Development of a Nanoparticle-Based Approach for the Blood–Brain Barrier Passage in a Murine Model of Amyotrophic Lateral Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biotin-PEG5kDa-Cys-ApoE Synthesis
2.3. ANANAS Formulations
2.4. Animals
2.5. In Vivo Treatments
2.6. Tissue Dissection and Plasma Isolation
2.7. Dot Blot Analysis
2.8. Ex Vivo Fluorescence Imaging
2.9. Pharmacokinetics
2.9.1. Sample Preparation and Extraction
2.9.2. Liquid Chromatography (HPLC) and Tandem Mass Spectrometry (MS/MS)
2.10. Statistical Analysis
3. Results
3.1. ANANAS Formulations
3.2. In Vivo Studies
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, Y.; Leach, A.G.; Smith, J.; Pluchino, S.; Coxon, C.R.; Sivakumaran, M.; Downing, J.; Fatokun, A.A.; Teixidò, M.; Ehtezazi, T. Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles. Adv. Sci. 2021, 8, 2002085. [Google Scholar] [CrossRef] [PubMed]
- De Vries, H.E.; Kooij, G.; Frenkel, D.; Georgopoulos, S.; Monsonego, A.; Janigro, D. Inflammatory Events at Blood-Brain Barrier in Neuroinflammatory and Neurodegenerative Disorders: Implications for Clinical Disease. Epilepsia 2012, 53 (Suppl. 6), 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garbuzova-Davis, S.; Sanberg, P.R. Blood-CNS Barrier Impairment in ALS Patients versus an Animal Model. Front. Cell. Neurosci. 2014, 8, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, F.-D.; Hu, Y.-J.; Yu, L.; Zhou, X.-G.; Wu, J.-M.; Tang, Y.; Qin, D.-L.; Fan, Q.-Z.; Wu, A.-G. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front. Pharmacol. 2021, 12, 683935. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Y.; Rayner, S.L.; Chung, R.; Shi, B.Y.; Liang, X.J. Advances in Nanotechnology-Based Strategies for the Treatments of Amyotrophic Lateral Sclerosis. Mater. Today Bio 2020, 6, 100055. [Google Scholar] [CrossRef]
- Duan, X.; Li, Y. Physicochemical Characteristics of Nanoparticles Affect Circulation, Biodistribution, Cellular Internalization, and Trafficking. Small 2013, 9, 1521–1532. [Google Scholar] [CrossRef]
- Mahley, R.W. Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Metabolism. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1305–1315. [Google Scholar] [CrossRef] [Green Version]
- Re, F.; Cambianica, I.; Zona, C.; Sesana, S.; Gregori, M.; Rigolio, R.; La Ferla, B.; Nicotra, F.; Forloni, G.; Cagnotto, A.; et al. Functionalization of Liposomes with ApoE-Derived Peptides at Different Density Affects Cellular Uptake and Drug Transport across a Blood-Brain Barrier Model. Nanomedicine 2011, 7, 551–559. [Google Scholar] [CrossRef]
- Morpurgo, M.; Radu, A.; Bayer, E.A.; Wilchek, M. DNA Condensation by High-Affinity Interaction with Avidin. J. Mol. Recognit. 2004, 17, 558–566. [Google Scholar] [CrossRef]
- Pignatto, M.; Realdon, N.; Morpurgo, M. Optimized Avidin Nucleic Acid Nanoassemblies by a Tailored PEGylation Strategy and Their Application as Molecular Amplifiers in Detection. Bioconjug. Chem. 2010, 21, 1254–1263. [Google Scholar] [CrossRef]
- Roncato, F.; Rruga, F.; Porcù, E.; Casarin, E.; Ronca, R.; Maccarinelli, F.; Realdon, N.; Basso, G.; Alon, R.; Viola, G.; et al. Improvement and Extension of Anti-EGFR Targeting in Breast Cancer Therapy by Integration with the Avidin-Nucleic-Acid-Nano-Assemblies. Nat. Commun. 2018, 9, 4070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Violatto, M.B.; Casarin, E.; Talamini, L.; Russo, L.; Baldan, S.; Tondello, C.; Messmer, M.; Hintermann, E.; Rossi, A.; Passoni, A.; et al. Dexamethasone Conjugation to Biodegradable Avidin-Nucleic-Acid-Nano-Assemblies Promotes Selective Liver Targeting and Improves Therapeutic Efficacy in an Autoimmune Hepatitis Murine Model. ACS Nano 2019, 13, 4410–4423. [Google Scholar] [CrossRef] [PubMed]
- Bigini, P.; Previdi, S.; Casarin, E.; Silvestri, D.; Violatto, M.B.; Facchin, S.; Sitia, L.; Rosato, A.; Zuccolotto, G.; Realdon, N.; et al. In Vivo Fate of Avidin-Nucleic Acid Nanoassemblies as Multifunctional Diagnostic Tools. ACS Nano 2014, 8, 175–187. [Google Scholar] [CrossRef]
- Garbuzova-Davis, S.; Saporta, S.; Haller, E.; Kolomey, I.; Bennett, S.P.; Potter, H.; Sanberg, P.R. Evidence of Compromised Blood-Spinal Cord Barrier in Early and Late Symptomatic SOD1 Mice Modeling ALS. PLoS ONE 2007, 2, e1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ongaro, A.; Violatto, M.B.; Casarin, E.; Pellerani, I.; Marchini, G.; Ribaudo, G.; Salmona, M.; Carbone, M.; Passoni, A.; Gnodi, E.; et al. The Mode of Dexamethasone Decoration Influences Avidin-Nucleic-Acid-Nano-Assembly Organ Biodistribution and in Vivo Drug Persistence. Nanomedicine 2022, 40, 102497. [Google Scholar] [CrossRef] [PubMed]
- González Deniselle, M.C.; González, S.L.; De Nicola, A.F. Cellular Basis of Steroid Neuroprotection in the Wobbler Mouse, a Genetic Model of Motoneuron Disease. Cell. Mol. Neurobiol. 2001, 21, 237–254. [Google Scholar] [CrossRef]
- Tokuda, E.; Watanabe, S.; Okawa, E.; Ono, S. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015, 12, 461–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, N.M. Avidin. In Advances in Protein Chemistry; Elsevier: Amsterdam, The Netherlands, 1975; Volume 29, pp. 85–133. ISBN 978-0-12-034229-7. [Google Scholar]
- Sims, G.E.C.; Snape, T.J. A Method for the Estimation of Polyethylene Glycol in Plasma Protein Fractions. Anal. Biochem. 1980, 107, 60–63. [Google Scholar] [CrossRef]
- Lauranzano, E.; Pozzi, S.; Pasetto, L.; Stucchi, R.; Massignan, T.; Paolella, K.; Mombrini, M.; Nardo, G.; Lunetta, C.; Corbo, M.; et al. Peptidylprolyl Isomerase A Governs TARDBP Function and Assembly in Heterogeneous Nuclear Ribonucleoprotein Complexes. Brain 2015, 138, 974–991. [Google Scholar] [CrossRef] [Green Version]
- Filareti, M.; Luotti, S.; Pasetto, L.; Pignataro, M.; Paolella, K.; Messina, P.; Pupillo, E.; Filosto, M.; Lunetta, C.; Mandrioli, J.; et al. Decreased Levels of Foldase and Chaperone Proteins Are Associated with an Early-Onset Amyotrophic Lateral Sclerosis. Front. Mol. Neurosci. 2017, 10, 99. [Google Scholar] [CrossRef]
- Luotti, S.; Pasetto, L.; Porcu, L.; Torri, V.; Elezgarai, S.R.; Pantalone, S.; Filareti, M.; Corbo, M.; Lunetta, C.; Mora, G.; et al. Diagnostic and Prognostic Values of PBMC Proteins in Amyotrophic Lateral Sclerosis. Neurobiol. Dis. 2020, 139, 104815. [Google Scholar] [CrossRef] [PubMed]
- Damonte, G.; Salis, A.; Rossi, L.; Magnani, M.; Benatti, U. High Throughput HPLC-ESI-MS Method for the Quantitation of Dexamethasone in Blood Plasma. J. Pharm. Biomed. Anal. 2007, 43, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhou, X.; Li, J.; Ye, S.; Ji, X.; Li, L.; Zhou, T.; Lu, W. Development and Validation of a Highly Sensitive LC-MS/MS Method for the Determination of Dexamethasone in Nude Mice Plasma and Its Application to a Pharmacokinetic Study: Quantitative Determination of Dexamethasone in Nude Mouse Plasma. Biomed. Chromatogr. 2015, 29, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Pasetto, L.; Pozzi, S.; Castelnovo, M.; Basso, M.; Estevez, A.G.; Fumagalli, S.; De Simoni, M.G.; Castellaneta, V.; Bigini, P.; Restelli, E.; et al. Targeting Extracellular Cyclophilin A Reduces Neuroinflammation and Extends Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. J. Neurosci. 2017, 37, 1413–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardridge, W.M. The Blood-Brain Barrier: Bottleneck in Brain Drug Development. Neurotherapeutics 2005, 2, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Salvati, A.; Pitek, A.S.; Monopoli, M.P.; Prapainop, K.; Bombelli, F.B.; Hristov, D.R.; Kelly, P.M.; Åberg, C.; Mahon, E.; Dawson, K.A. Transferrin-Functionalized Nanoparticles Lose Their Targeting Capabilities When a Biomolecule Corona Adsorbs on the Surface. Nat. Nanotechnol. 2013, 8, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Cox, A.; Andreozzi, P.; Dal Magro, R.; Fiordaliso, F.; Corbelli, A.; Talamini, L.; Chinello, C.; Raimondo, F.; Magni, F.; Tringali, M.; et al. Evolution of Nanoparticle Protein Corona across the Blood–Brain Barrier. ACS Nano 2018, 12, 7292–7300. [Google Scholar] [CrossRef]
- Yeo, E.L.L.; Cheah, J.U.-J.; Thong, P.S.P.; Soo, K.C.; Kah, J.C.Y. Gold Nanorods Coated with Apolipoprotein E Protein Corona for Drug Delivery. ACS Appl. Nano Mater. 2019, 2, 6220–6229. [Google Scholar] [CrossRef]
- Kong, W.-J.; Liu, J.; Jiang, J.-D. Human Low-Density Lipoprotein Receptor Gene and Its Regulation. J. Mol. Med. 2006, 84, 29–36. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, X.; Mei, H.; Wang, Y.; Liao, Z.; Chen, J.; Zhang, Q.; Hu, Y.; Pang, Z.; Jiang, X. LDLR-Mediated Peptide-22-Conjugated Nanoparticles for Dual-Targeting Therapy of Brain Glioma. Biomaterials 2013, 34, 9171–9182. [Google Scholar] [CrossRef]
- Kim, J.; Basak, J.M.; Holtzman, D.M. The Role of Apolipoprotein E in Alzheimer’s Disease. Neuron 2009, 63, 287–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Z.; Deane, R.; Ali, Z.; Parisi, M.; Shapovalov, Y.; O’Banion, M.K.; Stojanovic, K.; Sagare, A.; Boillee, S.; Cleveland, D.W.; et al. ALS-Causing SOD1 Mutants Generate Vascular Changes Prior to Motor Neuron Degeneration. Nat. Neurosci. 2008, 11, 420–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablonski, M.R.; Jacob, D.A.; Campos, C.; Miller, D.S.; Maragakis, N.J.; Pasinelli, P.; Trotti, D. Selective Increase of Two ABC Drug Efflux Transporters at the Blood–Spinal Cord Barrier Suggests Induced Pharmacoresistance in ALS. Neurobiol. Dis. 2012, 47, 194–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werdelin, L.; Boysen, G.; Jensen, T.S.; Mogensen, P. Immunosuppressive Treatment of Patients with Amyotrophic Lateral Sclerosis. Acta Neurol. Scand. 1990, 82, 132–134. [Google Scholar] [CrossRef]
- Fournier, C.N.; Schoenfeld, D.; Berry, J.D.; Cudkowicz, M.E.; Chan, J.; Quinn, C.; Brown, R.H.; Salameh, J.S.; Tansey, M.G.; Beers, D.R.; et al. An Open Label Study of a Novel Immunosuppression Intervention for the Treatment of Amyotrophic Lateral Sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 2018, 19, 242–249. [Google Scholar] [CrossRef]
- Van Es, M.A.; Van Eijk, R.P.A.; Bunte, T.M.; Van Den Berg, L.H. A Placebo-Controlled Trial to Investigate the Safety and Efficacy of Penicillin G/Hydrocortisone in Patients with ALS (PHALS Trial). Amyotroph. Lateral Scler. Frontotemporal Degener. 2020, 21, 584–592. [Google Scholar] [CrossRef]
- Evans, M.C.; Gaillard, P.J.; de Boer, M.; Appeldoorn, C.; Dorland, R.; Sibson, N.R.; Turner, M.R.; Anthony, D.C.; Stolp, H.B. CNS-Targeted Glucocorticoid Reduces Pathology in Mouse Model of Amyotrophic Lateral Sclerosis. Acta Neuropathol. Commun. 2014, 2, 66. [Google Scholar] [CrossRef]
Mice | Intravenous Treatment | Time of Sacrifice | Perfusion | Analyses |
---|---|---|---|---|
4 WT | ANANAS | 30′ | Yes | Dot blot |
4 WT | ANANAS | 30′ | No | Dot blot |
4 WT | Vehicle | 24 h | Yes | Dot blot |
4 WT | ANANAS | 30′ | Yes | Dot blot |
4 WT | ANANAS | 4 h | Yes | Dot blot |
4 WT | ANANAS | 24 h | Yes | Dot blot |
4 WT | ANANAS-ApoE | 30′ | Yes | Dot blot |
4 WT | ANANAS-ApoE | 4 h | Yes | Dot blot |
4 WT | ANANAS-ApoE | 24 h | Yes | Dot blot |
4 SOD1G93A | Vehicle | 24 h | Yes | ex vivo imaging, Dot blot |
4 SOD1G93A | ANANAS | 30′ | Yes | ex vivo imaging, Dot blot |
4 SOD1G93A | ANANAS | 4 h | Yes | ex vivo imaging, Dot blot |
4 SOD1G93A | ANANAS | 24 h | Yes | ex vivo imaging, Dot blot |
4 SOD1G93A | ANANAS-ApoE | 30′ | Yes | Dot blot |
4 SOD1G93A | ANANAS-ApoE | 4 h | Yes | Dot blot |
4 SOD1G93A | ANANAS-ApoE | 24 h | Yes | Dot blot |
4 SOD1G93A | ANANAS-Dex | 15′ | Yes | HPLC/MS, Dot blot |
4 SOD1G93A | ANANAS-Dex | 30′ | Yes | HPLC/MS, Dot blot |
4 SOD1G93A | ANANAS-Dex | 60′ | Yes | HPLC/MS, Dot blot |
4 SOD1G93A | Dex | 15′ | Yes | HPLC/MS, Dot blot |
4 SOD1G93A | Dex | 30′ | Yes | HPLC/MS, Dot blot |
4 SOD1G93A | Dex | 60′ | Yes | HPLC/MS, Dot blot |
Formulation Name | Biotin Reagent Added to Core NPs | (% BBS) | Z-Average (nm) 1 h | PDI (1 h) | Z-Average (nm) 24 h | PDI 24 h | ζ Potenzial |
---|---|---|---|---|---|---|---|
ANANAS-ApoE | B-PEG5kDaCys-ApoE | 10 | 138.9 ± 0.3 | 0.26 | 142.4 ± 7.0 | 0.36 | −3.76 ± 0.903 |
ANANAS-mPEG | mPEG5kDa (*) | 10 | 136.9 ± 1.5 | 0.17 | 137.3 ± 2.5 | 0.23 | −6.50 ± 0.310 |
ANANAS-Hz-Dex | BC6-Cb-Hz-Dex | 57.5 | 141.1 ± 1.1 | 0.31 | 142.5 ± 2.1 | 0.33 | −5.8 ± 1.711 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Violatto, M.B.; Pasetto, L.; Casarin, E.; Tondello, C.; Schiavon, E.; Talamini, L.; Marchini, G.; Cagnotto, A.; Morelli, A.; Lanno, A.; et al. Development of a Nanoparticle-Based Approach for the Blood–Brain Barrier Passage in a Murine Model of Amyotrophic Lateral Sclerosis. Cells 2022, 11, 4003. https://doi.org/10.3390/cells11244003
Violatto MB, Pasetto L, Casarin E, Tondello C, Schiavon E, Talamini L, Marchini G, Cagnotto A, Morelli A, Lanno A, et al. Development of a Nanoparticle-Based Approach for the Blood–Brain Barrier Passage in a Murine Model of Amyotrophic Lateral Sclerosis. Cells. 2022; 11(24):4003. https://doi.org/10.3390/cells11244003
Chicago/Turabian StyleViolatto, Martina Bruna, Laura Pasetto, Elisabetta Casarin, Camilla Tondello, Elisa Schiavon, Laura Talamini, Gloria Marchini, Alfredo Cagnotto, Annalisa Morelli, Alessia Lanno, and et al. 2022. "Development of a Nanoparticle-Based Approach for the Blood–Brain Barrier Passage in a Murine Model of Amyotrophic Lateral Sclerosis" Cells 11, no. 24: 4003. https://doi.org/10.3390/cells11244003
APA StyleViolatto, M. B., Pasetto, L., Casarin, E., Tondello, C., Schiavon, E., Talamini, L., Marchini, G., Cagnotto, A., Morelli, A., Lanno, A., Passoni, A., Bigini, P., Morpurgo, M., & Bonetto, V. (2022). Development of a Nanoparticle-Based Approach for the Blood–Brain Barrier Passage in a Murine Model of Amyotrophic Lateral Sclerosis. Cells, 11(24), 4003. https://doi.org/10.3390/cells11244003