The Interplay between the Cellular Response to DNA Double-Strand Breaks and Estrogen
Abstract
:1. Introduction
2. Estrogen Induces DNA Damage in Cells
2.1. DNA Lesions as Byproducts of Estrogen Metabolism
2.2. Induction of Mitochondrial ROS by Estrogen
2.3. DSB Formation at the Promoters of Estrogen-Responsive Genes
2.4. DSB Formation as a Result of R-Loops Formation by Estrogen
3. Estrogen as a Regulator of the Cellular Response to DSBs
3.1. Estrogen Modulates the Expression of DDR Factors
3.1.1. Estrogen Negatively Regulates the Expression of the Key DSB Transducer, ATM
3.1.2. Estrogen Positively Regulates the Expression of Key DSB Repair Factors
3.2. Non-Translational Regulation of DSB Repair by Estrogen
3.3. Estrogen Negatively Regulates the Activity of the DSB Transducer ATR and the Effector Kinase Chk1
4. Regulation of the Expression and Activity of ERα by DSB Factors
4.1. BRCA1 Inhibits the Activity of ERα
4.1.1. BRCA1 Interacts with ERα
4.1.2. BRCA1 Downregulates p300 Expression and Reduces ERα Acetylation and Activity
4.1.3. BRCA1 Monoubiquitinates ERα
4.2. MDC1 Co-Activates ERα-Mediated Transcription
4.3. RNF8 and RNF168 Co-Activate ERα-Mediated Transcription
4.4. DNA-PK Co-Activates ERα-Mediated Transcription
5. Estrogen and DSB Repair Efficiency
6. The Connection between Estrogen Regulation of HRR Genes and Estrogen-Related Cancer Development
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferguson, L.R.; Chen, H.; Collins, A.R.; Connell, M.; Damia, G.; Dasgupta, S.; Malhotra, M.; Meeker, A.K.; Amedei, A.; Amin, A.; et al. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin. Cancer Biol. 2015, 35, S5–S24. [Google Scholar] [CrossRef]
- Bartkova, J.; Hořejší, Z.; Koed, K.; Krämer, A.; Tort, F.; Zleger, K.; Guldberg, P.; Sehested, M.; Nesland, J.M.; Lukas, C.; et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005, 434, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic instability an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 2010, 11, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Cheung-Ong, K.; Giaever, G.; Nislow, C. DNA-Damaging Agents in Cancer Chemotherapy: Serendipity and Chemical Biology. Chem. Biol. 2013, 20, 648–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, J.R.; Taylor, M.R.G.; Boulton, S.J. Playing the End Game: DNA Double-Strand Break Repair Pathway Choice. Mol. Cell 2012, 24, 497–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo, B.; Gómez-González, B.; Aguilera, A. DNA double-strand break repair: How to fix a broken relationship. Cell. Mol. Life Sci. 2009, 66, 1039–1056. [Google Scholar] [CrossRef] [PubMed]
- Riches, L.C.; Lynch, A.M.; Gooderham, N.J. Early events in the mammalian response to DNA double-strand breaks. Mutagenesis 2008, 23, 331–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, J.W.W.; Elledge, S.J.S.J. The DNA Damage Response: Ten Years After. Mol. Cell 2007, 28, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Bartek, J.; Lukas, J. DNA damage checkpoints: From initiation to recovery or adaptation. Curr. Opin. Cell Biol. 2007, 19, 238–245. [Google Scholar] [CrossRef]
- Ayoub, N.; Jeyasekharan, A.D.; Bernal, J.A.; Venkitaraman, A.R. Paving the way for H2AX phosphorylation: Chromatin changes in the DNA damage response. Cell Cycle 2009, 8, 1494–1500. [Google Scholar] [CrossRef]
- Shibata, A.; Jeggo, P.A. ATM’s Role in the Repair of DNA Double-Strand Breaks. Genes 2021, 12, 1370. [Google Scholar] [CrossRef]
- Maréchal, A.; Zou, L.; Maré, A.; Zou, L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 2013, 5, a012716. [Google Scholar] [CrossRef] [PubMed]
- Oha, J.-M.; Myung, K. Crosstalk between different DNA repair pathways for DNA double strand break repairs. Mutat. Res. Genet. Toxicol. Environ. Mutagen 2022, 873, 503438. [Google Scholar] [CrossRef] [PubMed]
- Vu, G.T.H.; Cao, H.X.; Watanabe, K.; Hensel, G.; Blattner, F.R.; Kumlehn, J.; Schubert, I. Repair of Site-Specific DNA Double-Strand Breaks in Barley Occurs via Diverse Pathways Primarily Involving the Sister Chromatid. Plant Cell 2014, 26, 2156–2167. [Google Scholar] [CrossRef] [Green Version]
- Scully, R.; Panday, A.; Elango, R.; Willis, N.A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 2019, 20, 698–714. [Google Scholar] [CrossRef]
- Lieber, M.R. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annu. Rev. Biochem. 2010, 79, 181–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruis, B.L.; Fattah, K.R.; Hendrickson, E.A. The Catalytic Subunit of DNA-Dependent Protein Kinase Regulates Proliferation, Telomere Length, and Genomic Stability in Human Somatic Cells. Mol. Cell. Biol. 2008, 28, 6182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasin, M.; Rothstein, R. Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 2013, 5, a012740. [Google Scholar] [CrossRef]
- Shrivastav, M.; de Haro, L.P.; Nickoloff, J.A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008, 18, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Hirasawa, A. Homologous Recombination Deficiencies and Hereditary Tumors. Int. J. Mol. Sci. 2021, 23, 348. [Google Scholar] [CrossRef] [PubMed]
- Trenner, A.; Sartori, A.A. Harnessing DNA Double-Strand Break Repair for Cancer Treatment. Front. Oncol. 2019, 9, 1388. [Google Scholar] [CrossRef] [Green Version]
- Bogdanova, N.; Helbig, S.; Dörk, T. Hereditary breast cancer: Ever more pieces to the polygenic puzzle. Hered. Cancer Clin. Pract. 2013, 11, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, R.; Zhang, Y.; Feng, W.; Jasin, M. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 2015, 7, a016600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, H.M.; Wang, H.C.; Chen, S.T.; Hsu, G.C.; Shen, C.Y.; Yu, J.C. Breast cancer risk is associated with the genes encoding the DNA double-strand break repair Mre11/Rad50/Nbs1 complex. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 2024–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travis, R.C.; Key, T.J. Oestrogen exposure and breast cancer risk. Breast Cancer Res. 2003, 5, 239–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, S.; Sachdeva, G. Estrogen matters in metastasis. Steroids 2018, 138, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Dall, G.V.; Britt, K.L. Estrogen effects on the mammary gland in early and late life and breast cancer risk. Front. Oncol. 2017, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Collaborative Group on Hormonal Factors in Breast Cancer. Type and timing of menopausal hormone therapy and breast cancer risk: Individual participant meta-analysis of the worldwide epidemiological evidence. Lancet 2019, 394, 1159–1168. [Google Scholar] [CrossRef]
- Wang, K.; Li, F.; Chen, L.; Lai, Y.M.; Zhang, X.; Li, H.Y. Change in risk of breast cancer after receiving hormone replacement therapy by considering effect-modifiers: A systematic review and dose-response meta-analysis of prospective studies. Oncotarget 2017, 8, 81109–81124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyytinen, H.; Pukkala, E.; Ylikorkala, O. Breast cancer risk in postmenopausal women using estrogen-only therapy. Obstet. Gynecol. 2006, 108, 1354–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.J.; Papa, D.; Davis, M.F.; Weroha, S.J.; Aldaz, C.M.; El-Bayoumy, K.; Ballenger, J.; Tawfik, O.; Li, S.A. Ploidy differences between hormone- and chemical carcinogen-induced rat mammary neoplasms: Comparison to invasive human ductal breast cancer. Mol. Carcinog. 2002, 33, 56–65. [Google Scholar] [CrossRef]
- Li, J.J.; Weroha, S.J.; Lingle, W.L.; Papa, D.; Salisbury, J.L.; Li, S.A. Estrogen mediates Aurora-A overexpression, centrosome amplification, chromosomal instability, and breast cancer in female ACI rats. Proc. Natl. Acad. Sci. USA 2004, 101, 18123–18128. [Google Scholar] [CrossRef] [Green Version]
- Caldon, C.E. Estrogen Signaling and the DNA Damage Response in Hormone Dependent Breast Cancers. Front. Oncol. 2014, 4, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, S.; Mäkelä, S.; Treuter, E.; Tujague, M.; Thomsen, J.; Andersson, G.; Enmark, E.; Pettersson, K.; Warner, M.; Gustafsson, J.Å. Mechanisms of estrogen action. Am. Physiol. Soc. 2001, 81, 1535–1565. [Google Scholar] [CrossRef]
- Liang, J.; Shang, Y. Estrogen and Cancer. Annu. Rev. Physiol. 2013, 75, 225–240. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Li, B.; Ou-Yang, L. Role of estrogen receptors in health and disease. Front. Endocrinol. 2022, 13, 1918. [Google Scholar] [CrossRef] [PubMed]
- Kondakova, I.V.; Shashova, E.E.; Sidenko, E.A.; Astakhova, T.M.; Zakharova, L.A.; Sharova, N.P. Estrogen Receptors and Ubiquitin Proteasome System: Mutual Regulation. Biomolecules 2020, 10, 500. [Google Scholar] [CrossRef] [Green Version]
- Zach, L.; Yedidia-Aryeh, L.; Goldberg, M. Estrogen and DNA damage modulate mRNA levels of genes involved in homologous recombination repair in estrogen-deprived cells. J. Transl. Genet. Genom. 2022, 6, 266–280. [Google Scholar] [CrossRef]
- Spillman, M.A.; Bowcock, A.M. BRCA1 and BRCA2 mRNA levels are coordinately elevated in human breast cancer cells in response to estrogen. Oncogene 1996, 13, 1639–1645. [Google Scholar]
- Fan, S.; Ma, Y.X.; Yuan, R.Q.; Meng, Q.; Wang, J.A.; Goldberg, I.D.; Rosen, E.M.; Wang, C.; Pestell, R.G.; Erdos, M.; et al. p300 modulates the BRCA1 inhibition of estrogen receptor activity. Cancer Res. 2002, 62, 141–151. [Google Scholar] [PubMed]
- Eakin, C.M.; MacCoss, M.J.; Finney, G.L.; Klevit, R.E. Estrogen receptor α is a putative substrate for the BRCA1 ubiquitin ligase. Proc. Natl. Acad. Sci. USA 2007, 104, 5794–5799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Fan, S.; Hu, C.; Meng, Q.; Fuqua, S.A.; Pestell, R.G.; Tomita, Y.A.; Rosen, E.M. BRCA1 regulates acetylation and ubiquitination of estrogen receptor-α. Mol. Endocrinol. 2010, 24, 76–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, R.; Zhong, X.; Wang, C.; Sun, H.; Wang, S.; Lin, L.; Sun, S.; Tong, C.; Luo, H.; Gao, P.; et al. MDC1 enhances estrogen receptor-mediated transactivation and contributes to breast cancer suppression. Int. J. Biol. Sci. 2015, 11, 992–1005. [Google Scholar] [CrossRef]
- Wang, S.; Luo, H.; Wang, C.; Sun, H.; Sun, G.; Sun, N.; Zeng, K.; Song, H.; Zou, R.; Zhou, T.; et al. RNF8 identified as a co-activator of estrogen receptor α promotes cell growth in breast cancer. Biochim. Biophys. Acta-Mol. Basis Dis. 2017, 1863, 1615–1628. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Xu, J.; Yang, H.; Li, X.; Hou, Y.; Zhao, Y.; Xue, M.; Wang, B.; Yu, N.S.; et al. RNF168 facilitates oestrogen receptor α transcription and drives breast cancer proliferation. J. Cell. Mol. Med. 2018, 22, 4161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, J.R.; Huper, G.; Vaughn, J.P.; Davis, P.L.; Norris, J.; Mcdonnell, D.P.; Wiseman, R.W.; Futreal, P.A.; Iglehart, J.D. BRCA1 expression is not directly responsive to estrogen. Oncogene 1997, 14, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Gorski, J.J.; Kennedy, R.D.; Hosey, A.M.; Harkin, D.P. The complex relationship between BRCA1 and ERα in hereditary breast cancer. Clin. Cancer Res. 2009, 15, 1514–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Di, L.-J.; Pereira, A.P.T.; Sar, M. BRCA1 And Estrogen/Estrogen Receptor In Breast Cancer: Where They Interact? Int. J. Biol. Sci. 2014, 10, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Arnal, J.F.; Lenfant, F.; Metivier, R.; Flouriot, G.; Henrion, D.; Adlanmerini, M.; Fontaine, C.; Gourdy, P.; Chambon, P.; Katzenellenbogen, B.; et al. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol. Rev. 2017, 97, 1045–1087. [Google Scholar] [CrossRef]
- Cabanes, A.; Wang, M.; Olivo, S.; DeAssis, S.; Gustafsson, J.Å.; Khan, G.; Hilakivi-Clarke, L. Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis 2004, 25, 741–748. [Google Scholar] [CrossRef]
- Marquis, S.T.; Rajan, J.V.; Wynshaw-Boris, A.; Xu, J.; Yin, G.Y.; Abel, K.J.; Weber, B.L.; Chodosh, L.A. The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nat. Genet. 1995, 11, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Iso, T.; Futami, K.; Iwamoto, T.; Furuichi, Y. Modulation of the expression of bloom helicase by estrogenic agents. Biol. Pharm. Bull. 2007, 30, 266–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soulez, M.; Parker, M.G. Identification of novel oestrogen receptor target genes in human ZR75-1 breast cancer cells by expression profiling. J. Mol. Endocrinol. 2001, 27, 259–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, A.; Yoshida, N.; Omoto, Y.; Oguchi, S.; Yamori, T.; Kiyama, R.; Hayashi, S. Development of cDNA microarray for expression profiling of estrogen-responsive genes. J. Mol. Endocrinol. 2002, 29, 175–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, R.; Wu, J.; Baloue, K.K.; Crowe, D.L. Regulation of the Nijmegen breakage syndrome 1 gene NBS1 by c-myc, p53 and coactivators mediates estrogen protection from DNA damage in breast cancer cells. Int. J. Oncol. 2013, 42, 712–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, S.; Wang, J.A.; Yuan, R.; Ma, Y.; Meng, Q.; Erdos, M.R.; Pestell, R.G.; Yuan, F.; Auborn, K.J.; Goldberg, I.D.; et al. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 1999, 284, 1354–1356. [Google Scholar] [CrossRef]
- Fan, S.; Ma, Y.X.; Wang, C.; Yuan, R.Q.; Meng, Q.; Wang, J.A.; Erdos, M.; Goldberg, I.D.; Webb, P.; Kushner, P.J.; et al. Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene 2001, 20, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Rajan, A.; Nadhan, R.; Latha, N.R.; Krishnan, N.; Warrier, A.V.; Srinivas, P. Deregulated estrogen receptor signaling and DNA damage response in breast tumorigenesis. Biochim. Biophys. Acta-Rev. Cancer 2021, 1875, 188482. [Google Scholar] [CrossRef]
- Charitou, P.; Burgering, B.M.T. Forkhead box(O) in control of reactive oxygen species and genomic stability to ensure healthy lifespan. Antioxid. Redox Signal 2013, 19, 1400–1419. [Google Scholar] [CrossRef] [PubMed]
- Felty, Q.; Xiong, W.C.; Sun, D.; Sarkar, S.; Singh, K.P.; Parkash, J.; Roy, D. Estrogen-induced mitochondrial reactive oxygen species as signal-transducing messengers. Biochemistry 2005, 44, 6900–6909. [Google Scholar] [CrossRef] [PubMed]
- Williamson, L.M.; Lees-Miller, S.P. Estrogen receptor a-mediated transcription induces cell cycle-dependent DNA double-strand breaks. Carcinogenesis 2011, 32, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, M.; Patel, H.; Lai, C.F.; Nguyen, V.T.M.; Nevedomskaya, E.; Harrod, A.; Russell, R.; Remenyi, J.; Ochocka, A.M.; Thomas, R.S.; et al. APOBEC3B-Mediated Cytidine Deamination Is Required for Estrogen Receptor Action in Breast Cancer. Cell Rep. 2015, 13, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, B.G.; Lunyak, V.V.; Perissi, V.; Garcia-Bassets, I.; Rose, D.W.; Glass, C.K.; Rosenfeld, M.G. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 2006, 312, 1798–1802. [Google Scholar] [CrossRef]
- Stork, C.T.; Bocek, M.; Crossley, M.P.; Sollier, J.; Sanz, L.A.; Chédin, F.; Swigut, T.; Cimprich, K.A. Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. Elife 2016, 5, e17548. [Google Scholar] [CrossRef]
- Crossley, M.P.; Bocek, M.; Cimprich, K.A. R-Loops as Cellular Regulators and Genomic Threats. Mol. Cell 2019, 73, 398–411. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Yang, C.; Qian, X.; Lei, T.; Li, Y.; Shen, H.; Fu, L.; Xu, B. Estrogen receptor α regulates ATM expression through miRNAs in breast cancer. Clin. Cancer Res. 2013, 19, 4994–5002. [Google Scholar] [CrossRef] [Green Version]
- Pedram, A.; Razandi, M.; Evinger, A.J.; Lee, E.; Levin, E.R. Estrogen Inhibits ATR Signaling to Cell Cycle Checkpoints and DNA Repair. Mol. Biol. Cell. 2009, 20, 3374–3389. [Google Scholar] [CrossRef] [Green Version]
- Medunjanin, S.; Weinert, S.; Poitz, D.; Schmeisser, A.; Strasser, R.H.; Braun-Dullaeus, R.C. Transcriptional activation of DNA-dependent protein kinase catalytic subunit gene expression by oestrogen receptor-α. EMBO Rep. 2010, 11, 208–213. [Google Scholar] [CrossRef]
- Rajan, A.; Varghese, G.R.; Yadev, I.; Anandan, J.; Latha, N.R.; Patra, D.; Krishnan, N.; Kuppusamy, K.; Warrier, A.V.; Bhushan, S.; et al. Modulation of BRCA1 mediated DNA damage repair by deregulated ER-α signaling in breast cancers. Am. J. Cancer Res. 2022, 12, 17–47. Available online: https://pubmed.ncbi.nlm.nih.gov/35141003/ (accessed on 17 February 2022). [PubMed]
- Zhang, J.; Willers, H.; Feng, Z.; Ghosh, J.C.; Kim, S.; Weaver, D.T.; Chung, J.H.; Powell, S.N.; Xia, F. Chk2 Phosphorylation of BRCA1 Regulates DNA Double-Strand Break Repair. Mol. Cell. Biol. 2004, 24, 708–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukrun, M.; Jabareen, A.; Abou-Kandil, A.; Chamias, R.; Aboud, M.; Huleihel, M. HTLV-1 Tax Oncoprotein Inhibits the Estrogen-Induced-ER α-Mediated BRCA1 Expression by Interaction with CBP/p300 Cofactors. PLoS ONE 2014, 9, e89390. [Google Scholar] [CrossRef]
- Malone, J.L.; Nelson, A.C.; Lieberman, R.; Anderson, S.; Holt, J.T. Oestrogen-mediated phosphorylation and stabilization of BRCA2 protein in breast. J. Pathol. 2009, 217, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Creekmore, A.L.; Ziegler, Y.S.; Bonéy, J.L.; Nardulli, A.M. Estrogen receptor alpha regulates expression of the breast cancer 1 associated ring domain 1 (BARD1) gene through intronic DNA sequence. Mol. Cell. Endocrinol. 2007, 267, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Strauss, C.; Kornowski, M.; Benvenisty, A.; Shahar, A.; Masury, H.; Ben-Porath, I.; Ravid, T.; Arbel-Eden, A.; Goldberg, M. The DNA2 nuclease/helicase is an estrogen-dependent gene mutated in breast and ovarian cancers. Oncotarget 2014, 5, 9396–9409. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, K.; Jiao, X.; Wang, C.; Willmarth, N.E.; Casimiro, M.C.; Li, W.; Ju, X.; Kim, S.H.; Lisanti, M.P.; et al. Cyclin D1 integrates estrogen-mediated DNA damage repair signaling. Cancer Res. 2014, 74, 3959–3970. [Google Scholar] [CrossRef] [Green Version]
- Alayev, A.; Salamon, R.S.; Manna, S.; Schwartz, N.S.; Berman, A.Y.; Holz, M.K. Estrogen induces RAD51C expression and localization to sites of DNA damage. Cell Cycle 2016, 15, 3230–3239. [Google Scholar] [CrossRef]
- Moggs, J.G.; Murphy, T.C.; Lim, F.L.; Moore, D.J.; Stuckey, R.; Antrobus, K.; Kimber, I.; Orphanides, G. Anti-proliferative effect of estrogen in breast cancer cells that re-express ERα Is mediated by aberrant regulation of cell cycle genes. J. Mol. Endocrinol. 2005, 34, 535–551. [Google Scholar] [CrossRef]
- Zheng, L.; Annab, L.A.; Afshari, C.A.; Lee, W.H.; Boyer, T.G. BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proc. Natl. Acad. Sci. USA 2001, 98, 9587–9592. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Fan, S.; Li, Z.; Fu, M.; Rao, M.; Ma, Y.; Lisanti, M.P.; Albanese, C.; Katzenellenbogen, B.S.; Kushner, P.J.; et al. Cyclin D1 Antagonizes BRCA1 Repression of Estrogen Receptor α Activity. Cancer Res. 2005, 65, 6557–6567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waddell, A.R.; Huang, H.; Liao, D. Cbp/p300: Critical co-activators for nuclear steroid hormone receptors and emerging therapeutic targets in prostate and breast cancers. Cancers 2021, 13, 2872. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.K.; Woo, E.M.; Chong, Y.T.E.; Homenko, D.R.; Kraus, W.L. Acetylation of estrogen receptor α by p300 at lysines 266 and 268 enhances the deoxyribonucleic acid binding and transactivation activities of the receptor. Mol. Endocrinol. 2006, 20, 1479–1493. [Google Scholar] [CrossRef] [Green Version]
- Coster, G.; Hayouka, Z.; Argaman, L.; Strauss, C.; Friedler, A.; Brandeis, M.; Goldberg, M. The DNA Damage Response Mediator MDC1 directly interacts with the anaphase-promoting complex/cyclosome. J. Biol. Chem. 2007, 282, 32053–32064. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Yi, F.; Wang, Z.; Guo, Q.; Liu, J.; Bai, N.; Li, X.; Dong, X.; Ren, L.; Cao, L.; et al. The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer. Int. J. Biol. Sci. 2019, 15, 909–918. [Google Scholar] [CrossRef] [Green Version]
- Medunjanin, S.; Weinert, S.; Schmeisser, A.; Mayer, D.; Braun-Dullaeus, R.C. Interaction of the double-strand break repair kinase DNA-PK and estrogen receptor-α. Mol. Biol. Cell. 2010, 21, 1620–1628. [Google Scholar] [CrossRef] [Green Version]
- Brandsma, I.; Gent, D.C. Pathway choice in DNA double strand break repair: Observations of a balancing act. Genome Integr. 2012, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Z.; Soutoglou, E. DNA repair: Easy to visualize, difficult to elucidate. Trends Cell Biol. 2009, 19, 617–629. [Google Scholar] [CrossRef]
- Nelles, J.L.; Hu, W.Y.; Prins, G.S. Estrogen action and prostate cancer. Expert Rev. Endocrinol. Metab. 2011, 6, 437. [Google Scholar] [CrossRef] [Green Version]
- Andren-Sandberg, A.; Hoem, D.; Backman, P.L. Other risk factors for pancreatic cancer: Hormonal aspects. Ann. Oncol. 1999, 10, S131–S135. [Google Scholar] [CrossRef]
- Wu, X.; Guo, M.; Cui, J.; Cai, H.; Wang, S.M. Heterozygotic Brca1 mutation initiates mouse genome instability at embryonic stage. Oncogenesis 2022, 11, 41. [Google Scholar] [CrossRef] [PubMed]
DSB Repair Pathway | Estrogen Increases mRNA Level | Direct Binding of ERα to the Promotor | Estrogen Increases Protein Level | DSB-Induced in Estrogen-Deprived Cells |
---|---|---|---|---|
NHEJ | DNA-PKcs [70] | Yes [70] | Yes [70] | Not known |
HRR | BRCA1 [41,52,53] | Controversy [41,52,53] | Yes [73] | Not known |
BRCA2 [41] | Not known | Yes [74] | Not known | |
BLM [40,54] | Not known | Yes [54] | Yes [40] | |
CtIP [40,55,56] | Not known | Not known | Yes [40] | |
BARD1 [75] | Yes [75] | Yes [75] | Not known | |
CtIP [40,55,56] | Not known | Not known | Yes [40] | |
DNA2 [76] | Not known | Not known | Not known | |
RAD51 [77] | Not known | Yes [77] | Not known | |
RAD51C [78] | Not known | Yes [78] | Not known | |
RAD54D/L [76] | Not known | Not known | Not known | |
PALB2 [40] | Not known | Not known | Yes [40] | |
MRE11 [40] | Not known | Not known | Yes [40] | |
NBS1 [57] | Not known | In combination with DNA damage [57] | Not known | |
RAD50 [40] | Not known | Not known | Yes [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yedidia-Aryeh, L.; Goldberg, M. The Interplay between the Cellular Response to DNA Double-Strand Breaks and Estrogen. Cells 2022, 11, 3097. https://doi.org/10.3390/cells11193097
Yedidia-Aryeh L, Goldberg M. The Interplay between the Cellular Response to DNA Double-Strand Breaks and Estrogen. Cells. 2022; 11(19):3097. https://doi.org/10.3390/cells11193097
Chicago/Turabian StyleYedidia-Aryeh, Lia, and Michal Goldberg. 2022. "The Interplay between the Cellular Response to DNA Double-Strand Breaks and Estrogen" Cells 11, no. 19: 3097. https://doi.org/10.3390/cells11193097
APA StyleYedidia-Aryeh, L., & Goldberg, M. (2022). The Interplay between the Cellular Response to DNA Double-Strand Breaks and Estrogen. Cells, 11(19), 3097. https://doi.org/10.3390/cells11193097