Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Discriminates the Elderly with a Low and High Percentage of Pathogenic CD4+ T Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. HDL Isolation
2.3. Exosome Isolation
2.4. FTIR Spectral Acquisition
2.5. Spectral Band Area Analysis
2.6. Oxidative Stress Study by FTIR
2.7. Principal Component Analysis (PCA)
2.8. Spectral Data Analysis Using Multiple Algorithms
2.9. Classification Model Evaluation
2.10. Statistical Analysis
3. Results
3.1. Biomolecular Content Study by Spectral Band Area Analysis
3.2. Oxidative Stress Study
3.3. Differences between Spectra from the LP and HP Groups
3.4. Discrimination by Unsupervised Analysis: Principal Component Analysis (PCA)
3.5. Establishment of Partial Least Square Discriminant Analysis (PLS-DA) Model for Discrimination
3.6. Classification Model Using Advanced Machine Learning Algorithms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haynes, L. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Front. Aging 2020, 1, 602108. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Ren, Y.; Wang, Y.; Fang, J.; Yue, H.; Ma, S.; Guan, F. Aging and Age-related Diseases: From Mechanisms to Therapeutic Strategies. Biogerontology 2021, 22, 165–187. [Google Scholar] [CrossRef] [PubMed]
- Nikolich-Žugich, J. The Twilight of Immunity: Emerging Concepts in Aging of the Immune System. Nat. Immunol. 2018, 19, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Goronzy, J.J.; Weyand, C.M. Understanding Immunosenescence to Improve Responses to Vaccines. Nat. Immunol. 2013, 14, 428–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyand, C.M.; Fulbright, J.W.; Goronzy, J.J. Immunosenescence, Autoimmunity, and Rheumatoid Arthritis. Exp. Gerontol. 2003, 38, 833–841. [Google Scholar] [CrossRef]
- Aiello, A.; Farzaneh, F.; Candore, G.; Caruso, C.; Davinelli, S.; Gambino, C.M.; Ligotti, M.E.; Zareian, N.; Accardi, G. Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. Front. Immunol. 2019, 10, 2247. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, Y.; Minato, N.; Hattori, M. The Impact of Senescence-Associated T Cells on Immunosenescence and Age-Related Disorders. Inflamm. Regen. 2018, 38, 24. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.P.; Teixeira, V.R.; Alencar-Silva, T.; Simonassi-Paiva, B.; Pereira, R.W.; Pogue, R.; Carvalho, J.L. Hallmarks of Aging and Immunosenescence: Connecting the Dots. Cytokine Growth Factor Rev. 2021, 59, 9–21. [Google Scholar] [CrossRef]
- Moro-García, M.; Alonso-Arias, R.; Lopez-Larrea, C. When Aging Reaches CD4+ T-Cells: Phenotypic and Functional Changes. Front. Immunol. 2013, 4, 107. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, E.C.; Bartley, J.M.; Haynes, L. The Impact of Aging on CD4+ T Cell Responses to Influenza Infection. Biogerontology 2018, 19, 437–446. [Google Scholar] [CrossRef] [Green Version]
- Vallejo, A.N.; Nestel, A.R.; Schirmer, M.; Weyand, C.M.; Goronzy, J.J. Aging-Related Deficiency of CD28 Expression in CD4+ T Cells Is Associated with the Loss of Gene-Specific Nuclear Factor Binding Activity. J. Biol. Chem. 1998, 273, 8119–8129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso-Arias, R.; Moro-García, M.A.; López-Vázquez, A.; Rodrigo, L.; Baltar, J.; García, F.M.S.; Jaurrieta, J.J.S.; López-Larrea, C. NKG2D Expression in CD4+ T Lymphocytes as a Marker of Senescence in the Aged Immune System. Age 2011, 33, 591–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warrington, K.J.; Vallejo, A.N.; Weyand, C.M.; Goronzy, J.J. CD28 Loss in Senescent CD4+ T Cells: Reversal by Interleukin-12 Stimulation. Blood 2003, 101, 3543–3549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maly, K.; Schirmer, M. The Story of CD4+CD28− T Cells Revisited: Solved or Still Ongoing? J. Immunol. Res. 2015, 2015, 348746. [Google Scholar] [CrossRef] [Green Version]
- Groh, V.; Brühl, A.; El-Gabalawy, H.; Nelson, J.L.; Spies, T. Stimulation of T Cell Autoreactivity by Anomalous Expression of NKG2D and Its MIC Ligands in Rheumatoid Arthritis. Proc. Natl. Acad. Sci. USA 2003, 100, 9452–9457. [Google Scholar] [CrossRef] [Green Version]
- Wensveen, F.M.; Jelenčić, V.; Polić, B. NKG2D: A Master Regulator of Immune Cell Responsiveness. Front. Immunol. 2018, 9, 441. [Google Scholar] [CrossRef]
- Phoksawat, W.; Jumnainsong, A.; Leelayuwat, N.; Leelayuwat, C. Aberrant NKG2D Expression with IL-17 Production of CD4+ T Subsets in Patients with Type 2 Diabetes. Immunobiology 2017, 222, 944–951. [Google Scholar] [CrossRef]
- Sornkayasit, K.; Jumnainsong, A.; Phoksawat, W.; Eungpinichpong, W.; Leelayuwat, C. Traditional Thai Massage Promoted Immunity in the Elderly via Attenuation of Senescent CD4+ T Cell Subsets: A Randomized Crossover Study. Int. J. Environ. Res. Public Health 2021, 18, 3210. [Google Scholar] [CrossRef]
- Phoksawat, W.; Jumnainsong, A.; Sornkayasit, K.; Srisak, K.; Komanasin, N.; Leelayuwat, C. IL-17 and IFN-γ Productions by CD4+ T Cells and T Cell Subsets Expressing NKG2D Associated with the Number of Risk Factors for Cardiovascular Diseases. Mol. Immunol. 2020, 122, 193–199. [Google Scholar] [CrossRef]
- Mun, S.; Lee, J.; Park, M.; Shin, J.; Lim, M.-K.; Kang, H.-G. Serum Biomarker Panel for the Diagnosis of Rheumatoid Arthritis. Arthritis Res. Ther. 2021, 23, 31. [Google Scholar] [CrossRef]
- Cheng, J.; Tang, Q.; Cao, X.; Burwinkel, B. Cell-Free Circulating DNA Integrity Based on Peripheral Blood as a Biomarker for Diagnosis of Cancer: A Systematic Review. Cancer Epidemiol. Prev. Biomark. 2017, 26, 1595–1602. [Google Scholar] [CrossRef] [Green Version]
- Navab, M.; Anantharamaiah, G.M.; Reddy, S.T.; Van Lenten, B.J.; Fogelman, A.M. HDL as a Biomarker, Potential Therapeutic Target, and Therapy. Diabetes 2009, 58, 2711–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.-H.; Chen, Y.-C. Clinical Significance of Exosomes as Potential Biomarkers in Cancer. World J. Clin. Cases 2019, 7, 171–190. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.P.; Ismail, N.; Zhang, X.; Aguda, B.D.; Lee, E.J.; Yu, L.; Xiao, T.; Schafer, J.; Lee, M.-L.T.; Schmittgen, T.D.; et al. Detection of MicroRNA Expression in Human Peripheral Blood Microvesicles. PLoS ONE 2008, 3, e3694. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, Biologic Function and Clinical Potential. Cell Biosci. 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Hessvik, N.P.; Llorente, A. Current Knowledge on Exosome Biogenesis and Release. Cell. Mol. Life Sci. 2018, 75, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Raposo, G.; Théry, C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30, 255–289. [Google Scholar] [CrossRef]
- Im, K.; Baek, J.; Kwon, W.S.; Rha, S.Y.; Hwang, K.W.; Kim, U.; Min, H. The Comparison of Exosome and Exosomal Cytokines between Young and Old Individuals with or without Gastric Cancer. Int. J. Gerontol. 2018, 12, 233–238. [Google Scholar] [CrossRef]
- Zhou, X.; Xie, F.; Wang, L.; Zhang, L.; Zhang, S.; Fang, M.; Zhou, F. The Function and Clinical Application of Extracellular Vesicles in Innate Immune Regulation. Cell. Mol. Immunol. 2020, 17, 323–334. [Google Scholar] [CrossRef]
- Ventura, M.T.; Casciaro, M.; Gangemi, S.; Buquicchio, R. Immunosenescence in Aging: Between Immune Cells Depletion and Cytokines up-Regulation. Clin. Mol. Allergy CMA 2017, 15, 21. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.; Riwanto, M.; Besler, C.; Knau, A.; Fichtlscherer, S.; Röxe, T.; Zeiher, A.M.; Landmesser, U.; Dimmeler, S. Characterization of Levels and Cellular Transfer of Circulating Lipoprotein-Bound MicroRNAs. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1392–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs Are Transported in Plasma and Delivered to Recipient Cells by High-Density Lipoproteins. Nat. Cell Biol. 2011, 13, 423–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, A.S.; Tan, L.; Long, J.L.; Davidson, W.S. Proteomic Diversity of High Density Lipoproteins: Our Emerging Understanding of Its Importance in Lipid Transport and Beyond. J. Lipid Res. 2013, 54, 2575–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Norata, G.D.; Pirillo, A.; Ammirati, E.; Catapano, A.L. Emerging Role of High Density Lipoproteins as a Player in the Immune System. Atherosclerosis 2012, 220, 11–21. [Google Scholar] [CrossRef]
- Naseer, K.; Ali, S.; Qazi, J. ATR-FTIR Spectroscopy as the Future of Diagnostics: A Systematic Review of the Approach Using Bio-Fluids. Appl. Spectrosc. Rev. 2021, 56, 85–97. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, M.; Wang, Y.; Peng, S.; Chen, Y.; Zhang, D.; Zhang, D.; Guo, Y.; Wang, X.; Luo, H.; et al. Fast Screening and Primary Diagnosis of COVID-19 by ATR–FT-IR. Anal. Chem. 2021, 93, 2191–2199. [Google Scholar] [CrossRef]
- Martinez-Cuazitl, A.; Vazquez-Zapien, G.J.; Sanchez-Brito, M.; Limon-Pacheco, J.H.; Guerrero-Ruiz, M.; Garibay-Gonzalez, F.; Delgado-Macuil, R.J.; de Jesus, M.G.G.; Corona-Perezgrovas, M.A.; Pereyra-Talamantes, A.; et al. ATR-FTIR Spectrum Analysis of Saliva Samples from COVID-19 Positive Patients. Sci. Rep. 2021, 11, 19980. [Google Scholar] [CrossRef]
- Yang, X.; Ou, Q.; Qian, K.; Yang, J.; Bai, Z.; Yang, W.; Shi, Y.; Liu, G. Diagnosis of Lung Cancer by ATR-FTIR Spectroscopy and Chemometrics. Front. Oncol. 2021, 11, 4008. [Google Scholar] [CrossRef]
- Kazarian, S.G.; Chan, K.L.A. Applications of ATR-FTIR Spectroscopic Imaging to Biomedical Samples. Vib. Microsc. Imaging Mol. Pathol. 2006, 1758, 858–867. [Google Scholar] [CrossRef] [Green Version]
- Sala, A.; Anderson, D.J.; Brennan, P.M.; Butler, H.J.; Cameron, J.M.; Jenkinson, M.D.; Rinaldi, C.; Theakstone, A.G.; Baker, M.J. Biofluid Diagnostics by FTIR Spectroscopy: A Platform Technology for Cancer Detection. Cancer Lett. 2020, 477, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Chatchawal, P.; Wongwattanakul, M.; Tippayawat, P.; Kochan, K.; Jearanaikoon, N.; Wood, B.R.; Jearanaikoon, P. Detection of Human Cholangiocarcinoma Markers in Serum Using Infrared Spectroscopy. Cancers 2021, 13, 5109. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, J.; Mueller, R.; Formanski, N.; Szlama, N.; Meerpohl, H.-G.; Eidt, M.; Bugert, P. Diagnosis of Breast Cancer with Infrared Spectroscopy from Serum Samples. Vib. Spectrosc. 2010, 52, 173–177. [Google Scholar] [CrossRef]
- Korb, E.; Bağcıoğlu, M.; Garner-Spitzer, E.; Wiedermann, U.; Ehling-Schulz, M.; Schabussova, I. Machine Learning-Empowered FTIR Spectroscopy Serum Analysis Stratifies Healthy, Allergic, and SIT-Treated Mice and Humans. Biomolecules 2020, 10, 1058. [Google Scholar] [CrossRef]
- Praja, R.K.; Phoksawat, W.; Tippayawat, P.; Jumnainsong, A.; Leelayuwat, C. Alternative Method for HDL and Exosome Isolation with Small Serum Volumes and Their Characterizations. Separations 2021, 8, 204. [Google Scholar] [CrossRef]
- Lebon, M.; Reiche, I.; Gallet, X.; Bellot-Gurlet, L.; Zazzo, A. Rapid Quantification of Bone Collagen Content by ATR-FTIR Spectroscopy. Radiocarbon 2016, 58, 131–145. [Google Scholar] [CrossRef]
- Srisayam, M.; Weerapreeyakul, N.; Barusrux, S.; Tanthanuch, W.; Thumanu, K. Application of FTIR Microspectroscopy for Characterization of Biomolecular Changes in Human Melanoma Cells Treated by Sesamol and Kojic Acid. J. Dermatol. Sci. 2014, 73, 241–250. [Google Scholar] [CrossRef]
- Oleszko, A.; Olsztyńska-Janus, S.; Walski, T.; Grzeszczuk-Kuć, K.; Bujok, J.; Gałecka, K.; Czerski, A.; Witkiewicz, W.; Komorowska, M. Application of FTIR-ATR Spectroscopy to Determine the Extent of Lipid Peroxidation in Plasma during Haemodialysis. BioMed Res. Int. 2015, 2015, 245607. [Google Scholar] [CrossRef] [Green Version]
- Bujok, J.; Gąsior-Głogowska, M.; Marszałek, M.; Trochanowska-Pauk, N.; Zigo, F.; Pavľak, A.; Komorowska, M.; Walski, T. Applicability of FTIR-ATR Method to Measure Carbonyls in Blood Plasma after Physical and Mental Stress. BioMed Res. Int. 2019, 2019, 2181370. [Google Scholar] [CrossRef] [Green Version]
- Collier, J.; Huebscher, R. Sensitivity, Specificity, Positive and Negative Predictive Values: Diagnosing Purple Mange. J. Am. Acad. Nurse Pract. 2010, 22, 205–209. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Gusachenko, O.N.; Zenkova, M.A.; Vlassov, V.V. Nucleic Acids in Exosomes: Disease Markers and Intercellular Communication Molecules. Biochem. Mosc. 2013, 78, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Awadasseid, A.; Wu, Y.; Zhang, W. Extracellular Vesicles (Exosomes) as Immunosuppressive Mediating Variables in Tumor and Chronic Inflammatory Microenvironments. Cells 2021, 10, 2533. [Google Scholar] [CrossRef] [PubMed]
- Record, M.; Carayon, K.; Poirot, M.; Silvente-Poirot, S. Exosomes as New Vesicular Lipid Transporters Involved in Cell-Cell Communication and Various Pathophysiologies. Biochim. Biophys. Acta 2014, 1841, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Kakazu, E.; Mauer, A.S.; Yin, M.; Malhi, H. Hepatocytes Release Ceramide-Enriched pro-Inflammatory Extracellular Vesicles in an IRE1α-Dependent Manner. J. Lipid Res. 2016, 57, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Zulueta, A.; Peli, V.; Dei Cas, M.; Colombo, M.; Paroni, R.; Falleni, M.; Baisi, A.; Bollati, V.; Chiaramonte, R.; Del Favero, E.; et al. Inflammatory Role of Extracellular Sphingolipids in Cystic Fibrosis. Int. J. Biochem. Cell Biol. 2019, 116, 105622. [Google Scholar] [CrossRef]
- Chaurasia, B.; Talbot, C.L.; Summers, S.A. Adipocyte Ceramides—The Nexus of Inflammation and Metabolic Disease. Front. Immunol. 2020, 11, 2282. [Google Scholar] [CrossRef]
- Jury, E.C.; Kabouridis, P.S. T-Lymphocyte Signalling in Systemic Lupus Erythematosus: A Lipid Raft Perspective. Lupus 2004, 13, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Skotland, T.; Sagini, K.; Sandvig, K.; Llorente, A. An Emerging Focus on Lipids in Extracellular Vesicles. Adv. Drug Deliv. Rev. 2020, 159, 308–321. [Google Scholar] [CrossRef]
- Skotland, T.; Sandvig, K.; Llorente, A. Lipids in Exosomes: Current Knowledge and the Way Forward. Prog. Lipid Res. 2017, 66, 30–41. [Google Scholar] [CrossRef]
- Hima, B.G.; Rao, V.S.; Kakkar, V.V. Friend Turns Foe: Transformation of Anti-Inflammatory HDL to Proinflammatory HDL during Acute-Phase Response. Cholesterol 2011, 2011, 274629. [Google Scholar] [CrossRef] [Green Version]
- Junhom, C.; Weerapreeyakul, N.; Tanthanuch, W.; Thumanu, K. FTIR Microspectroscopy Defines Early Drug Resistant Human Hepatocellular Carcinoma (HepG2) Cells. Exp. Cell Res. 2016, 340, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Dovbeshko, G.I.; Gridina, N.Y.; Kruglova, E.B.; Pashchuk, O.P. FTIR Spectroscopy Studies of Nucleic Acid Damage. Talanta 2000, 53, 233–246. [Google Scholar] [CrossRef]
- Ye, M.P.; Zhou, R.; Shi, Y.R.; Chen, H.C.; Du, Y. Effects of Heating on the Secondary Structure of Proteins in Milk Powders Using Mid-Infrared Spectroscopy. J. Dairy Sci. 2017, 100, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Corbalán-García, S.; García-García, J.; Sánchez-Carrillo, M.S.; Gómez-Fernández, J.C. Structural Characterization of the C2 Domains of Classical Isozymes of Protein Kinase C and Novel Protein Kinase Cε by Using Infrared Spectroscopy. Spectroscopy 2003, 17, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Chettimada, S.; Lorenz, D.R.; Misra, V.; Dillon, S.T.; Reeves, R.K.; Manickam, C.; Morgello, S.; Kirk, G.D.; Mehta, S.H.; Gabuzda, D. Exosome Markers Associated with Immune Activation and Oxidative Stress in HIV Patients on Antiretroviral Therapy. Sci. Rep. 2018, 8, 7227. [Google Scholar] [CrossRef]
- Zheng, D.; Huo, M.; Li, B.; Wang, W.; Piao, H.; Wang, Y.; Zhu, Z.; Li, D.; Wang, T.; Liu, K. The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Front. Cell Dev. Biol. 2021, 8, 616161. [Google Scholar] [CrossRef]
- Lam, S.M.; Zhang, C.; Wang, Z.; Ni, Z.; Zhang, S.; Yang, S.; Huang, X.; Mo, L.; Li, J.; Lee, B.; et al. A Multi-Omics Investigation of the Composition and Function of Extracellular Vesicles along the Temporal Trajectory of COVID-19. Nat. Metab. 2021, 3, 909–922. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Carvalho, L.F.D.C.E.S.; Bonnier, F.; Anbinder, A.L.; Martinho, H.D.S.; Almeida, J.D. Evaluation of Inflammatory Processes by FTIR Spectroscopy. J. Med. Eng. Technol. 2018, 42, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Hands, J.R.; Clemens, G.; Stables, R.; Ashton, K.; Brodbelt, A.; Davis, C.; Dawson, T.P.; Jenkinson, M.D.; Lea, R.W.; Walker, C.; et al. Brain Tumour Differentiation: Rapid Stratified Serum Diagnostics via Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy. J. Neurooncol. 2016, 127, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Liu, P.; Zhang, Y.; Wang, W.; Lu, Y.; Xi, M.; Duan, S.; Guan, F. Combining Information from Multiple Bone Turnover Markers as Diagnostic Indices for Osteoporosis Using Support Vector Machines. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2019, 24, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Catic, A.; Gurbeta, L.; Kurtovic-Kozaric, A.; Mehmedbasic, S.; Badnjevic, A. Application of Neural Networks for Classification of Patau, Edwards, Down, Turner and Klinefelter Syndrome Based on First Trimester Maternal Serum Screening Data, Ultrasonographic Findings and Patient Demographics. BMC Med. Genom. 2018, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Pralle, R.S.; Weigel, K.W.; White, H.M. Predicting Blood β-Hydroxybutyrate Using Milk Fourier Transform Infrared Spectrum, Milk Composition, and Producer-Reported Variables with Multiple Linear Regression, Partial Least Squares Regression, and Artificial Neural Network. J. Dairy Sci. 2018, 101, 4378–4387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Predictive Model | Flowcytometric Analysis | |
---|---|---|
HP | LP | |
HP | A | B |
LP | C | D |
Sample | Region (cm−1) | Algorithm | Performance | ||||
---|---|---|---|---|---|---|---|
Acc (%) | Sens (%) | Spec (%) | PPV (%) | NPV (%) | |||
Serum | 3000–2800 | J48 Decision Tree | 54 | 54 | 53 | 65 | 42 |
RF | 51 | 53 | 50 | 50 | 53 | ||
SVM | 44 | 46 | 38 | 60 | 26 | ||
NN (4) | 51 | 53 | 50 | 50 | 53 | ||
1800–900 | J48 Decision Tree | 72 | 80 | 67 | 60 | 84 | |
RF | 92 | 100 | 86 | 85 | 100 | ||
SVM | 77 | 79 | 75 | 75 | 79 | ||
NN (20) | 100 | 100 | 100 | 100 | 100 | ||
1700–1500 | J48 Decision Tree | 69 | 75 | 65 | 60 | 79 | |
RF | 90 | 90 | 89 | 90 | 89 | ||
SVM | 62 | 58 | 75 | 90 | 32 | ||
NN (14) | 90 | 86 | 94 | 95 | 84 | ||
1500–900 | J48 Decision Tree | 56 | 60 | 54 | 45 | 68 | |
RF | 90 | 90 | 89 | 90 | 89 | ||
SVM | 72 | 74 | 70 | 70 | 74 | ||
NN (12) | 97 | 100 | 95 | 95 | 100 | ||
3000–2800 and 1800–900 | J48 Decision Tree | 74 | 81 | 70 | 65 | 84 | |
RF | 87 | 89 | 85 | 85 | 89 | ||
SVM | 56 | 58 | 55 | 55 | 58 | ||
NN (11) | 98 | 95 | 100 | 100 | 97 |
Sample | Region (cm−1) | Algorithm | Performance | ||||
---|---|---|---|---|---|---|---|
Acc (%) | Sens (%) | Spec (%) | PPV (%) | NPV (%) | |||
Exosome | 3000–2800 | J48 Decision Tree | 85 | 79 | 93 | 95 | 74 |
RF | 74 | 75 | 74 | 75 | 74 | ||
SVM | 72 | 71 | 72 | 75 | 68 | ||
NN (14) | 77 | 79 | 75 | 75 | 79 | ||
1800–900 | J48 Decision Tree | 82 | 81 | 83 | 85 | 79 | |
RF | 90 | 90 | 89 | 90 | 89 | ||
SVM | 74 | 81 | 70 | 65 | 84 | ||
NN (10) | 90 | 94 | 86 | 85 | 95 | ||
1700–1500 | J48 Decision Tree | 67 | 67 | 67 | 70 | 63 | |
RF | 79 | 83 | 76 | 75 | 84 | ||
SVM | 72 | 76 | 68 | 65 | 79 | ||
NN (11) | 95 | 95 | 95 | 95 | 95 | ||
1500–900 | J48 Decision Tree | 85 | 94 | 78 | 75 | 95 | |
RF | 87 | 86 | 89 | 90 | 84 | ||
SVM | 72 | 76 | 68 | 65 | 79 | ||
NN (16) | 92 | 90 | 94 | 95 | 89 | ||
3000–2800 & 1800–900 | J48 Decision Tree | 79 | 83 | 76 | 75 | 84 | |
RF | 90 | 90 | 89 | 90 | 89 | ||
SVM | 82 | 84 | 80 | 80 | 84 | ||
NN (9) | 95 | 91 | 100 | 100 | 89 |
Sample | Region (cm−1) | Algorithm | Performance | ||||
---|---|---|---|---|---|---|---|
Acc (%) | Sens (%) | Spec (%) | PPV (%) | NPV (%) | |||
HDL | 3000–2800 | J48 Decision Tree | 69 | 79 | 64 | 55 | 84 |
RF | 44 | 45 | 42 | 45 | 42 | ||
SVM | 56 | 56 | 57 | 70 | 42 | ||
NN (8) | 72 | 70 | 75 | 80 | 63 | ||
1800–900 | J48 Decision Tree | 72 | 74 | 70 | 70 | 74 | |
RF | 85 | 85 | 84 | 85 | 84 | ||
SVM | 74 | 73 | 76 | 80 | 68 | ||
NN (14) | 97 | 100 | 95 | 95 | 100 | ||
1700–1500 | J48 Decision Tree | 79 | 83 | 76 | 75 | 84 | |
RF | 74 | 75 | 74 | 75 | 74 | ||
SVM | 51 | 52 | 50 | 60 | 42 | ||
NN (8) | 79 | 77 | 82 | 85 | 74 | ||
1500–900 | J48 Decision Tree | 92 | 95 | 90 | 90 | 95 | |
RF | 90 | 83 | 100 | 100 | 79 | ||
SVM | 77 | 74 | 81 | 85 | 68 | ||
NN (9) | 92 | 100 | 86 | 85 | 100 | ||
3000–2800 & 1800–900 | J48 Decision Tree | 90 | 94 | 86 | 85 | 95 | |
RF | 82 | 84 | 80 | 80 | 84 | ||
SVM | 69 | 67 | 73 | 80 | 58 | ||
NN (15) | 90 | 100 | 83 | 80 | 100 |
PCA Band (cm−1) | PLS-DA Band (cm−1) | Group | Assignment |
---|---|---|---|
1651 | 1651 | HP | Amide I (α-helix) |
1541 | 1541 | HP | Amide II |
1670 | 1670 | LP | Amide I (anti-parallel β-sheet) v (C=C) trans, lipids, and fatty acids |
1629 | 1626 | LP | β-sheet amide I region structure |
1558 | 1555 | LP | Ring base |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Praja, R.K.; Wongwattanakul, M.; Tippayawat, P.; Phoksawat, W.; Jumnainsong, A.; Sornkayasit, K.; Leelayuwat, C. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Discriminates the Elderly with a Low and High Percentage of Pathogenic CD4+ T Cells. Cells 2022, 11, 458. https://doi.org/10.3390/cells11030458
Praja RK, Wongwattanakul M, Tippayawat P, Phoksawat W, Jumnainsong A, Sornkayasit K, Leelayuwat C. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Discriminates the Elderly with a Low and High Percentage of Pathogenic CD4+ T Cells. Cells. 2022; 11(3):458. https://doi.org/10.3390/cells11030458
Chicago/Turabian StylePraja, Rian Ka, Molin Wongwattanakul, Patcharaporn Tippayawat, Wisitsak Phoksawat, Amonrat Jumnainsong, Kanda Sornkayasit, and Chanvit Leelayuwat. 2022. "Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Discriminates the Elderly with a Low and High Percentage of Pathogenic CD4+ T Cells" Cells 11, no. 3: 458. https://doi.org/10.3390/cells11030458
APA StylePraja, R. K., Wongwattanakul, M., Tippayawat, P., Phoksawat, W., Jumnainsong, A., Sornkayasit, K., & Leelayuwat, C. (2022). Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Discriminates the Elderly with a Low and High Percentage of Pathogenic CD4+ T Cells. Cells, 11(3), 458. https://doi.org/10.3390/cells11030458