Mechanisms and Management of Thyroid Disease and Atrial Fibrillation: Impact of Atrial Electrical Remodeling and Cardiac Fibrosis
Abstract
:1. Introduction
2. Clinical Evidence of Thyroid Disease and AF
3. Mechanisms of Thyroid Disease-Induced Arrhythmogenic Remodeling
3.1. Thyroid Hormones and Cardiomyocytes
3.2. Thyroid Hormones and Atrial Electrical Remodeling
3.3. Thyroid Hormones, Atrial Fibrosis and Atrial Structural Remodeling
3.4. Thyroid Hormones, Cardiac Metabolism, and Mitochondrial Remodeling
3.5. Thyroid Hormones and Cardiac Inflammation
4. Experimental Studies of Arrhythmias in Thyroid Disorders
4.1. Molecular and Cellular Studies of Thyroid Hormone and AF
4.2. Murine Models of Arrhythmias in Thyroid Disease
4.3. Rat Models of Thyroid Disease Associated with AF
4.4. Rabbit Model of the Association between Thyroid Disease and AF
Thyroid Disease | AF Substrate | AF Incidence ECG Phenotype | Refs. | |
---|---|---|---|---|
Molecule & Cell | Hyperthyroidism | Shortened Atrial APD Electrical remodeling | Not tested | [66] |
Hyperthyroidism | Shortened Atrial APD Decreased Atrial L-type Ca2+ channel Inhibition of CREB activity | Not tested | [40] | |
Mouse | Hyperthyroidism | Decreased APD Increased delayed K+ rectifier current | Not tested | [68] |
Hypothyroidism and Hyperthyroidism | Cx40 deregulation Abnormal atrial conduction velocity | Prolonged: RR interval, P-wave duration PR segment. | [69] | |
Calcitonin knock-down | Fibroblast proliferation, Enhanced Atrial fibrosis Increased cAMP production | AF incidence: 72% in CT-KD | [70] | |
Rat | Hypothyroidism and Hyperthyroidism | Myocardial fibrosis Atrial structural & functional remodeling Atrial ERP changes | AF incidence: 78% in hypothyroid 67% in hyperthyroid 11% in euthyroid | [44] |
Hypothyroidism | Atrial fibrosis, Atrial stretch Ion channels alteration | AF incidence: ~90% in hypothyroid ~17% in euthyroid | [8] | |
Rabbit | Hyperthyroidism | Decreased Atrial ERP Lowering of atrial nultiple-response threshold | AF incidence: 11% in hyperthyroid | [73] |
Hyperthyroidism | Enhanced arrhythmogenic effect of β2-adrenergic receptors activation | AF incidence: ~15% in hyperthyroid | [72] | |
Dog | Hyperthyroidism | Slowed atrial conduction velocity Prolonged P-R intervals | AF incidence: 81% in hyperthyroid | [74] |
Hypothyroidism | Low atrial voltage zones | AF incidence: 7% in hypothyroid | [75] | |
Primate | Hyperthyroidism | Increased β2-adrenergic receptors activity | Increased heart rate | [76] |
4.5. Dog Model of Hyperthyroidism Associated with AF
4.6. Primate Model of Cardiopathy Associated with Thyroid Disease
5. Thyroid Disease-Associated Cardiac Comorbidities and AF Risk
5.1. Thyroid Hormones, Myocardial Infarction and Cardiac Fibrosis
5.2. Thyroid Disorders, Hypertension and Chronic Cardiac Hypertrophy
5.3. Thyroid Dysfunction, Inflammation and Myocarditis
5.4. Thyroid Disease, Metabolism Disorder and Atherosclerosis
6. Current Therapy of AF in Thyroid Disease
6.1. Atrial Fibrillation and Thyroid Disease: Rhythm Management, Beta-Blockers, Cardioversion
6.2. Amiodarone-Induced Thyrotoxicosis
6.3. AF Catheter Ablation and Thyroid Disease
6.4. Thyroid Disease, Stroke, and Atrial Fibrillation: Relevance of Anticoagulation Therapy
Anti Thyroid & AF Treatment | Medication or Surgery | Main Outcomes | Refs. |
---|---|---|---|
AF Rhythm management and Thyroid disease | Beta-blockers | Propranolol, atenolol and metoprolol to control tachycardia & also to reduce the peripheral conversion of T4 to T3. | [94,95] |
Thionamides | Inhibit thyroid hormone production to accelerate euthyroid state till definitive treatment is available. | [98,102] | |
Glycocorticoids | Cardiac rhythm reverted to SR in 86% patients. | [127] | |
non-dihydropyridine calcium channel blockers | Rate control in combination with β-blockers | [15] | |
AF catheter ablation and Thyroid disease | AF radiofrequency ablation | Higher T3/T4 levels correlated with higher rate of atrial arrhythmia recurrence after AF radiofrequency ablation. | [13,14,111,112] |
Hypothyroidism & high normal TSH level corelated with AF occurence | [113] | ||
Prevent Stroke, in AF and Thyroid disease | Apixaban | Effectively prevented stroke in patients with non-valvular AF and hypo- or hyperthyroidism | [125,126] |
Warfarin | CCS/CHRS recommendsuse of warfarin in hyperthorid patients will euthyroid state is reached. | [15] |
7. Conclusions
8. Highlights
- Recent clinical reports suggest that hyperthyroidism is associated with increased AF risk.
- Experimental investigations revealed that hyperthyroidism and hypothyroidism provoke atrial electrical conduction slowing and fibrosis, promoting AF substrate.
- Thyroid hormones interact with specific receptors expressed on atrial cardiomyocytes and fibroblasts to activate intracellular arrhythmogenic signaling.
- Therapy includes careful interaction of antiarrhythmic and anti-thyroid-disease medications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | Atrial Fibrillation |
APD | Action Potential Duration |
CM | Cardiomyocyte |
ERP | Effective Refractory Period |
FB | Fibroblast |
T3 | Triiodothyronine |
T4 | Thyroxine |
TH | Thyroid Hormone |
TSH | Thyroid-Stimulating Hormone |
TR | Thyroid Receptor |
References
- Sussman, M.A. When the thyroid speaks, the heart listens. Circ. Res. 2001, 89, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Parry, C.H. Enlargement of the thyroid gland in connection with enlargement or palpitation of the heart. Collect. Unpubl. Pap. Late Caleb Hilliel Parry 1825, 111–125. [Google Scholar]
- Kahaly, G.J.; Dillmann, W.H. Thyroid hormone action in the heart. Endocr. Rev. 2005, 26, 704–728. [Google Scholar] [CrossRef] [Green Version]
- Andrade, J.G.; Aguilar, M.; Atzema, C.; Bell, A.; Cairns, J.A.; Cheung, C.C.; Cox, J.L.; Dorian, P.; Gladstone, D.J.; Healey, J.S.; et al. The 2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Comprehensive Guidelines for the Management of Atrial Fibrillation. Can. J. Cardiol. 2020, 36, 1847–1948. [Google Scholar] [CrossRef] [PubMed]
- Auer, J.; Scheibner, P.; Mische, T.; Langsteger, W.; Eber, O.; Eber, B. Subclinical hyperthyroidism as a risk factor for atrial fibrillation. Am. Heart J. 2001, 142, 838–842. [Google Scholar] [CrossRef]
- Cappola, A.R.; Fried, L.P.; Arnold, A.M.; Danese, M.D.; Kuller, L.H.; Burke, G.L.; Tracy, R.P.; Ladenson, P.W. Thyroid status, cardiovascular risk, and mortality in older adults. JAMA 2006, 295, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Mohanty, S.; Mohanty, P.; Trivedi, C.; Morris, E.H.; Santangeli, P.; Bai, R.; Al-Ahmad, A.; Burkhardt, J.D.; Gallinghouse, J.G.; et al. Prevalence of right atrial non-pulmonary vein triggers in atrial fibrillation patients treated with thyroid hormone replacement therapy. J. Interv. Card. Electrophysiol. 2017, 49, 111–117. [Google Scholar] [CrossRef]
- Li, J.; Tan, H.; Huang, J.; Luo, D.; Tang, Y.; Yu, R.; Huang, H. Case report of recurrent atrial fibrillation induced by thyrotropin-secreting pituitary adenoma with Graves’ disease. Medicine 2018, 97, e11047. [Google Scholar] [CrossRef]
- Turan, E.; Can, I.; Turan, Y.; Uyar, M.; Cakır, M. Comparison of cardiac arrhythmia types between hyperthyroid patients with graves’ disease and toxic nodular goiter. Acta. Endocrinol. (Buchar) 2018, 14, 324–329. [Google Scholar] [CrossRef]
- Gen, R.; Akbay, E.; Camsari, A.; Ozcan, T. P-wave dispersion in endogenous and exogenous subclinical hyperthyroidism. J. Endocrinol. Investig. 2010, 33, 88–91. [Google Scholar] [CrossRef]
- Gauthier, J.M.; Mohamed, H.E.; Noureldine, S.I.; Nazari-Shafti, T.Z.; Thethi, T.K.; Kandil, E. Impact of thyroidectomy on cardiac manifestations of Graves’ disease. Laryngoscope 2016, 126, 1256–1259. [Google Scholar] [CrossRef] [PubMed]
- Sawin, C.T.; Geller, A.; Wolf, P.A.; Belanger, A.J.; Baker, E.; Bacharach, P.; Wilson, P.W.; Benjamin, E.J.; D’Agostino, R.B. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N. Engl. J. Med. 1994, 331, 1249–1252. [Google Scholar] [PubMed]
- Sousa, P.A.; Providência, R.; Albenque, J.P.; Khoueiry, Z.; Combes, N.; Combes, S.; Boveda, S. Impact of Free Thyroxine on the Outcomes of Left Atrial Ablation Procedures. Am. J. Cardiol. 2015, 116, 1863–1868. [Google Scholar] [PubMed]
- Tang, R.B.; Liu, D.L.; Dong, J.Z.; Liu, X.P.; Long, D.Y.; Yu, R.H.; Hu, F.L.; Wu, J.H.; Liu, X.H.; Ma, C.S. High-normal thyroid function and risk of recurrence of atrial fibrillation after catheter ablation. Circ. J. 2010, 74, 1316–1321. [Google Scholar] [CrossRef] [Green Version]
- Heeringa, J.; Hoogendoorn, E.H.; van der Deure, W.M.; Hofman, A.; Peeters, R.P.; Hop, W.C.; den Heijer, M.; Visser, T.J.; Witteman, J.C. High-normal thyroid function and risk of atrial fibrillation: The Rotterdam study. Arch. Intern. Med. 2008, 168, 2219–2224. [Google Scholar]
- Blum, S.; Aeschbacher, S.; Meyre, P.; Zwimpfer, L.; Reichlin, T.; Beer, J.H.; Ammann, P.; Auricchio, A.; Kobza, R.; Erne, P.; et al. Incidence and Predictors of Atrial Fibrillation Progression. J. Am. Heart Assoc. 2019, 8, e012554. [Google Scholar] [CrossRef]
- Krahn, A.D.; Klein, G.J.; Kerr, C.R.; Boone, J.; Sheldon, R.; Green, M.; Talajic, M.; Wang, X.; Connolly, S. How useful is thyroid function testing in patients with recent-onset atrial fibrillation? The Canadian Registry of Atrial Fibrillation Investigators. Arch. Intern. Med. 1996, 156, 2221–2224. [Google Scholar]
- Auer, J.; Eber, B. Subclinical hyperthyroidism and atrial fibrillation. Acta. Med. Austriaca. 2003, 30, 98–99. [Google Scholar]
- Gammage, M.D.; Parle, J.V.; Holder, R.L.; Roberts, L.M.; Hobbs, F.D.; Wilson, S.; Sheppard, M.C.; Franklyn, J.A. Association between serum free thyroxine concentration and atrial fibrillation. Arch. Intern. Med. 2007, 167, 928–934. [Google Scholar]
- Chaker, L.; Heeringa, J.; Dehghan, A.; Medici, M.; Visser, W.E.; Baumgartner, C.; Hofman, A.; Rodondi, N.; Peeters, R.P.; Franco, O.H. Normal Thyroid Function and the Risk of Atrial Fibrillation: The Rotterdam Study. J. Clin. Endocrinol. Metab. 2015, 100, 3718–3724. [Google Scholar]
- Anderson, J.L.; Jacobs, V.; May, H.T.; Bair, T.L.; Benowitz, B.A.; Lappe, D.L.; Muhlestein, J.B.; Knowlton, K.U.; Bunch, T.J. Free thyroxine within the normal reference range predicts risk of atrial fibrillation. J. Cardiovasc. Electrophysiol. 2020, 31, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, C.; da Costa, B.R.; Collet, T.H.; Feller, M.; Floriani, C.; Bauer, D.C.; Cappola, A.R.; Heckbert, S.R.; Ceresini, G.; Gussekloo, J.; et al. Thyroid Function Within the Normal Range, Subclinical Hypothyroidism, and the Risk of Atrial Fibrillation. Circulation 2017, 136, 2100–2116. [Google Scholar] [CrossRef] [PubMed]
- Salem, J.E.; Shoemaker, M.B.; Bastarache, L.; Shaffer, C.M.; Glazer, A.M.; Kroncke, B.; Wells, Q.S.; Shi, M.; Straub, P.; Jarvik, G.P.; et al. Association of Thyroid Function Genetic Predictors With Atrial Fibrillation: A Phenome-Wide Association Study and Inverse-Variance Weighted Average Meta-analysis. JAMA Cardiol. 2019, 4, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Razvi, S.; Jabbar, A.; Pingitore, A.; Danzi, S.; Biondi, B.; Klein, I.; Peeters, R.; Zaman, A.; Iervasi, G. Thyroid Hormones and Cardiovascular Function and Diseases. J. Am. Coll. Cardiol. 2018, 71, 1781–1796. [Google Scholar] [CrossRef] [PubMed]
- Klein, I.; Danzi, S. Thyroid disease and the heart. Circulation 2007, 116, 1725–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selmer, C.; Olesen, J.B.; Hansen, M.L.; von Kappelgaard, L.M.; Madsen, J.C.; Hansen, P.R.; Pedersen, O.D.; Faber, J.; Torp-Pedersen, C.; Gislason, G.H. Subclinical and overt thyroid dysfunction and risk of all-cause mortality and cardiovascular events: A large population study. J. Clin. Endocrinol. Metab. 2014, 99, 2372–2382. [Google Scholar] [CrossRef]
- Wustmann, K.; Kucera, J.P.; Zanchi, A.; Burow, A.; Stuber, T.; Chappuis, B.; Diem, P.; Delacrétaz, E. Activation of electrical triggers of atrial fibrillation in hyperthyroidism. J. Clin. Endocrinol. Metab. 2008, 93, 2104–2108. [Google Scholar] [CrossRef] [Green Version]
- Celik, A.; Aytan, P.; Dursun, H.; Koc, F.; Ozbek, K.; Sagcan, M.; Kadi, H.; Ceyhan, K.; Onalan, O.; Onrat, E. Heart rate variability and heart rate turbulence in hypothyroidism before and after treatment. Ann. Noninvasive. Electrocardiol. 2011, 16, 344–350. [Google Scholar] [CrossRef]
- Everts, M.E.; Verhoeven, F.A.; Bezstarosti, K.; Moerings, E.P.; Hennemann, G.; Visser, T.J.; Lamers, J.M. Uptake of thyroid hormones in neonatal rat cardiac myocytes. Endocrinology 1996, 137, 4235–4242. [Google Scholar] [CrossRef] [Green Version]
- Croteau, W.; Davey, J.C.; Galton, V.A.; St Germain, D.L. Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J. Clin. Investig. 1996, 98, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Dan, G.A. Thyroid hormones and the heart. Heart Fail. Rev. 2016, 21, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Visser, W.E.; Friesema, E.C.; Visser, T.J. Minireview: Thyroid hormone transporters: The knowns and the unknowns. Mol. Endocrinol. 2011, 25, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chassande, O.; Fraichard, A.; Gauthier, K.; Flamant, F.; Legrand, C.; Savatier, P.; Laudet, V.; Samarut, J. Identification of transcripts initiated from an internal promoter in the c-erbA alpha locus that encode inhibitors of retinoic acid receptor-alpha and triiodothyronine receptor activities. Mol. Endocrinol. 1997, 11, 1278–1290. [Google Scholar]
- Williams, G.R. Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol. Cell. Biol. 2000, 20, 8329–8342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shenoy, R.; Klein, I.; Ojamaa, K. Differential regulation of SR calcium transporters by thyroid hormone in rat atria and ventricles. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H1690–H1696. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Zhao, H.; Yun, F.; Liang, Z.; Wang, D.; Zhao, X.; Zhang, J.; Cang, H.; Zou, Y.; et al. Alterations in atrial ion channels and tissue structure promote atrial fibrillation in hypothyroid rats. Endocrine 2019, 65, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Dedkova, E.N.; Fiening, J.P.; Ojamaa, K.; Blatter, L.A.; Lipsius, S.L. Acute exposure to thyroid hormone increases Na+ current and intracellular Ca2+ in cat atrial myocytes. J. Physiol. 2003, 546, 491–499. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Ojamaa, K.; Nakamura, T.Y.; Artman, M.; Klein, I.; Coetzee, W.A. Thyroid hormone increases pacemaker activity in rat neonatal atrial myocytes. J. Mol. Cell. Cardiol. 2001, 33, 811–824. [Google Scholar] [CrossRef]
- Craelius, W.; Green, W.L.; Harris, D.R. Acute effects of thyroid hormone on sodium currents in neonatal myocytes. Biosci. Rep. 1990, 10, 309–315. [Google Scholar] [CrossRef]
- Chen, W.J.; Yeh, Y.H.; Lin, K.H.; Chang, G.J.; Kuo, C.T. Molecular characterization of thyroid hormone-inhibited atrial L-type calcium channel expression: Implication for atrial fibrillation in hyperthyroidism. Basic. Res. Cardiol. 2011, 106, 163–174. [Google Scholar] [CrossRef]
- Burstein, B.; Nattel, S. Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol. 2008, 51, 802–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nattel, S. Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC Clin. Electrophysiol. 2017, 3, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.J.; Lin, K.H.; Lee, Y.S. Molecular characterization of myocardial fibrosis during hypothyroidism: Evidence for negative regulation of the pro-alpha1(I) collagen gene expression by thyroid hormone receptor. Mol. Cell. Endocrinol. 2000, 162, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dedkov, E.I.; Lee, B., 3rd; Li, Y.; Pun, K.; Gerdes, A.M. Thyroid hormone replacement therapy attenuates atrial remodeling and reduces atrial fibrillation inducibility in a rat myocardial infarction-heart failure model. J. Card. Fail. 2014, 20, 1012–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Eghbali, M. Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ. Res. 1992, 71, 831–839. [Google Scholar] [CrossRef] [Green Version]
- van der Heide, S.M.; Visser, T.J.; Everts, M.E.; Klaren, P.H. Metabolism of thyroid hormones in cultured cardiac fibroblasts of neonatal rats. J. Endocrinol. 2002, 174, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Ghose Roy, S.; Mishra, S.; Ghosh, G.; Bandyopadhyay, A. Thyroid hormone induces myocardial matrix degradation by activating matrix metalloproteinase-1. Matrix. Biol. 2007, 26, 269–279. [Google Scholar]
- Chen, Y.F.; Weltman, N.Y.; Li, X.; Youmans, S.; Krause, D.; Gerdes, A.M. Improvement of left ventricular remodeling after myocardial infarction with eight weeks L-thyroxine treatment in rats. J. Transl. Med. 2013, 11, 40. [Google Scholar] [CrossRef]
- Pol, C.J.; Muller, A.; Zuidwijk, M.J.; van Deel, E.D.; Kaptein, E.; Saba, A.; Marchini, M.; Zucchi, R.; Visser, T.J.; Paulus, W.J.; et al. Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology 2011, 152, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Youn, J.Y.; Zhang, J.; Zhang, Y.; Chen, H.; Liu, D.; Ping, P.; Weiss, J.N.; Cai, H. Oxidative stress in atrial fibrillation: An emerging role of NADPH oxidase. J. Mol. Cell. Cardiol. 2013, 62, 72–79. [Google Scholar]
- Sovari, A.A.; Dudley, S.C., Jr. Reactive oxygen species-targeted therapeutic interventions for atrial fibrillation. Front. Physiol. 2012, 3, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elnakish, M.T.; Ahmed, A.A.; Mohler, P.J.; Janssen, P.M. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story. Oxid. Med. Cell. Longev. 2015, 2015, 854265. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.; Samanta, L. Oxidative stress and heart failure in altered thyroid States. Sci. World J. 2012, 2012, 741861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaggini, M.; Traghella, I.; Vassalle, C. The Thyroid-Oxidative Stress Axis in Heart Failure. In Thyroid and Heart: A Comprehensive Translational Essay; Iervasi, G., Pingitore, A., Gerdes, A.M., Razvi, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 171–186. [Google Scholar]
- Bekiaridou, A.; Kartas, A.; Moysidis, D.V.; Papazoglou, A.S.; Baroutidou, A.; Papanastasiou, A.; Giannakoulas, G. The bidirectional relationship of thyroid disease and atrial fibrillation: Established knowledge and future considerations. Rev. Endocr. Metab. Disord 2022, 23, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Gredilla, R.; Barja, G.; López-Torres, M. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart. Free. Radic. Res. 2001, 35, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Wrutniak-Cabello, C.; Casas, F.; Cabello, G. Thyroid hormone action in mitochondria. J. Mol. Endocrinol. 2001, 26, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, M.E.; Seifert, E.L. Thyroid hormone effects on mitochondrial energetics. Thyroid 2008, 18, 145–156. [Google Scholar] [CrossRef]
- Piatnek-Leunissen, D.A.; Leunissen, R.L. Heart mitochondrial function in acute and in chronic hyperthyroidism in rats. Circ. Res. 1969, 25, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Maity, S.; Kar, D.; De, K.; Chander, V.; Bandyopadhyay, A. Hyperthyroidism causes cardiac dysfunction by mitochondrial impairment and energy depletion. J. Endocrinol. 2013, 217, 215–228. [Google Scholar] [CrossRef]
- Callas, G.; Hayes, J.R. Alterations in the fine structure of cardiac muscle mitochondria induced by hyperthyroidism. Anat. Rec. 1974, 178, 539–549. [Google Scholar] [CrossRef]
- Forini, F.; Kusmic, C.; Nicolini, G.; Mariani, L.; Zucchi, R.; Matteucci, M.; Iervasi, G.; Pitto, L. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology 2014, 155, 4581–4590. [Google Scholar] [PubMed]
- Pingitore, A.; Chen, Y.; Gerdes, A.M.; Iervasi, G. Acute myocardial infarction and thyroid function: New pathophysiological and therapeutic perspectives. Ann. Med. 2012, 44, 745–757. [Google Scholar] [PubMed]
- Mancini, A.; Di Segni, C.; Raimondo, S.; Olivieri, G.; Silvestrini, A.; Meucci, E.; Currò, D. Thyroid Hormones, Oxidative Stress, and Inflammation. Mediat. Inflamm. 2016, 2016, 6757154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrev, D.; Heijman, J.; Hiram, R.; Li, N.; Nattel, S. Inflammatory signalling in atrial cardiomyocytes: A novel unifying principle in atrial fibrillation pathophysiology. Nat. Rev. Cardiol 2022, 1–23, ahead of print. [Google Scholar]
- Chen, Y.C.; Chen, S.A.; Chen, Y.J.; Chang, M.S.; Chan, P.; Lin, C.I. Effects of thyroid hormone on the arrhythmogenic activity of pulmonary vein cardiomyocytes. J. Am. Coll. Cardiol. 2002, 39, 366–372. [Google Scholar]
- Tribulova, N.; Kurahara, L.H.; Hlivak, P.; Hirano, K.; Szeiffova Bacova, B. Pro-Arrhythmic Signaling of Thyroid Hormones and Its Relevance in Subclinical Hyperthyroidism. Int. J. Mol. Sci. 2020, 21, 2844. [Google Scholar]
- Hu, Y.; Jones, S.V.; Dillmann, W.H. Effects of hyperthyroidism on delayed rectifier K+ currents in left and right murine atria. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H1448–H1455. [Google Scholar]
- Almeida, N.A.; Cordeiro, A.; Machado, D.S.; Souza, L.L.; Ortiga-Carvalho, T.M.; Campos-de-Carvalho, A.C.; Wondisford, F.E.; Pazos-Moura, C.C. Connexin40 messenger ribonucleic acid is positively regulated by thyroid hormone (TH) acting in cardiac atria via the TH receptor. Endocrinology 2009, 150, 546–554. [Google Scholar]
- Moreira, L.M.; Takawale, A.; Hulsurkar, M.; Menassa, D.A.; Antanaviciute, A.; Lahiri, S.K.; Mehta, N.; Evans, N.; Psarros, C.; Robinson, P.; et al. Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia. Nature 2020, 587, 460–465. [Google Scholar]
- Zhang, Y.; Dedkov, E.I.; Teplitsky, D.; Weltman, N.Y.; Pol, C.J.; Rajagopalan, V.; Lee, B.; Gerdes, A.M. Both hypothyroidism and hyperthyroidism increase atrial fibrillation inducibility in rats. Circ. Arrhythm. Electrophysiol. 2013, 6, 952–959. [Google Scholar]
- Li, H.; Scherlag, B.J.; Kem, D.C.; Benbrook, A.; Zhang, L.; Huang, B.; Cunningham, M.W.; Lazzara, R.; Yu, X. Atrial tachyarrhythmias induced by the combined effects of Œ≤1/2-adrenergic autoantibodies and thyroid hormone in the rabbit. J. Cardiovasc. Transl. Res. 2014, 7, 581–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnsdorf, M.F.; Childers, R.W. Atrial electrophysiology in experimental hyperthyroidism in rabbits. Circ. Res. 1970, 26, 575–581. [Google Scholar] [PubMed] [Green Version]
- Leveque, P.E. Production of atrial fibrillation in dogs by thyroid administration and acetylcholine injection. Circ. Res. 1956, 4, 108–111. [Google Scholar] [PubMed] [Green Version]
- Gerritsen, R.J.; van den Brom, W.E.; Stokhof, A.A. Relationship between atrial fibrillation and primary hypothyroidism in the dog. Vet. Q. 1996, 18, 49–51. [Google Scholar] [PubMed] [Green Version]
- Hoit, B.D.; Khoury, S.F.; Shao, Y.; Gabel, M.; Liggett, S.B.; Walsh, R.A. Effects of thyroid hormone on cardiac beta-adrenergic responsiveness in conscious baboons. Circulation 1997, 96, 592–598. [Google Scholar]
- Khan, R.; Sikanderkhel, S.; Gui, J.; Adeniyi, A.R.; O’Dell, K.; Erickson, M.; Malpartida, J.; Mufti, Z.; Khan, T.; Mufti, H.; et al. Thyroid and Cardiovascular Disease: A Focused Review on the Impact of Hyperthyroidism in Heart Failure. Cardiol. Res. 2020, 11, 68–75. [Google Scholar]
- Sharma, A.; Vidusha, K.; Suresh, H.; Ajan, M.J.; Saravanan, K.; Dhamania, M.; Nisha, B.; Wani, R.T. Global Awareness of Myocardial Infarction Symptoms in General Population: A Systematic Review and Meta-Analysis. Korean Circ. J. 2021, 51, 983–996. [Google Scholar]
- Friberg, L.; Drvota, V.; Bjelak, A.H.; Eggertsen, G.; Ahnve, S. Association between increased levels of reverse triiodothyronine and mortality after acute myocardial infarction. Am. J. Med. 2001, 111, 699–703. [Google Scholar]
- Zhang, K.; Tang, Y.D.; Zhang, Y.; Ojamaa, K.; Li, Y.; Saini, A.S.; Carrillo-Sepulveda, M.A.; Rajagopalan, V.; Gerdes, A.M. Comparison of Therapeutic Triiodothyronine Versus Metoprolol in the Treatment of Myocardial Infarction in Rats. Thyroid 2018, 28, 799–810. [Google Scholar] [CrossRef]
- Goudis, C.A. Chronic obstructive pulmonary disease and atrial fibrillation: An unknown relationship. J. Cardiol. 2017, 69, 699–705. [Google Scholar]
- Hiram, R.; Provencher, S. Pulmonary Disease, Pulmonary Hypertension and Atrial Fibrillation. Card. Electrophysiol. Clin. 2021, 13, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Hiram, R.; Naud, P.; Xiong, F.; Al-u’datt, D.A.; Algalarrondo, V.; Sirois, M.G.; Tanguay, J.F.; Tardif, J.C.; Nattel, S. Right Atrial Mechanisms of Atrial Fibrillation in a Rat Model of Right Heart Disease. J. Am. Coll. Cardiol. 2019, 74, 1332–1347. [Google Scholar] [CrossRef] [PubMed]
- Paran, Y.; Nimrod, A.; Goldin, Y.; Justo, D. Pulmonary hypertension and predominant right heart failure in thyrotoxicosis. Resuscitation 2006, 69, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Marvisi, M.; Zambrelli, P.; Brianti, M.; Civardi, G.; Lampugnani, R.; Delsignore, R. Pulmonary hypertension is frequent in hyperthyroidism and normalizes after therapy. Eur. J. Intern. Med. 2006, 17, 267–271. [Google Scholar] [CrossRef]
- Al Husseini, A.; Bagnato, G.; Farkas, L.; Gomez-Arroyo, J.; Farkas, D.; Mizuno, S.; Kraskauskas, D.; Abbate, A.; Van Tassel, B.; Voelkel, N.F.; et al. Thyroid hormone is highly permissive in angioproliferative pulmonary hypertension in rats. Eur. Respir. J. 2013, 41, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Cooper, L.T., Jr. Myocarditis. N. Engl. J. Med. 2009, 360, 1526–1538. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.T.; Yang, G.G.; Hsu, Y.H. Thyroid storm and lymphocytic myocarditis. Intern. Med. 2010, 49, 593–596. [Google Scholar] [CrossRef] [Green Version]
- Ciháková, D.; Sharma, R.B.; Fairweather, D.; Afanasyeva, M.; Rose, N.R. Animal models for autoimmune myocarditis and autoimmune thyroiditis. Methods Mol. Med. 2004, 102, 175–193. [Google Scholar]
- Gumieniak, O.; Perlstein, T.S.; Hopkins, P.N.; Brown, N.J.; Murphey, L.J.; Jeunemaitre, X.; Hollenberg, N.K.; Williams, G.H. Thyroid function and blood pressure homeostasis in euthyroid subjects. J. Clin. Endocrinol. Metab. 2004, 89, 3455–3461. [Google Scholar]
- Ichiki, T. Thyroid hormone and atherosclerosis. Vascul. Pharmacol. 2010, 52, 151–156. [Google Scholar] [CrossRef]
- Papadopoulou, A.M.; Bakogiannis, N.; Skrapari, I.; Moris, D.; Bakoyiannis, C. Thyroid Dysfunction and Atherosclerosis: A Systematic Review. In Vivo 2020, 34, 3127–3136. [Google Scholar] [CrossRef] [PubMed]
- De Jesus, N.M.; Wang, L.; Herren, A.W.; Wang, J.; Shenasa, F.; Bers, D.M.; Lindsey, M.L.; Ripplinger, C.M. Atherosclerosis exacerbates arrhythmia following myocardial infarction: Role of myocardial inflammation. Heart Rhythm 2015, 12, 169–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiersinga, W.M.; Touber, J.L. The influence of beta-adrenoceptor blocking agents on plasma thyroxine and triiodothyronine. J. Clin. Endocrinol. Metab. 1977, 45, 293–298. [Google Scholar] [PubMed]
- Perrild, H.; Hansen, J.M.; Skovsted, L.; Christensen, L.K. Different effects of propranolol, alprenolol, sotalol, atenolol and metoprolol on serum T3 and serum rT3 in hyperthyroidism. Clin. Endocrinol. (Oxf.) 1983, 18, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Bahn, R.S.; Burch, H.B.; Cooper, D.S.; Garber, J.R.; Greenlee, M.C.; Klein, I.; Laurberg, P.; McDougall, I.R.; Montori, V.M.; Rivkees, S.A.; et al. Hyperthyroidism and other causes of thyrotoxicosis: Management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid 2011, 21, 593–646. [Google Scholar] [CrossRef] [Green Version]
- Devereaux, D.; Tewelde, S.Z. Hyperthyroidism and thyrotoxicosis. Emerg. Med. Clin. N. Am. 2014, 32, 277–292. [Google Scholar] [CrossRef]
- Chiha, M.; Samarasinghe, S.; Kabaker, A.S. Thyroid storm: An updated review. J. Intensive Care Med. 2015, 30, 131–140. [Google Scholar] [CrossRef]
- Dahl, P.; Danzi, S.; Klein, I. Thyrotoxic cardiac disease. Curr. Heart Fail. Rep. 2008, 5, 170–176. [Google Scholar] [CrossRef]
- Murchison, L.E.; How, J.; Bewsher, P.D. Comparison of propranolol and metoprolol in the management of hyperthyroidism. Br. J. Clin. Pharmacol. 1979, 8, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Huffman, D.H.; Klaassen, C.D.; Hartman, C.R. Digoxin in hyperthyroidism. Clin. Pharmacol. Ther. 1977, 22 Pt 1, 533–538. [Google Scholar] [CrossRef]
- Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; et al. 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 2016, 26, 1343–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakazawa, H.K.; Sakurai, K.; Hamada, N.; Momotani, N.; Ito, K. Management of atrial fibrillation in the post-thyrotoxic state. Am. J. Med. 1982, 72, 903–906. [Google Scholar] [PubMed]
- Zhou, Z.H.; Ma, L.L.; Wang, L.X. Risk factors for persistent atrial fibrillation following successful hyperthyroidism treatment with radioiodine therapy. Intern. Med. 2011, 50, 2947–2951. [Google Scholar] [CrossRef] [PubMed]
- Geng, M.; Lin, A.; Nguyen, T.P. Revisiting Antiarrhythmic Drug Therapy for Atrial Fibrillation: Reviewing Lessons Learned and Redefining Therapeutic Paradigms. Front. Pharmacol. 2020, 11, 581837. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.; Nandkeolyar, S.; Lan, H.; Desai, P.; Evans, J.; Hauschild, C.; Choksi, D.; Abudayyeh, I.; Contractor, T.; Hilliard, A. Amiodarone: A Comprehensive Guide for Clinicians. Am. J. Cardiovasc. Drugs. 2020, 20, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Martino, E.; Bartalena, L.; Bogazzi, F.; Braverman, L.E. The effects of amiodarone on the thyroid. Endocr. Rev. 2001, 22, 240–254. [Google Scholar]
- Hagengaard, L.; Søgaard, P.; Espersen, M.; Sessa, M.; Lund, P.E.; Krogager, M.L.; Torp-Pedersen, C.; Kragholm, K.H.; Polcwiartek, C. Association between serum potassium levels and short-term mortality in patients with atrial fibrillation or flutter co-treated with diuretics and rate- or rhythm-controlling drugs. Eur. Heart J. Cardiovasc. Pharmacother. 2020, 6, 137–144. [Google Scholar] [CrossRef]
- Mikhaylov, E.N.; Orshanskaya, V.S.; Lebedev, A.D.; Szili-Torok, T.; Lebedev, D.S. Catheter ablation of paroxysmal atrial fibrillation in patients with previous amiodarone-induced hyperthyroidism: A case-control study. J. Cardiovasc. Electrophysiol. 2013, 24, 888–893. [Google Scholar] [CrossRef]
- Wang, M.; Cai, S.; Sun, L.; Zhao, Q.; Feng, W. Safety and efficacy of early radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation complicated with amiodarone-induced thyrotoxicosis. Cardiol. J. 2016, 23, 416–421. [Google Scholar]
- Wei, S.B.; Wang, W.; Liu, N.; Chen, J.; Guo, X.Y.; Tang, R.B.; Yu, R.H.; Long, D.Y.; Sang, C.H.; Jiang, C.X.; et al. U-shaped association between serum free triiodothyronine and recurrence of atrial fibrillation after catheter ablation. J. Interv. Card. Electrophysiol. 2018, 51, 263–270. [Google Scholar]
- Pei, Y.; Xu, S.; Yang, H.; Ren, Z.; Meng, W.; Zheng, Y.; Guo, R.; Li, S.; Zhao, D.; Tang, K.; et al. Higher FT4 level within the normal range predicts the outcome of cryoballoon ablation in paroxysmal atrial fibrillation patients without structural heart disease. Ann. Noninvasive Electrocardiol. 2021, 26, e12874. [Google Scholar] [CrossRef] [PubMed]
- Morishima, I.; Okumura, K.; Morita, Y.; Kanzaki, Y.; Takagi, K.; Yoshida, R.; Nagai, H.; Ikai, Y.; Furui, K.; Yoshioka, N.; et al. High-Normal Thyroid-Stimulating Hormone Shows a Potential Causal Association With Arrhythmia Recurrence After Catheter Ablation of Atrial Fibrillation. J. Am. Heart Assoc. 2018, 7, e009158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wongcharoen, W.; Lin, Y.J.; Chang, S.L.; Lo, L.W.; Hu, Y.F.; Chung, F.P.; Chong, E.; Chao, T.F.; Tuan, T.C.; Chang, Y.T.; et al. History of hyperthyroidism and long-term outcome of catheter ablation of drug-refractory atrial fibrillation. Heart Rhythm 2015, 12, 1956–1962. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.S.; Liu, X.; Hu, F.L.; Dong, J.Z.; Liu, X.P.; Wang, X.H.; Long, D.Y.; Tang, R.B.; Yu, R.H.; Lu, C.S.; et al. Catheter ablation of atrial fibrillation in patients with hyperthyroidism. J. Interv. Card. Electrophysiol. 2007, 18, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Machino, T.; Tada, H.; Sekiguchi, Y.; Yamasaki, H.; Kuroki, K.; Igarashi, M.; Naruse, Y.; Nakano, E.; Ito, Y.; Kaneshiro, T.; et al. Prevalence and influence of hyperthyroidism on the long-term outcome of catheter ablation for drug-refractory atrial fibrillation. Circ. J. 2012, 76, 2546–2551. [Google Scholar] [CrossRef] [Green Version]
- Dörr, M.; Robinson, D.M.; Wallaschofski, H.; Schwahn, C.; John, U.; Felix, S.B.; Völzke, H. Low serum thyrotropin is associated with high plasma fibrinogen. J. Clin. Endocrinol. Metab. 2006, 91, 530–534. [Google Scholar] [CrossRef]
- Homoncik, M.; Gessl, A.; Ferlitsch, A.; Jilma, B.; Vierhapper, H. Altered platelet plug formation in hyperthyroidism and hypothyroidism. J. Clin. Endocrinol. Metab. 2007, 92, 3006–3012. [Google Scholar] [CrossRef] [Green Version]
- Erem, C. Blood coagulation, fibrinolytic activity and lipid profile in subclinical thyroid disease: Subclinical hyperthyroidism increases plasma factor X activity. Clin. Endocrinol. (Oxf.) 2006, 64, 323–329. [Google Scholar] [CrossRef]
- Krisai, P.; Cheniti, G.; Kamakura, T.; Takagi, T.; André, C.; Ramirez, F.D.; Nakatani, Y.; Nakashima, T.; Tixier, R.; Chauvel, R.; et al. Catheter Ablation for Atrial Fibrillation in Hyperthyroid Patients. Circ. Arrhythm. Electrophysiol. 2021, 14, e010200. [Google Scholar] [CrossRef]
- Franchini, M.; Lippi, G.; Targher, G. Hyperthyroidism and venous thrombosis: A casual or causal association? A systematic literature review. Clin. Appl. Thromb. Hemost. 2011, 17, 387–392. [Google Scholar] [CrossRef]
- Marouli, E.; Kus, A.; Del Greco, M.F.; Chaker, L.; Peeters, R.; Teumer, A.; Deloukas, P.; Medici, M. Thyroid Function Affects the Risk of Stroke via Atrial Fibrillation: A Mendelian Randomization Study. J. Clin. Endocrinol. Metab. 2020, 105, 2634–2641. [Google Scholar] [CrossRef] [PubMed]
- January, C.T.; Wann, L.S.; Alpert, J.S.; Calkins, H.; Cigarroa, J.E.; Cleveland, J.C.; Conti, J.B., Jr.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2014, 64, e1–e76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomstr√∂m-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [PubMed]
- Goldstein, S.A.; Green, J.; Huber, K.; Wojdyla, D.M.; Lopes, R.D.; Alexander, J.H.; Vinereanu, D.; Wallentin, L.; Granger, C.B.; Al-Khatib, S.M. Characteristics and Outcomes of Atrial Fibrillation in Patients With Thyroid Disease (from the ARISTOTLE Trial). Am. J. Cardiol. 2019, 124, 1406–1412. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.H.; Wu, L.S.; See, L.C.; Liu, J.R.; Chang, S.H.; Chao, T.F.; Yeh, Y.H.; Kuo, C.T.; Lee, H.F.; Lip, G.Y.H. Direct Oral Anticoagulants in Atrial Fibrillation Patients With Concomitant Hyperthyroidism. J. Clin. Endocrinol. Metab. 2020, 105, 2893–2904. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Li, M.; Qiu, M. Treatment of Hyperthyroid Atrial Fibrillation Associated with Graves Disease by Prednisone. Zhonghua Yi Xue Za Zhi 2002, 82, 810–812. [Google Scholar] [PubMed]
Thyroidism | Demography | Study Duration | Association of Thyroid Disease with AF Incidence | References |
---|---|---|---|---|
Low TSH | Population: 726 patients (273 women, 453 men) Age: 65.5 ± 13 years old | 1.7 years | HR: 1.67 95% CI; 1.7–14.0; p ≤ 0.05 | [17] |
Low TSH | Population: 2007 patients (1193 women; 814 men). Age: ≥ 60 years old | 10 years | HR: 3.1 95% CI; 1.7–5.5; p < 0.001 | [12] |
High Free T4 | Population: 1426 patients (841 women, 585 men) Age: 68 ± 8 years old | 8 years | HR: 1.62 95% CI; 0.84–3.14; p < 0.06 | [4] |
High Free T4 | Population: 1095 patients (298 women; 797 men) Age: 60 ± 10 years old | 3 years | HR: 1.15 95% CI; 1.03–1.29; p = 0.014 | [13] |
High Free T4 | Population: 244 patients (67 women; 177 men) Age: 55 ± 12 years old | 1 year | HR: 3.31 95% CI; 1.45–7.54; p = 0.004 | [14] |
High Free T4 | Population: 10,318 patients (5886 women, 4432 men) Age: 65 ± 10 years old | 9 years | HR: 2.28 95% CI; 1.31–3.97; p ≤ 0.05 | [20] |
High Free T4 | Population: 174,914 patients (113,519 women, 61,395 men) Age: 65 ± 10 years old | 7 years | HR: 1.16 95% CI; 1.10–1.21; p < 0.0001 | [21] |
High Free TA | Population: 30,085 patients (15,584 women, 159,390 men) Age: ~69 years old | 17 years | HR: 1.45 95% CI; 1.26–1.66; p ≤ 0.001 | [22] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takawale, A.; Aguilar, M.; Bouchrit, Y.; Hiram, R. Mechanisms and Management of Thyroid Disease and Atrial Fibrillation: Impact of Atrial Electrical Remodeling and Cardiac Fibrosis. Cells 2022, 11, 4047. https://doi.org/10.3390/cells11244047
Takawale A, Aguilar M, Bouchrit Y, Hiram R. Mechanisms and Management of Thyroid Disease and Atrial Fibrillation: Impact of Atrial Electrical Remodeling and Cardiac Fibrosis. Cells. 2022; 11(24):4047. https://doi.org/10.3390/cells11244047
Chicago/Turabian StyleTakawale, Abhijit, Martin Aguilar, Yasmina Bouchrit, and Roddy Hiram. 2022. "Mechanisms and Management of Thyroid Disease and Atrial Fibrillation: Impact of Atrial Electrical Remodeling and Cardiac Fibrosis" Cells 11, no. 24: 4047. https://doi.org/10.3390/cells11244047
APA StyleTakawale, A., Aguilar, M., Bouchrit, Y., & Hiram, R. (2022). Mechanisms and Management of Thyroid Disease and Atrial Fibrillation: Impact of Atrial Electrical Remodeling and Cardiac Fibrosis. Cells, 11(24), 4047. https://doi.org/10.3390/cells11244047