Proteomics and Phospho-Proteomics Profiling of the Co-Formulation of Type I and II Interferons, HeberFERON, in the Glioblastoma-Derived Cell Line U-87 MG
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples for Proteomic Experiment
2.2. LC-MS/MS and Identification of Peptides and Phospho-Peptides
2.3. Bioinformatic Enrichment Analysis
2.4. PPI Analysis
3. Results
3.1. General Proteomic and Phosphoproteomic Results
3.2. Enrichment Analysis
3.3. Analysis of Significant Kinases through Regulated Phosphosites
3.4. Network Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Platanias, L.C. Mechanisms of type-i- and type-ii-interferon-mediated signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Takaoka, A. A weak signal for strong responses: Interferon-alpha/beta revisited. Nat. Rev. Mol. Cell Biol. 2001, 2, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Fish, E.N.; Platanias, L.C. Interferon receptor signaling in malignancy: A network of cellular pathways defining biological outcomes. Mol. Cancer Res. MCR 2014, 12, 1691–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thyrell, L.; Hjortsberg, L.; Arulampalam, V.; Panaretakis, T.; Uhles, S.; Dagnell, M.; Zhivotovsky, B.; Leibiger, I.; Grander, D.; Pokrovskaja, K. Interferon alpha-induced apoptosis in tumor cells is mediated through the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. J. Biol. Chem. 2004, 279, 24152–24162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bello-Rivero, I.; Garcia-Vega, Y.; Duncan-Roberts, Y.; Vazquez-Blomquistc, D.; Santana-Milian, H.; Besada-Perez, V.; Rios-Cabrera, M. Heberferon, a new formulation of ifns with improved pharmacodynamics: Perspective for cancer treatment. Semin. Oncol. 2018, 45, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Moynelo, I.I.; Perez-Escribano, J.; Duncan-Roberts, Y.; Vazque-Blonquist, D.; Bequet-Romero, M.; Baez-Rodríguez, L.; Castro-Ríos, J.; Cervantes, L.C.; Pagé-Calvet, E.; Travieso-Pérez, S. Effect and safety of combination of interferon alpha-2b and gamma or interferon alpha-2b for negativization of SARS-CoV-2 viral rna. Preliminary results of a randomized controlled clinical trial. medRxiv 2020. [Google Scholar] [CrossRef]
- MINSAP. Protocolo de Actuación Nacional Para la COVID-19. Versión 1.6. Enero 2021. Available online: https://covid19cubadata.github.io/protocols.html (accessed on 5 March 2021).
- Delgado-Lopez, P.D.; Corrales-Garcia, E.M. Survival in glioblastoma: A review on the impact of treatment modalities. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2016, 18, 1062–1071. [Google Scholar] [CrossRef]
- Weller, M.; Le Rhun, E.; Preusser, M.; Tonn, J.C.; Roth, P. How we treat glioblastoma. ESMO Open 2019, 4, e000520. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Vega, Y.; Salva-Camaño, S.; García-Iglesias, E.; Cubero-Rego, D.; González-Gonzalez, J.; Bello-Rivero, I. Cigb-128, as compassionate intracranial treatment in patients with non-operable or progressive high grade gliomas. J. Cancer Res. Ther. 2015, 3, 136–143. [Google Scholar]
- Bello-Rivero, I.; Arocha-Garcia, A.; Dominguez-Pena, R.; Rios-Cabrera, M.; Rodriguez-Rodriguez, L.; Mora-Garcia, N.; Garcia-Garcia, I.; Vazquez-Blomquist, D.; Miranda-Navarrro, J.; Leenstra, S. Combination of ifn’s prolongs the survival of patients with high grade glioma and impact in vitro proliferation and gene expression patterns of genomic subtypes. Neuro-Oncology 2016, 18, vi7. [Google Scholar] [CrossRef] [Green Version]
- Miranda, J.; Vazquez-Blomquist, D.; Bringas, R.; Fernandez-de-Cossio, J.; Palenzuela, D.; Novoa, L.I.; Iraldo, B.-R.J. Heberferon distinctively targets cell cycle in the glioblastoma-derived cell line u-87mg. bioRxiv 2022. [Google Scholar] [CrossRef]
- Humphrey, S.J.; James, D.E.; Mann, M. Protein phosphorylation: A major switch mechanism for metabolic regulation. Trends Endocrinol. Metab. TEM 2015, 26, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Day, E.K.; Sosale, N.G.; Lazzara, M.J. Cell signaling regulation by protein phosphorylation: A multivariate, heterogeneous, and context-dependent process. Curr. Opin. Biotechnol. 2016, 40, 185–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisniewski, J.R.; Mann, M. Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal. Chem. 2012, 84, 2631–2637. [Google Scholar] [CrossRef] [PubMed]
- WiŚniewski, J.R. Quantitative evaluation of filter aided sample preparation (fasp) and multienzyme digestion fasp protocols. Anal. Chem. 2016, 88, 5438–5443.015A. [Google Scholar] [CrossRef] [Green Version]
- WiŚniewski, J.R.; Nagaraj, N.; Zougman, A.; Gnad, F.; Mann, M. Brain phosphoproteome obtained by a fasp-based method reveals plasma membrane protein topology. J. Proteome Res. 2010, 9, 3280–3289. [Google Scholar] [CrossRef]
- Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed maxlfq. Mol. Cell. Proteom. MCP 2014, 13, 2513–2526. [Google Scholar] [CrossRef] [Green Version]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef] [Green Version]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. David: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lachmann, A.; Ma’ayan, A. Kea: Kinase enrichment analysis. Bioinformatics 2009, 25, 684–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiredja, D.D.; Koyuturk, M.; Chance, M.R. The ksea app: A web-based tool for kinase activity inference from quantitative phosphoproteomics. Bioinformatics 2017, 33, 3489–3491. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Arighi, C.N.; Ross, K.E.; Ren, J.; Li, G.; Chen, S.C.; Wang, Q.; Cowart, J.; Vijay-Shanker, K.; Wu, C.H. Iptmnet: An integrated resource for protein post-translational modification network discovery. Nucleic Acids Res. 2018, 46, D542–D550. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Yang, C.; Guo, G.; Li, N.; Yu, W. Motif-all: Discovering all phosphorylation motifs. BMC Bioinform. 2011, 12 (Suppl. 1), S22. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; Ochagavia, M.E.; Rabasa, L.C.; Miranda, J.; Fernandez-de-Cossio, J.; Bringas, R. Bisogenet: A new tool for gene network building, visualization and analysis. BMC Bioinform. 2010, 11, 91. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.; Derrick, J.; Hong, J.; Sanda, C.; Grosse, W.M.; Edenberg, H.J.; Taylor, M.; Seiwert, S.; Blatt, L.M. Global transcriptional profiling demonstrates the combination of type ι and type ιι interferon enhances antiviral and immune responses at clinically relevant doses. J. Interferon Cytokine Res. 2005, 25, 632–649. [Google Scholar] [CrossRef]
- Sanda, C.; Weitzel, P.; Tsukahara, T.; Schaley, J.; Edenberg, H.J.; Stephens, M.A.; McClintick, J.N.; Blatt, L.M.; Li, L.; Brodsky, L. Differential gene induction by type i and type ii interferons and their combination. J. Interferon Cytokine Res. 2006, 26, 462–472. [Google Scholar] [CrossRef]
- Indraccolo, S.; Pfeffer, U.; Minuzzo, S.; Esposito, G.; Roni, V.; Mandruzzato, S.; Ferrari, N.; Anfosso, L.; Dell’Eva, R.; Noonan, D.M. Identification of genes selectively regulated by ifns in endothelial cells. J. Immunol. 2007, 178, 1122–1135. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.C.; Casciola-Rosen, L.; Berger, A.E.; Kapsogeorgou, E.K.; Cheadle, C.; Tzioufas, A.G.; Baer, A.N.; Rosen, A. Precise probes of type ii interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc. Natl. Acad. Sci. USA 2012, 109, 17609–17614. [Google Scholar] [CrossRef] [Green Version]
- Megger, D.A.; Philipp, J.; Le-Trilling, V.T.K.; Sitek, B.; Trilling, M. Deciphering of the human interferon-regulated proteome by mass spectrometry-based quantitative analysis reveals extent and dynamics of protein induction and repression. Front. Immunol. 2017, 8, 1139. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, P.V.; Reinsbach, S.E.; Muller, A.; Nicot, N.; Philippidou, D.; Vallar, L.; Kreis, S. Interplay of micrornas, transcription factors and target genes: Linking dynamic expression changes to function. Nucleic Acids Res. 2013, 41, 2817–2831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-García, I.; Hernández-González, I.; Díaz-Machado, A.; González-Delgado, C.A.; Pérez-Rodríguez, S.; García-Vega, Y.; Campos-Mojena, R.; Tuero-Iglesias, Á.D.; Valenzuela-Silva, C.M.; Cruz-Ramírez, A. Pharmacokinetic and pharmacodynamic characterization of a novel formulation containing co-formulated interferons alpha-2b and gamma in healthy male volunteers. BMC Pharmacol. Toxicol. 2016, 17, 58. [Google Scholar] [CrossRef] [Green Version]
- Sen, G.C. Viruses and interferons. Annu. Rev. Microbiol. 2001, 55, 255–281. [Google Scholar] [CrossRef]
- Perng, Y.C.; Lenschow, D.J. Isg15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 2018, 16, 423–439. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, G. The molecular basis for differential type i interferon signaling. J. Biol. Chem. 2017, 292, 7285–7294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieczorek, M.; Abualrous, E.T.; Sticht, J.; Álvaro-Benito, M.; Stolzenberg, S.; Noé, F.; Freund, C. Major histocompatibility complex (mhc) class i and mhc class ii proteins: Conformational plasticity in antigen presentation. Front. Immunol. 2017, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Li, D.; Zhu, H.Q.; Song, M.G.; Pan, X.R.; Jia, P.M.; Peng, L.L.; Dou, A.X.; Chen, G.Q.; Chen, S.J.; et al. Rig-g as a key mediator of the antiproliferative activity of interferon-related pathways through enhancing p21 and p27 proteins. Proc. Natl. Acad. Sci. USA 2006, 103, 16448–16453. [Google Scholar] [CrossRef] [Green Version]
- Stark, G.R.; Kerr, I.M.; Williams, B.R.; Silverman, R.H.; Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 1998, 67, 227–264. [Google Scholar] [CrossRef] [Green Version]
- Pindel, A.; Sadler, A. The role of protein kinase r in the interferon response. J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res. 2011, 31, 59–70. [Google Scholar] [CrossRef]
- Tsuno, T.; Mejido, J.; Zhao, T.; Schmeisser, H.; Morrow, A.; Zoon, K.C. Irf9 is a key factor for eliciting the antiproliferative activity of ifn-alpha. J. Immunother. 2009, 32, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Zanin, N.; de Lesegno, C.V.; Lamaze, C.; Blouin, C.M. Interferon receptor trafficking and signaling: Journey to the cross roads. Front. Immunol. 2020, 11, 615603. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.U.; Karapetsas, A.; Nirujogi, R.S.; Mathea, S.; Chatterjee, D.; Pal, P.; Lis, P.; Taylor, M.; Purlyte, E.; Gourlay, R. Deciphering the lrrk code: Lrrk1 and lrrk2 phosphorylate distinct rab proteins and are regulated by diverse mechanisms. Biochem. J. 2021, 478, 553–578. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.O.; Panchenko, T.; Sathyan, K.M.; Petkowski, J.J.; Pai, P.J.; Bai, D.L.; Russell, D.H.; Macara, I.G.; Shabanowitz, J.; Hunt, D.F.; et al. Posttranslational modification of cenp-a influences the conformation of centromeric chromatin. Proc. Natl. Acad. Sci. USA 2013, 110, 11827–11832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivakumar, S.; Gorbsky, G.J. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat. Rev. Mol. Cell Biol. 2015, 16, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Papini, D.; Fant, X.; Ogawa, H.; Desban, N.; Samejima, K.; Feizbakhsh, O.; Askin, B.; Ly, T.; Earnshaw, W.C.; Ruchaud, S. Cell cycle-independent furrowing triggered by phosphomimetic mutations of the incenp std motif requires plk1. J. Cell Sci. 2019, 132, jcs234401. [Google Scholar] [CrossRef] [Green Version]
- Ong, J.Y.; Bradley, M.C.; Torres, J.Z. Phospho-regulation of mitotic spindle assembly. Cytoskeleton 2020, 77, 558–578. [Google Scholar] [CrossRef]
- Cuylen, S.; Blaukopf, C.; Politi, A.Z.; Müller-Reichert, T.; Neumann, B.; Poser, I.; Ellenberg, J.; Hyman, A.A.; Gerlich, D.W. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 2016, 535, 308–312. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, E.S.; Pruitt, S.C.; Hershberger, P.A.; Witkiewicz, A.K.; Goodrich, D.W. Cell cycle and beyond: Exploiting new rb1 controlled mechanisms for cancer therapy. Trends Cancer 2019, 5, 308–324. [Google Scholar] [CrossRef]
- Colombo, E.; Alcalay, M.; Pelicci, P.G. Nucleophosmin and its complex network: A possible therapeutic target in hematological diseases. Oncogene 2011, 30, 2595–2609. [Google Scholar] [CrossRef] [Green Version]
- López, D.J.; Rodríguez, J.A.; Bañuelos, S. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. Biochim. Biophys. Acta Proteins Proteom. 2020, 1868, 140532. [Google Scholar] [CrossRef] [PubMed]
- Roux, P.P.; Blenis, J. Erk and p38 mapk-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 2004, 68, 320–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekisz, J.; Baron, S.; Balinsky, C.; Morrow, A.; Zoon, K.C. Antiproliferative properties of type i and type ii interferon. Pharmaceuticals 2010, 3, 994–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newton, A.C. Regulation of the abc kinases by phosphorylation: Protein kinase c as a paradigm. Biochem. J. 2003, 370, 361–371. [Google Scholar] [CrossRef]
- Clark, M.J.; Homer, N.; O’Connor, B.D.; Chen, Z.; Eskin, A.; Lee, H.; Merriman, B.; Nelson, S.F. U87mg decoded: The genomic sequence of a cytogenetically aberrant human cancer cell line. PLoS Genet. 2010, 6, e1000832. [Google Scholar] [CrossRef]
- Jhanwar-Uniyal, M.; Wainwright, J.V.; Mohan, A.L.; Tobias, M.E.; Murali, R.; Gandhi, C.D.; Schmidt, M.H. Diverse signaling mechanisms of mtor complexes: Mtorc1 and mtorc2 in forming a formidable relationship. Adv. Biol. Regul. 2019, 72, 51–62. [Google Scholar] [CrossRef]
- Tchevkina, E.; Komelkov, A. Protein phosphorylation as a key mechanism of mtorc1/2 signaling pathways. In Protein Phosphorylation in Human Health; IntechOpen: London, UK, 2012; pp. 3–50. [Google Scholar]
- Hsu, P.P.; Kang, S.A.; Rameseder, J.; Zhang, Y.; Ottina, K.A.; Lim, D.; Peterson, T.R.; Choi, Y.; Gray, N.S.; Yaffe, M.B.; et al. The mtor-regulated phosphoproteome reveals a mechanism of mtorc1-mediated inhibition of growth factor signaling. Science 2011, 332, 1317–1322. [Google Scholar] [CrossRef] [Green Version]
- Chantaravisoot, N.; Wongkongkathep, P.; Pacharakullanon, N.; Tamanoi, F.; Loo, J.A.; Pisitkun, T. The mtor complex 2 promotes glioblastoma migration via the interactions with multiple actin-binding and microtubule-associated proteins. Cancer Res. 2019, 79, 4535. [Google Scholar] [CrossRef]
- Ramkumar, A.; Jong, B.Y.; Ori-McKenney, K.M. Remapping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2018, 247, 138–155. [Google Scholar] [CrossRef] [Green Version]
- Hajka, D.; Budziak, B.; Pietras, Ł.; Duda, P.; McCubrey, J.A.; Gizak, A. Gsk3 as a regulator of cytoskeleton architecture: Consequences for health and disease. Cells 2021, 10, 2092. [Google Scholar] [CrossRef]
- Beurel, E.; Grieco, S.F.; Jope, R.S. Glycogen synthase kinase-3 (gsk3): Regulation, actions, and diseases. Pharmacol. Ther. 2015, 148, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Naydenov, N.G.; Lechuga, S.; Huang, E.H.; Ivanov, A.I. Myosin motors: Novel regulators and therapeutic targets in colorectal cancer. Cancers 2021, 13, 741. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.J.; Jiang, W.G.; Hargest, R.; Mason, M.D.; Sanders, A.J. Eplin: A fundamental actin regulator in cancer metastasis? Cancer Metastasis Rev. 2015, 34, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, K. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell. Signal. 2013, 25, 457–469. [Google Scholar] [CrossRef]
- Fong, L.W.R.; Yang, D.C.; Chen, C.-H. Myristoylated alanine-rich c kinase substrate (marcks): A multirole signaling protein in cancers. Cancer Metastasis Rev. 2017, 36, 737–747. [Google Scholar] [CrossRef] [Green Version]
- Nowicki, M.O.; Hayes, J.L.; Chiocca, E.A.; Lawler, S.E. Proteomic analysis implicates vimentin in glioblastoma cell migration. Cancers 2019, 11, 466. [Google Scholar] [CrossRef] [Green Version]
- Katsogiannou, M.; Andrieu, C.; Rocchi, P. Heat shock protein 27 phosphorylation state is associated with cancer progression. Front. Genet. 2014, 5, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chun, Y.; Kim, J. Autophagy: An essential degradation program for cellular homeostasis and life. Cells 2018, 7, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sima, S.; Richter, K. Regulation of the hsp90 system. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 889–897. [Google Scholar] [CrossRef]
- Yeo, B.K.; Yu, S.-W. Valosin-containing protein (vcp): Structure, functions, and implications in neurodegenerative diseases. Anim. Cells Syst. 2016, 20, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; He, Z.; Kitazato, K.; Wang, Y. Selective autophagy regulates cell cycle in cancer therapy. Theranostics 2019, 9, 104–125. [Google Scholar] [CrossRef] [PubMed]
- Linares, J.F.; Amanchy, R.; Greis, K.; Diaz-Meco, M.T.; Moscat, J. Phosphorylation of p62 by cdk1 controls the timely transit of cells through mitosis and tumor cell proliferation. Mol. Cell. Biol. 2011, 31, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-L.; Pasero, P. Replication stress: From chromatin to immunity and beyond. Curr. Opin. Genet. Dev. 2021, 71, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Daza-Martin, M.; Starowicz, K.; Jamshad, M.; Tye, S.; Ronson, G.E.; MacKay, H.L.; Chauhan, A.S.; Walker, A.K.; Stone, H.R.; Beesley, J.F. Isomerization of brca1–bard1 promotes replication fork protection. Nature 2019, 571, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.A.; Loos, B.; Engelbrecht, A.M. Ahnak: The giant jack of all trades. Cell. Signal. 2014, 26, 2683–2693. [Google Scholar] [CrossRef]
- Ferrell, J.E., Jr. Feedback loops and reciprocal regulation: Recurring motifs in the systems biology of the cell cycle. Curr. Opin. Cell Biol. 2013, 25, 676–686. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.-Y.; Rath, O.; Choo, S.-M.; Fee, F.; McFerran, B.; Kolch, W.; Cho, K.-H. Positive-and negative-feedback regulations coordinate the dynamic behavior of the ras-raf-mek-erk signal transduction pathway. J. Cell Sci. 2009, 122, 425–435. [Google Scholar] [CrossRef]
Kinases | Representative Sites | Kinases | Representative Sites |
---|---|---|---|
CDK1 | AHNAK_S5763, BRCA1_114, CCNL1_S342, CEP55_S428, DUT_S99, INCENP_S421, MAP1B_T1788, MKI67_S584, NPM1_T219, RAD9A_S328, RANBP2_T799, RB1_S807, RFC1_T506, SIN3A_S860, SMARCA5_S116, SQSTM1_S272, TCOF1_S583, TFDP1_S23 | PRKCA | AHNAK_S4903, AHNAK_S5321, AHNAK_S5857, AKAP12_S612, ANXA2_S26, C5AR1_S334, CLIP1_S204, EIF5B_S222, ITGB1_S785, MARCKS_S29, MTOR_S1261, NF2_S13, SPTBN1_S2358, UFD1L_S299, |
CDK2 | BRCA1_114, BRD4_S470, CENPA_S19, COIL_S566, COIL_T303, HIST1H1B_T11, HIST1H1B_T138, MARCKS_S27, NPM1_T219,RAD9A_S328, RB1_S807, RPL12_S38, TCOF1_S583, TERF2_S365, TFDP1_S23, TPR_T1677 | PRKCB | AHNAK_S4903, AHNAK_S5279, AHNAK_S5321, AHNAK_S5854, AHNAK_S5857, AKAP12_S612, ANXA2_S26, C5AR1_S334, CLIP1_S204, DR1_S105, EIF5B_S222, HSPB1_S86, NF2_S13, PARVA_S28, PCNP_S87, RBM39_S117, SPTBN1_S2358, UFD1L_S299 |
AURKA | CEP55_S428, INCENP_S421, MKI67_S584 | PLK1 | CLIP1_S195, CLIP1_S200, CLIP2_S204, NUDC_T145 |
MAPK3 (ERK1) | BAG3_S386, RB1_S807, SQSTM1_S272 | RPS6KA3 | HSPB1_S82, LCP1_S5 |
MAPK1 (ERK2) | CEP55_S428, RANBP2_T799, RB1_S807, TPR_T1677, MARCKS_S27 | PRKDC | ATRX_S1348, FASN_S2198, FASN_S2236, LYST_S2166 |
CDK7 | LEO1_S162, MTA1_S576, TAF3_S183, | PRKACA | LCP1_S5, HSPB1_S82, PPP2R5D_S573, SPTBN1_S2358, TAGLN2_S163, |
CDK3 | RB1_S807, TFDP1_S23 | PRKCE | AKAP12_S612, MARCKS_S29, NF2_S13 |
CDK4-CDK6 | CCNL1_S335, RB1_S807 | EIF2AK2 | MTOR_S1261, NPM1_T219 |
RAF1 | MTOR_S1261, NF1_S2188, RB1_S807, VIM_S420 | AURKB | CLIP1_S195, CLIP1_S200, NPM1_T219, MARCKS_S29 |
ROCK1 | CEP55_S428, CFL1_S3, DPYSL2_T514, MTOR_S1261, VIM_S420 | PKD1 | HSPB1_S82, HSPB1_S86 |
GSK3B | CLIP1_S200, CLIP2_S207, DPYSL2_T514, HIST1H1B_T11, HIST1H1B_T138, MAP1B_T1788, MAP1B_S1881, MAP1B_S1915, MTOR_S1261 | AKT1 | FASN_S2236, HSPB1_S82, MTOR_S1261, NF2_S13, NF1_S2188, |
CDK5 | DBN1_S142, DPYSL2_T514, MAP1B_T1788, MAP1B_S1881, MAP1B_S1915, RB1_S807 | PRKAA2 | EEF2K_T348, FASN_S1411, FASN_S2236, MTOR_S1261, SCD_S198 |
PTM w/No Ez | No PTM | PTM w/No Ez | No PTM | ||||
---|---|---|---|---|---|---|---|
Chromatin remodeling | RNA Splicing | ||||||
SMARCA5 | S116 | SMARCA1 | S116 | AHNAK | S1010/S1123/ S1445/S2560/ S3360/ S3409/S3412/ S4520/ S4870/S4933/ S5031/ S5289/ S5332/S5400/ S5430/ S5530/ S5589/S5620/ S5641/S5731/ S5735/S5749/ S5752/S5830/ S5851/ S5857/S6580/ S6910/ T2470/T3716/ T4100/T5824/T590 | HNRNPM | S481 |
ATRX | S1348/ S1352 | CCNL1 | S335/S338 | SF1 | S14 | ||
Autophagy | IWS1 | S224/S248/ S250 | SRSF10 | S234 | |||
CHMP2B | S199 | PNN | S690/S694/ S695 | ||||
HSP90AA1 | S315 | SRRM2 | S1972/T1974 | ||||
PDIA4 | S470 | SRSF2 | S189/S191 | ||||
RAB7A | S72 | ||||||
RB1CC1 | S1222 | ||||||
Cytoskeleton organization/Cell Cycle | Other processes | ||||||
GORASP2 | S409 | CEP192 | S1355 | AKAP11 | T1485 | ADAR | S624 |
GSK3B | S25 | GOLGA4 | S266 | AKAP12 | S1251/S248/S598/S660/S806/T608 | AHNAK2 | S248/S397/ S593/S746/ S823/S1153/ S1318/ S1813/ S1978/ S2896/ S2896/ S3217/ S3946/ S4534/ S4610/ S4612/ S4862/ S4862/ S4866/ S4957/ S223 |
MAP1B | S1512/ S1881/ S1915/ S1917 | GORASP2 | T347 | AKAP2 | S361 | AKAP12 | T523 |
MARCKS | S29 | KIF23 | S422 | ATF7IP | S445/S673 | ANAPC1 | S223 |
MYH9 | S1340 | KIF26B | S1608 | CAMK2D | S490 | BCLAF1 | Y381/S420 |
MYO18A | T722 | LIMA1 | S210/ S363/ S370/ S610 | COIL | S566/T303 | CSNK1E | S66 |
MYO9B | S1972 | LMNA | S598 | FASN | S1411/S2198/ S2236 | IFNAR1 | T328 |
MAP1A | T854/ S1398 /S1526/ S2260 | GLI2 | S234 | PPFIBP1 | S449/S573/ S579/ S595/S788/ S995 /S997/ S1001 | ||
MARCKS | S63 | PTPN14 | S594 | PRKD1 | S245 | ||
MKI67 | S2527/ S2707 | RAB3GAP1 | S537 | RAB28 | S2/S4 | ||
MAP4K4 | T810/ S875/ S934 | RABEP1 | S410 | RIOK2 | S332 | ||
NOLC1 | S547/ T619 | RIOK2 | S337 | ||||
PCM1 | S1188 | SNX29 | S268/S330/S344 | ||||
SYNPO | S894 | ||||||
Translation | |||||||
AARS | S403 | LARP4 | S651 | LARP1 | T526 | ||
EIF4G1 | S1092 | RPL24 | T83 | ||||
EIF4G3 | S232 | RPL27A | S68 | ||||
EIF5B | S214 | RPL37 | S97 | ||||
PLEC | S1435 | RPLP2 | S79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Blomquist, D.; Hardy-Sosa, A.; Baez, S.C.; Besada, V.; Palomares, S.; Guirola, O.; Ramos, Y.; Wiśniewski, J.R.; González, L.J.; Bello-Rivero, I. Proteomics and Phospho-Proteomics Profiling of the Co-Formulation of Type I and II Interferons, HeberFERON, in the Glioblastoma-Derived Cell Line U-87 MG. Cells 2022, 11, 4068. https://doi.org/10.3390/cells11244068
Vázquez-Blomquist D, Hardy-Sosa A, Baez SC, Besada V, Palomares S, Guirola O, Ramos Y, Wiśniewski JR, González LJ, Bello-Rivero I. Proteomics and Phospho-Proteomics Profiling of the Co-Formulation of Type I and II Interferons, HeberFERON, in the Glioblastoma-Derived Cell Line U-87 MG. Cells. 2022; 11(24):4068. https://doi.org/10.3390/cells11244068
Chicago/Turabian StyleVázquez-Blomquist, Dania, Anette Hardy-Sosa, Saiyet C. Baez, Vladimir Besada, Sucel Palomares, Osmany Guirola, Yassel Ramos, Jacek R. Wiśniewski, Luis Javier González, and Iraldo Bello-Rivero. 2022. "Proteomics and Phospho-Proteomics Profiling of the Co-Formulation of Type I and II Interferons, HeberFERON, in the Glioblastoma-Derived Cell Line U-87 MG" Cells 11, no. 24: 4068. https://doi.org/10.3390/cells11244068
APA StyleVázquez-Blomquist, D., Hardy-Sosa, A., Baez, S. C., Besada, V., Palomares, S., Guirola, O., Ramos, Y., Wiśniewski, J. R., González, L. J., & Bello-Rivero, I. (2022). Proteomics and Phospho-Proteomics Profiling of the Co-Formulation of Type I and II Interferons, HeberFERON, in the Glioblastoma-Derived Cell Line U-87 MG. Cells, 11(24), 4068. https://doi.org/10.3390/cells11244068