The DNA Damage Response in Fully Grown Mammalian Oocytes
Abstract
:1. The DNA Damage Response in Somatic Cells
2. Mammalian Oocyte Development and Oocyte Maturation
3. The G2/Prophase DNA Damage Checkpoint in Mammalian Oocytes
4. The M-Phase Checkpoint in Response to DNA Damage
5. DNA Repair in Mammalian Oocytes
6. The DNA Damage Response in MII Oocytes
7. Physiological Role of DDR Components in Oocytes
Organism | Gene | Protein | Role in DDR | Expression during Maturation | Subcellular Localization during Maturation | Role in Oocyte Physiology | Reference |
---|---|---|---|---|---|---|---|
Mus musculus (Mouse) | Brca1 | Breast cancer type 1 susceptibility protein homolog | Promoting HR and antagonizes 53BP1 [62] | Low at GV, increases after GVBD, max at MI and stable afterwards | Germinal Vesicle at GV stage, after GVBD near chromosomes and after prometaphase I at spindle poles. At anaphase I was localized at the midbody and then spindle poles again in MII | Role in spindle assembly, chromosome alignment and SAC regulation | [53] |
Mus musculus (Mouse) | Chek1 | Serine/threonine-protein kinase Chk1 | Involved in cell cycle arrest (intra-S G2/M), repair of damaged DNA [63] | Steady expression during maturation from GV to MII stage | Germinal vesicle and after GVBD at the spindle poles | Essential for the GV arrest of oocytes. Involved in the regulation of SAC | [56] |
Sus scrofa (Pig) | CHEK1 | Checkpoint kinase 1 | Involved in cell cycle arrest (intra-S, G2), repair of damaged DNA [63] | Steady expression which reaches max levels at MI | Cytoplasm and after GVBD at the spindle | Involved in the regulation of Cyclin B-CDK1 and SAC in order for MI to be successful | [57] |
Mus musculus (Mouse) | Chek2 | Serine/threonine-protein kinase Chk2 | Involved in cell cycle arrest (G1/S G2/M), repair of damaged DNA, apoptosis [63] | - | GV→centromeres→spindle poles | Plays roles in maintaining GV arrest and entry in GVBD and spindle assembly, chromosome alignment and SAC | [58] |
Mus musculus (Mouse) | Rad51 | DNA repair protein RAD51 homolog 1 | Strand invasion during HR [64] | Steady expression until MI then decreases | - | Plays pivotal role in mitochondrial, spindle and chromosomal integrity | [59] |
Sus scrofa (Pig) | pigRad51 | DNA repair protein RAD51 homolog | Strand invasion during HR [64] | Reduction after GVBD and then increase in MII | GV and then cytoplasm | Involved in completion of MI. Roles in mitochondrial integrity. Spindle formation, chromosomal alignment, DNA damage repair | [60] |
Mus musculus (Mouse) | Tp53bp1 | TP53-binding protein 1 | Promoted NHEJ. Antagonizes with BRCA1 [65] | - | Localized like a cloud around DNA/spindle | Important in spindle bipolarity and MTOC and chromosome alignment | [61] |
Mus musculus (Mouse) | Brca2 | Breast cancer type 2 susceptibility protein homolog | Loading of Rad51 to ssDNA during HR [64] | - | Possible cytoplasmic localization in MII oocytes. Following fertilization, BRCA2 shows peri-pronuclear localization | Oocyte maturation, spindle assembly, chromosome alignment | [54,55] |
Mus musculus (Mouse) | Mre11 | Meiotic Recombination 11 | Sensing DSBs, role in repair [66] | GV stage, MI | Nuclear localization in GV-stage oocytes | Chromosome integrity | [16] |
Mus musculus (Mouse) | H2AX | Histone H2AX | Phosphorylation of H2AX at Ser-139 (γH2AX) is important for signaling and initiating the repair of DSBs [48] | MI, MII | γH2AX localization on the entire chromosome | Unknown | [16] |
8. Omics and the Oocyte DDR
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, L.J. DNA damage and repair: Relevance to mechanisms of neurodegeneration. J. Neuropathol. Exp. Neurol. 2008, 67, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature 2009, 461, 1071–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niida, H.; Nakanishi, M. DNA damage checkpoints in mammals. Mutagenesis 2006, 21, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Sancar, A.; Lindsey-Boltz, L.A.; Unsal-Kacmaz, K.; Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 2004, 73, 39–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, A.K. DNA Damage, Mutagenesis and Cancer. Int. J. Mol. Sci. 2018, 19, 970. [Google Scholar] [CrossRef] [Green Version]
- Ciccia, A.; Elledge, S.J. The DNA damage response: Making it safe to play with knives. Mol. Cell 2010, 40, 179–204. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, M.; Kastan, M.B. The DNA damage response: Implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 2015, 66, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Lemmens, B.; Lindqvist, A. DNA replication and mitotic entry: A brake model for cell cycle progression. J. Cell Biol. 2019, 218, 3892–3902. [Google Scholar] [CrossRef]
- Iyer, D.R.; Rhind, N. The Intra-S Checkpoint Responses to DNA Damage. Genes 2017, 8, 74. [Google Scholar] [CrossRef]
- Mitra, J.; Schultz, R.M. Regulation of the acquisition of meiotic competence in the mouse: Changes in the subcellular localization of cdc2, cyclin B1, cdc25C and wee1, and in the concentration of these proteins and their transcripts. J. Cell Sci. 1996, 109 Pt 9, 2407–2415. [Google Scholar] [CrossRef]
- Solc, P.; Schultz, R.M.; Motlik, J. Prophase I arrest and progression to metaphase I in mouse oocytes: Comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol. Hum. Reprod. 2010, 16, 654–664. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.T. Turning it on and off: M-phase promoting factor during meiotic maturation and fertilization. Mol. Hum. Reprod. 2004, 10, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Marangos, P.; Carroll, J. The dynamics of cyclin B1 distribution during meiosis I in mouse oocytes. Reproduction 2004, 128, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, J.; Jung, T.; Fulka, J., Jr.; Moor, R.M. UV irradiation of chromosomal DNA and its effect upon MPF and meiosis in mammalian oocytes. Mol. Reprod. Dev. 1995, 41, 503–512. [Google Scholar] [CrossRef]
- Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998, 273, 5858–5868. [Google Scholar] [CrossRef] [Green Version]
- Mayer, A.; Baran, V.; Sakakibara, Y.; Brzakova, A.; Ferencova, I.; Motlik, J.; Kitajima, T.S.; Schultz, R.M.; Solc, P. DNA damage response during mouse oocyte maturation. Cell Cycle 2016, 15, 546–558. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.Y.; Ou Yang, Y.C.; Wang, Z.W.; Wang, Z.B.; Jiang, Z.Z.; Luo, S.M.; Hou, Y.; Liu, Z.H.; Schatten, H.; Sun, Q.Y. The effects of DNA double-strand breaks on mouse oocyte meiotic maturation. Cell Cycle 2013, 12, 1233–1241. [Google Scholar] [CrossRef] [Green Version]
- Marangos, P.; Carroll, J. Oocytes progress beyond prophase in the presence of DNA damage. Curr. Biol. 2012, 22, 989–994. [Google Scholar] [CrossRef] [Green Version]
- Remillard-Labrosse, G.; Dean, N.L.; Allais, A.; Mihajlovic, A.I.; Jin, S.G.; Son, W.Y.; Chung, J.T.; Pansera, M.; Henderson, S.; Mahfoudh, A.; et al. Human oocytes harboring damaged DNA can complete meiosis I. Fertil. Steril. 2020, 113, 1080–1089. [Google Scholar] [CrossRef]
- Yuen, W.S.; Merriman, J.A.; O’Bryan, M.K.; Jones, K.T. DNA double strand breaks but not interstrand crosslinks prevent progress through meiosis in fully grown mouse oocytes. PLoS ONE 2012, 7, e43875. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Luo, Y.; Zhao, M.H.; Lin, Z.; Kwon, J.; Cui, X.S.; Kim, N.H. DNA double-strand breaks disrupted the spindle assembly in porcine oocytes. Mol. Reprod. Dev. 2016, 83, 132–143. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, G.L.; Ma, J.Y.; Qi, S.T.; Wang, Z.B.; Wang, Z.W.; Luo, Y.B.; Jiang, Z.Z.; Schatten, H.; Sun, Q.Y. Effects of DNA damage and short-term spindle disruption on oocyte meiotic maturation. Histochem. Cell Biol. 2014, 142, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Leem, J.; Kim, J.S.; Oh, J.S. WIP1 phosphatase suppresses the DNA damage response during G2/prophase arrest in mouse oocytes. Biol. Reprod. 2018, 99, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, G.N.; Greaney, J.; Wei, Z.; Becherel, O.; Lavin, M.; Homer, H.A. Oocytes mount a noncanonical DNA damage response involving APC-Cdh1-mediated proteolysis. J. Cell Biol. 2020, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.H.; Zheng, J.; Xie, F.Y.; Shen, W.; Yin, S.; Ma, J.Y. Cumulus Cells Block Oocyte Meiotic Resumption via Gap Junctions in Cumulus Oocyte Complexes Subjected to DNA Double-Strand Breaks. PLoS ONE 2015, 10, e0143223. [Google Scholar] [CrossRef]
- Lin, F.; Ma, X.S.; Wang, Z.B.; Wang, Z.W.; Luo, Y.B.; Huang, L.; Jiang, Z.Z.; Hu, M.W.; Schatten, H.; Sun, Q.Y. Different fates of oocytes with DNA double-strand breaks in vitro and in vivo. Cell Cycle 2014, 13, 2674–2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, S.I.R.; Morgan, S.L.; Wu, T.; Collins, J.K.; Merriman, J.A.; ElInati, E.; Turner, J.M.; Jones, K.T. DNA damage induces a kinetochore-based ATM/ATR-independent SAC arrest unique to the first meiotic division in mouse oocytes. Development 2017, 144, 3475–3486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marangos, P.; Stevense, M.; Niaka, K.; Lagoudaki, M.; Nabti, I.; Jessberger, R.; Carroll, J. DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age. Nat. Commun. 2015, 6, 8706. [Google Scholar] [CrossRef]
- Musacchio, A.; Salmon, E.D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 2007, 8, 379–393. [Google Scholar] [CrossRef]
- Collins, J.K.; Lane, S.I.R.; Merriman, J.A.; Jones, K.T. DNA damage induces a meiotic arrest in mouse oocytes mediated by the spindle assembly checkpoint. Nat. Commun. 2015, 6, 8553. [Google Scholar] [CrossRef]
- Ding, Z.M.; Zhang, S.X.; Jiao, X.F.; Hua, L.P.; Ahmad, M.J.; Wu, D.; Chen, F.; Wang, Y.S.; Zhang, X.Y.; Meng, F.; et al. Doxorubicin exposure affects oocyte meiotic maturation through DNA damage induced meiotic arrest. Toxicol. Sci. 2019, 171, 359–368. [Google Scholar] [CrossRef]
- Brazill, J.L.; Masui, Y. Changing levels of uv light and carcinogen-induced unscheduled DNA synthesis in mouse oocytes during meiotic maturation. Exp. Cell Res. 1978, 112, 121–125. [Google Scholar] [CrossRef]
- Masui, Y.; Pedersen, R.A. Ultraviolet light-induced unscheduled DNA synthesis in mouse oocytes during meiotic maturation. Nature 1975, 257, 705–706. [Google Scholar] [CrossRef]
- Pedersen, R.A.; Mangia, F. Ultraviolet-light-induced unscheduled DNA synthesis by resting and growing mouse oocytes. Mutat. Res. 1978, 49, 425–429. [Google Scholar] [CrossRef]
- Kujjo, L.L.; Laine, T.; Pereira, R.J.; Kagawa, W.; Kurumizaka, H.; Yokoyama, S.; Perez, G.I. Enhancing survival of mouse oocytes following chemotherapy or aging by targeting Bax and Rad51. PLoS ONE 2010, 5, e9204. [Google Scholar] [CrossRef] [Green Version]
- Stringer, J.M.; Winship, A.; Liew, S.H.; Hutt, K. The capacity of oocytes for DNA repair. Cell. Mol. Life Sci. 2018, 75, 2777–2792. [Google Scholar] [CrossRef]
- He, D.J.; Wang, L.; Zhang, Z.B.; Guo, K.; Li, J.Z.; He, X.C.; Cui, Q.H.; Zheng, P. Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes. Zool. Res. 2018, 39, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.Y.; Feng, X.; Tian, X.Y.; Chen, L.N.; Fan, X.Y.; Guo, L.; Li, S.; Yin, S.; Luo, S.M.; Ou, X.H. The repair of endo/exogenous DNA double-strand breaks and its effects on meiotic chromosome segregation in oocytes. Hum. Mol. Genet. 2019, 28, 3422–3430. [Google Scholar] [CrossRef]
- Perez, G.I.; Acton, B.M.; Jurisicova, A.; Perkins, G.A.; White, A.; Brown, J.; Trbovich, A.M.; Kim, M.R.; Fissore, R.; Xu, J.; et al. Genetic variance modifies apoptosis susceptibility in mature oocytes via alterations in DNA repair capacity and mitochondrial ultrastructure. Cell Death Differ. 2007, 14, 524–533. [Google Scholar] [CrossRef]
- Kujjo, L.L.; Ronningen, R.; Ross, P.; Pereira, R.J.; Rodriguez, R.; Beyhan, Z.; Goissis, M.D.; Baumann, T.; Kagawa, W.; Camsari, C.; et al. RAD51 plays a crucial role in halting cell death program induced by ionizing radiation in bovine oocytes. Biol. Reprod. 2012, 86, 76. [Google Scholar] [CrossRef]
- Leem, J.; Bai, G.Y.; Kim, J.S.; Oh, J.S. Melatonin protects mouse oocytes from DNA damage by enhancing nonhomologous end-joining repair. J. Pineal Res. 2019, 67, e12603. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.H.; Yang, M.; Xie, F.Y.; Wang, W.; Zhang, L.; Shen, W.; Yin, S.; Ma, J.Y. DNA Double-Strand Breaks Induce the Nuclear Actin Filaments Formation in Cumulus-Enclosed Oocytes but Not in Denuded Oocytes. PLoS ONE 2017, 12, e0170308. [Google Scholar] [CrossRef] [PubMed]
- Hurst, V.; Shimada, K.; Gasser, S.M. Nuclear Actin and Actin-Binding Proteins in DNA Repair. Trends Cell Biol. 2019, 29, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Xu, Y.N.; Namgoong, S.; Kim, N.H. JMY functions as actin nucleation-promoting factor and mediator for p53-mediated DNA damage in porcine oocytes. PLoS ONE 2014, 9, e109385. [Google Scholar] [CrossRef]
- Astbury, P.; Subramanian, G.N.; Greaney, J.; Roling, C.; Irving, J.; Homer, H.A. The Presence of Immature GV- Stage Oocytes during IVF/ICSI Is a Marker of Poor Oocyte Quality: A Pilot Study. Med. Sci. 2020, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titus, S.; Li, F.; Stobezki, R.; Akula, K.; Unsal, E.; Jeong, K.; Dickler, M.; Robson, M.; Moy, F.; Goswami, S.; et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci. Transl. Med. 2013, 5, 172ra121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lord, T.; Aitken, R.J. Fertilization stimulates 8-hydroxy-2’-deoxyguanosine repair and antioxidant activity to prevent mutagenesis in the embryo. Dev. Biol. 2015, 406, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.H.; Bromfield, E.G.; Aitken, R.J.; Lord, T.; Nixon, B. Double Strand Break DNA Repair occurs via Non-Homologous End-Joining in Mouse MII Oocytes. Sci. Rep. 2018, 8, 9685. [Google Scholar] [CrossRef]
- Martin, J.H.; Nixon, B.; Lord, T.; Bromfield, E.G.; Aitken, R.J. Identification of a key role for permeability glycoprotein in enhancing the cellular defense mechanisms of fertilized oocytes. Dev. Biol. 2016, 417, 63–76. [Google Scholar] [CrossRef]
- Wyrobek, A.J.; Eskenazi, B.; Young, S.; Arnheim, N.; Tiemann-Boege, I.; Jabs, E.W.; Glaser, R.L.; Pearson, F.S.; Evenson, D. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc. Natl. Acad. Sci. USA 2006, 103, 9601–9606. [Google Scholar] [CrossRef] [Green Version]
- Shimura, T.; Inoue, M.; Taga, M.; Shiraishi, K.; Uematsu, N.; Takei, N.; Yuan, Z.M.; Shinohara, T.; Niwa, O. p53-dependent S-phase damage checkpoint and pronuclear cross talk in mouse zygotes with X-irradiated sperm. Mol. Cell. Biol. 2002, 22, 2220–2228. [Google Scholar] [CrossRef] [Green Version]
- Shimura, T.; Toyoshima, M.; Taga, M.; Shiraishi, K.; Uematsu, N.; Inoue, M.; Niwa, O. The novel surveillance mechanism of the Trp53-dependent s-phase checkpoint ensures chromosome damage repair and preimplantation-stage development of mouse embryos fertilized with x-irradiated sperm. Radiat. Res. 2002, 158, 735–742. [Google Scholar] [CrossRef]
- Xiong, B.; Li, S.; Ai, J.S.; Yin, S.; Ouyang, Y.C.; Sun, S.C.; Chen, D.Y.; Sun, Q.Y. BRCA1 is required for meiotic spindle assembly and spindle assembly checkpoint activation in mouse oocytes. Biol. Reprod. 2008, 79, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Wang, P.; Xie, B.; Yang, M.; Li, S.; Cui, Z.; Fan, Y.; Li, M.; Xiong, B. BRCA2 deficiency is a potential driver for human primary ovarian insufficiency. Cell. Death Dis. 2019, 10, 474. [Google Scholar] [CrossRef]
- Martin, J.H.; Aitken, R.J.; Bromfield, E.G.; Nixon, B. DNA damage and repair in the female germline: Contributions to ART. Hum. Reprod. Update 2019, 25, 180–201. [Google Scholar] [CrossRef]
- Chen, L.; Chao, S.B.; Wang, Z.B.; Qi, S.T.; Zhu, X.L.; Yang, S.W.; Yang, C.R.; Zhang, Q.H.; Ouyang, Y.C.; Hou, Y.; et al. Checkpoint kinase 1 is essential for meiotic cell cycle regulation in mouse oocytes. Cell Cycle 2012, 11, 1948–1955. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.W.; Chen, L.; Jin, Q.S.; Gao, Y.Y.; Wang, T.; Zhang, X.; Miao, Y.L. Function and regulation mechanism of Chk1 during meiotic maturation in porcine oocytes. Cell Cycle 2017, 16, 2220–2229. [Google Scholar] [CrossRef]
- Dai, X.X.; Duan, X.; Liu, H.L.; Cui, X.S.; Kim, N.H.; Sun, S.C. Chk2 regulates cell cycle progression during mouse oocyte maturation and early embryo development. Mol. Cells 2014, 37, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Park, J.H.; Kim, E.Y.; Ko, J.J.; Park, K.S.; Lee, K.A. The role of Rad51 in safeguarding mitochondrial activity during the meiotic cell cycle in mammalian oocytes. Sci. Rep. 2016, 6, 34110. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.L.; Kim, N.H. RAD51 maintains chromosome integrity and mitochondrial distribution during porcine oocyte maturation in vitro. J. Reprod. Dev. 2017, 63, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.L.; Suk, N.; Kim, N.H. TP53BP1 regulates chromosome alignment and spindle bipolarity in mouse oocytes. Mol. Reprod. Dev. 2019, 86, 1126–1137. [Google Scholar] [CrossRef]
- Chapman, J.R.; Taylor, M.R.; Boulton, S.J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 2012, 47, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.L.; Southgate, H.; Tweddle, D.A.; Curtin, N.J. DNA damage checkpoint kinases in cancer. Expert Rev. Mol. Med. 2020, 22, e2. [Google Scholar] [CrossRef]
- Ranjha, L.; Howard, S.M.; Cejka, P. Main steps in DNA double-strand break repair: An introduction to homologous recombination and related processes. Chromosoma 2018, 127, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Panier, S.; Boulton, S.J. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 2014, 15, 7–18. [Google Scholar] [CrossRef]
- Stracker, T.H.; Petrini, J.H. The MRE11 complex: Starting from the ends. Nat. Rev. Mol. Cell Biol. 2011, 12, 90–103. [Google Scholar] [CrossRef] [Green Version]
- Jaroudi, S.; Kakourou, G.; Cawood, S.; Doshi, A.; Ranieri, D.M.; Serhal, P.; Harper, J.C.; SenGupta, S.B. Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum. Reprod. 2009, 24, 2649–2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezo, Y., Jr.; Russo, G.; Tosti, E.; El Mouatassim, S.; Benkhalifa, M. Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J. Assist. Reprod. Genet. 2007, 24, 513–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.; O’Brien, M.J.; Wigglesworth, K.; Eppig, J.J.; Schultz, R.M. Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro. Dev. Biol. 2005, 286, 493–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, F.; Baldwin, D.A.; Schultz, R.M. Transcript profiling during preimplantation mouse development. Dev. Biol. 2004, 272, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Zheng, P.; Schramm, R.D.; Latham, K.E. Developmental regulation and in vitro culture effects on expression of DNA repair and cell cycle checkpoint control genes in rhesus monkey oocytes and embryos. Biol. Reprod. 2005, 72, 1359–1369. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Kou, Z.; Jing, Z.; Zhang, Y.; Guo, X.; Dong, M.; Wilmut, I.; Gao, S. Proteome of mouse oocytes at different developmental stages. Proc. Natl. Acad. Sci. USA 2010, 107, 17639–17644. [Google Scholar] [CrossRef] [Green Version]
- Hamatani, T.; Falco, G.; Carter, M.G.; Akutsu, H.; Stagg, C.A.; Sharov, A.A.; Dudekula, D.B.; VanBuren, V.; Ko, M.S. Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 2004, 13, 2263–2278. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.Q.; Sugiura, K.; Woo, Y.; Wigglesworth, K.; Kamdar, S.; Affourtit, J.; Eppig, J.J. Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev. Biol. 2007, 302, 104–117. [Google Scholar] [CrossRef] [Green Version]
- Tulay, P.; Naja, R.P.; Cascales-Roman, O.; Doshi, A.; Serhal, P.; SenGupta, S.B. Investigation of microRNA expression and DNA repair gene transcripts in human oocytes and blastocysts. J. Assist. Reprod. Genet. 2015, 32, 1757–1764. [Google Scholar] [CrossRef] [Green Version]
- Grondahl, M.L.; Yding Andersen, C.; Bogstad, J.; Nielsen, F.C.; Meinertz, H.; Borup, R. Gene expression profiles of single human mature oocytes in relation to age. Hum. Reprod. 2010, 25, 957–968. [Google Scholar] [CrossRef]
- Horta, F.; Catt, S.; Ramachandran, P.; Vollenhoven, B.; Temple-Smith, P. Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice. Hum. Reprod. 2020, 35, 529–544. [Google Scholar] [CrossRef]
Sensors | Mediators | Transducers | Effectors |
---|---|---|---|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pailas, A.; Niaka, K.; Zorzompokou, C.; Marangos, P. The DNA Damage Response in Fully Grown Mammalian Oocytes. Cells 2022, 11, 798. https://doi.org/10.3390/cells11050798
Pailas A, Niaka K, Zorzompokou C, Marangos P. The DNA Damage Response in Fully Grown Mammalian Oocytes. Cells. 2022; 11(5):798. https://doi.org/10.3390/cells11050798
Chicago/Turabian StylePailas, Alexandros, Konstantina Niaka, Chrysoula Zorzompokou, and Petros Marangos. 2022. "The DNA Damage Response in Fully Grown Mammalian Oocytes" Cells 11, no. 5: 798. https://doi.org/10.3390/cells11050798