schreibman, D.; Gerzanich, V. Heparin reduces neuroinflammation and transsynaptic neuronal apoptosis in a model of subarachnoid hemorrhage. Transl. Stroke Res. 2012, 3 (Suppl. S1), 155–165. [Google Scholar] [CrossRef] [PubMed]
- Desai, R.A.; Davies, A.L.; Del Rossi, N.; Tachrount, M.; Dyson, A.; Gustavson, B.; Kaynezhad, P.; MacKenzie, L.E.; Van Der Putten, M.A.; McElroy, D.; et al. Nimodipine Reduces Dysfunction and Demyelination in Models of Multiple Sclerosis. Ann. Neurol. 2020, 88, 123–136. [Google Scholar] [CrossRef]
- Joseph, M.J.; Caliaperumal, J.; Schlichter, L.C. After Intracerebral Hemorrhage, Oligodendrocyte Precursors Proliferate and Differentiate Inside White-Matter Tracts in the Rat Striatum. Transl. Stroke Res. 2016, 7, 192–208. [Google Scholar] [CrossRef]
- Zhang, R.; Xue, M.; Yong, V.W. Central Nervous System Tissue Regeneration after Intracerebral Hemorrhage: The Next Frontier. Cells 2021, 10, 2513. [Google Scholar] [CrossRef] [PubMed]
- Bouchard-Cannon, P.; Lowden, C.; Trinh, D.; Cheng, H.M. Dexras1 is a homeostatic regulator of exercise-dependent proliferation and cell survival in the hippocampal neurogenic niche. Sci. Rep. 2018, 8, 5294. [Google Scholar] [CrossRef]
- Thapliyal, A.; Verma, R.; Kumar, N. Small G Proteins Dexras1 and RHES and Their Role in Pathophysiological Processes. Int. J. Cell Biol. 2014, 2014, 308535. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.Y.; Obrietan, K. Dexras1: Shaping the responsiveness of the circadian clock. Semin. Cell Dev. Biol. 2006, 17, 345–351. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Y.; Chen, J.; Zhang, H.; Ostrowski, R.P.; Liang, Y.; Zhao, J.; Xiang, X.; Liang, F.; Fu, W.; Huang, H.; et al. Dexras1 Induces Dysdifferentiation of Oligodendrocytes and Myelin Injury by Inhibiting the cAMP-CREB Pathway after Subarachnoid Hemorrhage. Cells 2022, 11, 2976. https://doi.org/10.3390/cells11192976
Xin Y, Chen J, Zhang H, Ostrowski RP, Liang Y, Zhao J, Xiang X, Liang F, Fu W, Huang H, et al. Dexras1 Induces Dysdifferentiation of Oligodendrocytes and Myelin Injury by Inhibiting the cAMP-CREB Pathway after Subarachnoid Hemorrhage. Cells. 2022; 11(19):2976. https://doi.org/10.3390/cells11192976
Chicago/Turabian StyleXin, Yuanjun, Jie Chen, Hongxia Zhang, Robert P. Ostrowski, Yidan Liang, Jun Zhao, Xiang Xiang, Fuming Liang, Wenqiao Fu, Hao Huang, and et al. 2022. "Dexras1 Induces Dysdifferentiation of Oligodendrocytes and Myelin Injury by Inhibiting the cAMP-CREB Pathway after Subarachnoid Hemorrhage" Cells 11, no. 19: 2976. https://doi.org/10.3390/cells11192976
APA StyleXin, Y., Chen, J., Zhang, H., Ostrowski, R. P., Liang, Y., Zhao, J., Xiang, X., Liang, F., Fu, W., Huang, H., Wu, X., Su, J., Deng, J., & He, Z. (2022). Dexras1 Induces Dysdifferentiation of Oligodendrocytes and Myelin Injury by Inhibiting the cAMP-CREB Pathway after Subarachnoid Hemorrhage. Cells, 11(19), 2976. https://doi.org/10.3390/cells11192976