Influence of Mo and Fe on Photosynthetic and Nitrogenase Activities of Nitrogen-Fixing Cyanobacteria under Nitrogen Starvation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Objects
2.2. Isolation and Cultivation of Cyanobacterial Strains
2.3. Molecular Identification of Cyanobacterial Strains
2.3.1. Isolation of Genomic DNA of Cyanobacteria
2.3.2. Sample Preparation and Polymerase Chain Reaction
2.3.3. DNA Sequencing Using the Fragment of the Conserved Locus
2.4. Methods for Quantification of Microalgal Cells and Determination of Biomass Growth Productivity
2.5. Determination of the Heterocyst Formation Frequency
2.6. Determination of Photosynthetic Activity
2.7. Determination of Nitrogenase Activity Using the Acetylene Method
2.8. Effect of Different Concentrations of Mo and Fe on Nitrogenase Activity
2.9. Pigment Content
2.10. Statistical Analysis
3. Results
3.1. Isolation of Cyanobacteria Axenic Cultures from Rice Fields
- Culture J-14. Filamentous cyanobacteria. The trichomes are single, straight, not narrowed at the ends and have pronounced constrictions at the stigma sites and consist of blue-green spherical vegetative cells (length of 6–8 μm, width of 3–5 μm). The heterocysts are, in most cases, intercalary, solitary, and light-brown. Akinetes are rare, barely noticeably oval, their size does not differ from the size of the cells, and they are characterised by a granular content. They reproduce by hormogonia. Cultural characteristics: Grows well on Allen, Gromov, Bold, and BG-11 media at a temperature of 23–28 °C, with an initial pH of 7. At the same time, on a solid medium, prostrate growth is characteristic; on a liquid culture medium, growth is in the form of films both on the surface and at the bottom of the flask. In the old culture or on a medium with nitrogen deficiency, the development of heterocysts and akinetes is observed. According to the systematic position, it is classified as cyanobacteria, class Hormogeneae, order Nostocales, genus Nostoc, Nostoc sp.
- Culture J-8. Filamentous cyanobacteria. Cells form straight, loose, immobile (weakly motile) trichomes up to 15 μm in length, comprising up to 10 cells. The cells are cylindrical, isodiametric, sometimes barrel-shaped, and 1.8–6.8 × 2.3–4.3 µm in size. The cells in the trichome are light, blue-green, uniform, and not granular. The heterocysts are terminal, unipolar, spherical or elongated, yellow-green, and 3.0–5.9 × 2.3–3.2 μm in size. The akinetes are mainly cylindrical, oval, large (5.1–7.7 × 2.6–3.4 μm), light-brown, yellow, granular, and adjacent to the heterocysts. Sometimes there are two akinetes at one end of the trichome. Reproduction is by binary cell division, in one plane only. Cultural characteristics: On a solid medium they form slimy colonies, first green, and then brownish in colour. They grow well at a temperature of 25–30 °C on Allen and Bold media in the light at an initial pH of 7. Old cultures (10–15 days of cultivation) contain both heterocysts and akinetes. Culture J-8 exhibited several morpho-characteristics identical to Cylindrospermum badium [41], including similar size dimensions of trichomes, vegetative cell, heterocysts, and akinete, and a flattened exospore. Therefore, the isolate J-8, after preliminary morphological identification, was assigned to cyanobacteria, class Hormogeneae, order Nostocales, genus Cylindrospermum, and species Cylindrospermum badium.
- Culture K-31. The cells are cylindrical, barrel-shaped or spherical, pale- or light-blue- or olive-green, with gas bubbles (vacuoles) or without, but sometimes with granular contents. The terminal cells are slightly elongated, not vacuolated. The heterocysts are intercalary, solitary, spaced apart, oval, sometimes spherical, and usually slightly larger than the vegetative cells. The development of heterocysts was observed when the medium was exhausted (on the 8–15th day of cultivation). The akinetes are spherical, solitary, and located in the middle between two heterocysts. This cyanobacterium reproduces by hormogonia. Cultural characteristics: On solid culture medium, they form mucilaginous colonies, on liquid culture medium, they precipitate mucilaginous amorphous tangles, and the walls of the flasks are fouled by the culture. They were isolated on Allen’s culture medium and grow well on Bold’s, Chu-10, and BG -11 media. The development of heterocysts was observed when the medium was emptied at 8–15 days of cultivation. Optimal growth on this medium was observed at a temperature of 25–28 °C [42,43]. Morphological identification of the isolate shows that the isolate belongs to cyanobacteria, class Hormogeneae, order Nostocales, family Nostocaceae, genus Trichormus, species Trichormus variabilis.
- Culture J-1. Filamentous cyanobacteria. The cells formed straight, sometimes slightly curved, immobile trichomes up to 10–15 µm in length. At the same time, bushiness (bushy growth) is observed in some places due to the false branching of the trichomes, which often occurs at the sites of heterocyst formation. The cells in the trichomes are often cylindrical, isodiametric, and 1.3–3.2 µm in size. The cells in the trichome are light, green, uniform, and non-granular. The heterocysts are intercalary, spherical or elongated, yellow-green, and 3–3.2 × −5.9 µm in size. The presence of akinetes was not observed. Reproduction is by binary cell division, only in one plane. Cultural characteristics: Yellow-green colonies form on a solid medium. They grow well at a temperature of 25–30 °C on BG-11, Allen, and Bold media in the light, at an initial pH of 7. According to taxonomic affiliation, they are assigned to cyanobacteria, class Hormogeneae, order Nostocales, family Scytonemataceae, genus Tolypothrix, and species Tolypothrix sp. [44].
- Culture SH-12. A filamentous cyanobacterium with a mucilaginous sheath. No active movement of the trichomes was observed, but some rocking of the trichome tips was. The width of the cell is 2.6–5 µm, i.e., it is two- to three-fold shorter than the length. They reproduce by binary cell division and in one plane only. Cultural characteristics: On a liquid medium, the suspension is blue-green in mass, slightly mucous-like, and precipitates into an amorphous precipitate that is easily stirred up. The strain develops regardless of the season and remains axenic during storage. This cyanobacterium is isolated on Gromov’s culture medium and grows well on Allen’s and BG-11 media. Blue-green trichome balls form on the surface of Gromov’s agar medium. Optimal cultivation conditions are on Gromov’s medium at an incubation temperature of 25–28 °C, medium pH was 7.5–8. Based on the morphological characteristics, which are congruent with the description reported in previous literature, the isolated strain was identified as Oscillatoria brevis [45,46]. According to the systematic position, they belong to the cyanobacteria, class Hormogeneae, order Oscillatoriales, genus Oscillatoria, and species Oscillatoria brevis.
3.2. Genetic Identification of Isolated Strains and Phylogenetic Tree Construction
3.3. Investigation of the Productivity of Isolated Cyanobacterial Strains on a Nitrogen-Free Medium
3.4. Influence of Mo and Fe on Photosynthetic and Nitrogenase Activities of Isolated Cyanobacterial Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sundararaman, M.; Subramanian, G.; Averal, H.I.; Akbarsha, M.A. Evaluation of the Bio-Activity of Marine Cyanobacteria on Some Biochemical Parameters of Rat Serum. Phytother. Res. 1996, 10, 9–12. [Google Scholar] [CrossRef]
- Kaushik, B.D.; Venkataraman, G.S. Effect of algal inoculation on the yield and vitamin c content of two varieties of tomato. Plant Soil 1979, 52, 135–137. [Google Scholar] [CrossRef]
- Choudhary, K.K. Occurrence of Nitrogen-Fixing Cyanobacteria during Different Stages of Paddy Cultivation. Bangladesh J. Plant Taxon. 2011, 18, 73–76. [Google Scholar] [CrossRef]
- Sadvakasova, A.K.; Kossalbayev, B.D.; Zayadan, B.K.; Kirbayeva, D.K.; Alwasel, S.; Allakhverdiev, S.I. Potential of Cyanobacteria in the Conversion of Wastewater to Biofuels. World J Microbiol Biotechnol 2021, 37, 140. [Google Scholar] [CrossRef] [PubMed]
- Zayadan, B.; Usserbayeva, A.; Bolatkhan, K.; Akmukhanova, N.; Kossalbayev, B.; Baizhigitova, A.; Los, D. Screening of Isolated and Collection Strains Of Cyanobacteria On Productivity For Determining Their Biotechnological Potential. Eur. J. Entomol. 2018, 55, 121–130. [Google Scholar] [CrossRef]
- Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants 2020, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Venkataraman, G.S. Blue-Green algae for rice production. FAO Soil Bull. 1981, 16, 33–42. Available online: https://www.fao.org/3/i5199e/I5199E.pdf (accessed on 1 January 2022).
- Shashirekha, S.; Uma, L.; Subramanian, G. Phenol Degradation by the Marine Cyanobacterium Phormidium Valderianum BDU 30501. J. Ind. Microbiol. Biotech. 1997, 19, 130–133. [Google Scholar] [CrossRef]
- Bolatkhan, K.; Kossalbayev, B.D.; Zayadan, B.K.; Tomo, T.; Veziroglu, T.N.; Allakhverdiev, S.I. Hydrogen Production from Phototrophic Microorganisms: Reality and Perspectives. Int. J. Hydrog. Energy 2019, 44, 5799–5811. [Google Scholar] [CrossRef]
- Kossalbayev, B.D.; Tomo, T.; Zayadan, B.K.; Sadvakasova, A.K.; Bolatkhan, K.; Alwasel, S.; Allakhverdiev, S.I. Determination of the Potential of Cyanobacterial Strains for Hydrogen Production. Int. J. Hydrog. Energy 2020, 45, 2627–2639. [Google Scholar] [CrossRef]
- Sadvakasova, A.K.; Kossalbayev, B.D.; Zayadan, B.K.; Bolatkhan, K.; Alwasel, S.; Najafpour, M.M.; Tomo, T.; Allakhverdiev, S.I. Bioprocesses of Hydrogen Production by Cyanobacteria Cells and Possible Ways to Increase Their Productivity. Renew. Sustain. Energy Rev. 2020, 133, 110054. [Google Scholar] [CrossRef]
- Bolatkhan, K.; Sadvakasova, A.K.; Zayadan, B.K.; Kakimova, A.B.; Sarsekeyeva, F.K.; Kossalbayev, B.D.; Bozieva, A.M.; Alwasel, S.; Allakhverdiev, S.I. Prospects for the Creation of a Waste-Free Technology for Wastewater Treatment and Utilization of Carbon Dioxide Based on Cyanobacteria for Biodiesel Production. J. Biotechnol. 2020, 324, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Issa, A.A.; Abd-Alla, M.H.; Ohyama, T. Nitrogen Fixing Cyanobacteria: Future Prospect; IntechOpen: London, UK, 2014; ISBN 978-953-51-1216-7. [Google Scholar]
- Singh, J.S.; Kumar, A.; Rai, A.N.; Singh, D.P. Cyanobacteria: A Precious Bio-Resource in Agriculture, Ecosystem, and Environmental Sustainability. Front. Microbiol. 2016, 7, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durner, J.; Böhm, I.; Knörzer, O.C.; Böger, P. Proteolytic Degradation of Dinitrogenase Reductase from Anabaena Variabilis (ATCC 29413) as a Consequence of ATP Depletion and Impact of Oxygen. J. Bacteriol. 1996, 178, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallon, J.R. Reconciling the Incompatible: N2 Fixation and O2. New Phytol. 1992, 122, 571–609. Available online: https://www.jstor.org/stable/2557427 (accessed on 1 February 2022). [CrossRef]
- Berman-Frank, I.; Lundgren, P.; Falkowski, P. Nitrogen Fixation and Photosynthetic Oxygen Evolution in Cyanobacteria. Res. Microbiol. 2003, 154, 157–164. [Google Scholar] [CrossRef]
- UTEX—Culture Collection of Algae at The University of Texas at Austin. Available online: https://utex.org/products/bg-11-medium?variant=30991786868826 (accessed on 25 February 2022).
- UTEX—Culture Collection of Algae at The University of Texas at Austin. Available online: https://utex.org/products/allen-medium?variant=30991788507226 (accessed on 25 February 2022).
- UTEX—Culture Collection of Algae at The University of Texas at Austin. Available online: https://utex.org/products/bold-basal-medium (accessed on 25 February 2022).
- Huynh, M.; Serediak, N. Algae Identification Field Guide; Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 2006; p. 40. ISBN 978-1-100-18308-4. [Google Scholar]
- Bellinger, E.G.; Sigee, D.C. Freshwater Algae: Identification and Use as Bioindicators; John Wiley & Sons: Hoboken, NJ, USA, 2011; p. 284. ISBN 978-1-119-96432-2. [Google Scholar]
- Wilson, K.M.; Schembri, M.A.; Baker, P.D.; Saint, C.P. Molecular Characterization of the Toxic Cyanobacterium Cylindrospermopsis Raciborskii and Design of a Species-Specific PCR. Appl. Environ. Microbiol. 2000, 66, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Dale, R.K.; Pedersen, B.S.; Quinlan, A.R. Pybedtools: A Flexible Python Library for Manipulating Genomic Datasets and Annotations. Bioinformatics 2011, 27, 3423–3424. [Google Scholar] [CrossRef]
- De Lillo, A.; Ashley, F.P.; Palmer, R.M.; Munson, M.A.; Kyriacou, L.; Weightman, A.J.; Wade, W.G. Novel Subgingival Bacterial Phylotypes Detected Using Multiple Universal Polymerase Chain Reaction Primer Sets. Oral Microbiol. Immunol. 2006, 21, 61–68. [Google Scholar] [CrossRef]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved Bacterial 16S RRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems 2015, 1, e00009-15. [Google Scholar] [CrossRef] [Green Version]
- Hiraishi, A.; Kamagata, Y.; Nakamura, K. Polymerase Chain Reaction Amplification and Restriction Fragment Length Polymorphism Analysis of 16S RRNA Genes from Methanogens. J. Ferment. Bioeng. 1995, 79, 523–529. [Google Scholar] [CrossRef]
- Johansen, J.R.; Mareš, J.; Pietrasiak, N.; Bohunická, M.; Zima, J.; Štenclová, L.; Hauer, T. Highly Divergent 16S RRNA Sequences in Ribosomal Operons of Scytonema Hyalinum (Cyanobacteria). PLoS ONE 2017, 12, e0186393. [Google Scholar] [CrossRef] [PubMed]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, G.; Moriyama, E.; Lu, G.; Moriyama, E.N. Vector NTI, a Balanced All-in-One Sequence Analysis Suite. Brief. Bioinform. 2005, 5, 378–388. [Google Scholar] [CrossRef]
- Tsarenko, P.M.; Borysova, O.V.; Korkhovyi, V.I.; Blume, Y.B. High-Efficiency Ukrainian Strains of Microalgae for Biodiesel Fuel Production (Overview). Open Agric. J. 2020, 14, 209–218. [Google Scholar] [CrossRef]
- UTEX—Culture Collection of Algae at The University of Texas at Austin. Available online: https://utex.org/products/bg-11-n-medium (accessed on 12 December 2021).
- Thajuddin, N.; Subramanian, G. Cyanobacterial Biodiversity and Potential Applications in Biotechnology. Curr. Sci. 2005, 89, 47–57. [Google Scholar]
- Alekseev, A.A.; Yakovleva, O.V.; Matorin, D.N. The Fluorescence Methods for an Assessment Photosynthetic Capacity of Plants under the Anthropogenic Load. AIP Conf. Proc. 2018, 2041, 050013. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, H.; Raj, S.; Soni, V. Chlorophyll a Fluorescence Kinetics of Mung Bean (Vigna Radiata L.) Grown under Artificial Continuous Light. Biochem. Biophys. Rep. 2020, 24, 100813. [Google Scholar] [CrossRef]
- Tsygankov, A.A.; Serebryakova, L.T.; Rao, K.K.; Hall, D.O. Acetylene Reduction and Hydrogen Photoproduction by Wild-Type and Mutant Strains of Anabaena at Different CO2 and O2 Concentrations. FEMS Microbiol. Lett. 1998, 167, 13–17. [Google Scholar] [CrossRef]
- Ritchie, R.J. Consistent Sets of Spectrophotometric Chlorophyll Equations for Acetone, Methanol and Ethanol Solvents. Photosynth. Res. 2006, 89, 27–41. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Bennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell. Biol. 1973, 58, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.; Duffus, A.L.J.; Lee, C. Using the Free Program MEGA to Build Phylogenetic Trees from Molecular Data. Am. Biol. Teach. 2016, 78, 608–612. [Google Scholar] [CrossRef]
- Johansen, J.R.; Bohunická, M.; Lukešová, A.; Hrčková, K.; Vaccarino, M.A.; Chesarino, N.M. Morphological and Molecular Characterization within 26 Strains of the Genus Cylindrospermum (Nostocaceae, Cyanobacteria), with Descriptions of Three New Species. J. Phycol. 2014, 50, 187–202. [Google Scholar] [CrossRef]
- Zulkefli, N.S.; Hwang, S.-J. Heterocyst Development and Diazotrophic Growth of Anabaena Variabilis under Different Nitrogen Availability. Life 2020, 10, 279. [Google Scholar] [CrossRef] [PubMed]
- Gollerbakh, M.M.; Kosinskaya, E.K.; Polyanskii, V.I. Opredelitel’ Presnovodnykh Vodoroslei SSSR. Vyp. 2. Sinezelenye Vodorosli; Identification Guide of Freshwater Algae of the USSR. Iss. 2. Blue-Green Algae; Sovetskaya Nauka: Moscow, Russia, 1953. [Google Scholar]
- Hauer, T.; Bohunická, M.; Johansen, J.R.; Mareš, J.; Berrendero-Gomez, E. Reassessment of the Cyanobacterial Family Microchaetaceae and Establishment of New Families Tolypothrichaceae and Godleyaceae. J. Phycol. 2014, 50, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Munawar, S.; Khan, A. Occurrence of blooms of blue green algae from the coast of Buleji, Karachi, Pakistan. Int. J. Biol. Res. 2017, 5, 31–34. [Google Scholar]
- Komárek, J.; Zapomělová, E. Planktic Morphospecies of the Cyanobacterial Genus Anabaena = Subg. Dolichospermum—1. Part: Coiled Types. Fottea 2007, 7, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gladkikh, A.S.; Belykh, O.I.; Klimenkov, I.V.; Tikhonova, I.V. Nitrogen-Fixing Cyanobacterium Trichormus Variabilis of the Lake Baikal Phytoplankton. Microbiology 2008, 77, 726–733. [Google Scholar] [CrossRef]
- Walsby, A.E. Cyanobacterial Heterocysts: Terminal Pores Proposed as Sites of Gas Exchange. Trends Microbiol. 2007, 15, 340–349. [Google Scholar] [CrossRef]
- Kumar, K.; Mella-Herrera, R.A.; Golden, J.W. Cyanobacterial Heterocysts. Cold Spring Harb. Perspect. Biol. 2010, 2, a000315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Khan, A.; Srivastava, A. Chapter 16—Heterocyst and Akinete Differentiation in Cyanobacteria: A View toward Cyanobacterial Symbiosis. In Advances in Cyanobacterial Biology; Singh, P.K., Kumar, A., Singh, V.K., Shrivastava, A.K., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 235–248. ISBN 978-0-12-819311-2. [Google Scholar]
- Allakhverdiev, E.S.; Khabatova, V.V.; Kossalbayev, B.D.; Zadneprovskaya, E.V.; Rodnenkov, O.V.; Martynyuk, T.V.; Maksimov, G.V.; Alwasel, S.; Tomo, T.; Allakhverdiev, S.I. Raman Spectroscopy and Its Modifications Applied to Biological and Medical Research. Cells 2022, 11, 386. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, G.-M.; Niu, T.-C.; Zhang, S.-R.; Zhang, J.-Y.; Tang, G.-F.; Chen, W.; Zhang, C.-C. PatD, a Gene Regulated by NtcA, Is Involved in the Optimization of Heterocyst Frequency in the Cyanobacterium Anabaena sp. Strain PCC 7120. J. Bacteriol. 2019, 201, e00457-19. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, A. Heterocyst Thylakoid Bioenergetics. Life 2019, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Bergman, B.; Gallon, J.R.; Rai, A.N.; Stal, L.J. N2 Fixation by Non-Heterocystous Cyanobacteria. FEMS Microbiol. Rev. 1997, 19, 139–185. [Google Scholar] [CrossRef]
- Seefeldt, L.C.; Hoffman, B.M.; Dean, D.R. Mechanism of Mo-Dependent Nitrogenase. Annu. Rev. Biochem. 2009, 78, 701. [Google Scholar] [CrossRef]
- Betancourt, D.A.; Loveless, T.M.; Brown, J.W.; Bishop, P.E. Characterization of Diazotrophs Containing Mo-Independent Nitrogenases, Isolated from Diverse Natural Environments. Appl. Environ. Microbiol. 2008, 74, 3471–3480. [Google Scholar] [CrossRef] [Green Version]
- Bothe, H.; Schmitz, O.; Yates, M.G.; Newton, W.E. Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiol. Mol. Biol. Rev. 2010, 74, 529–551. [Google Scholar] [CrossRef] [Green Version]
- Berrendero, E.; Valiente, E.F.; Perona, E.; Gómez, C.L.; Loza, V.; Muñoz-Martín, M.Á.; Mateo, P. Nitrogen Fixation in a Non-Heterocystous Cyanobacterial Mat from a Mountain River. Sci. Rep. 2016, 6, 30920. [Google Scholar] [CrossRef]
- Raymond, J.; Siefert, J.L.; Staples, C.R.; Blankenship, R.E. The Natural History of Nitrogen Fixation. Mol. Biol. Evol. 2004, 21, 541–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteves-Ferreira, A.A.; Cavalcanti, J.H.F.; Vaz, M.G.M.V.; Alvarenga, L.V.; Nunes-Nesi, A.; Araújo, W.L. Cyanobacterial Nitrogenases: Phylogenetic Diversity, Regulation and Functional Predictions. Genet. Mol. Biol. 2017, 40, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Thiel, T.; Pratte, B. Alternative Nitrogenases in Anabaena Variabilis: The Role of Molybdate and Vanadate in Nitrogenase Gene. Adv. Microbiol. 2013, 3, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Zahalak, M.; Pratte, B.; Werth, K.; Thiel, T. Molybdate Transport and Its Effect on Nitrogen Utilization in the Cyanobacterium Anabaena Variabilis ATCC 29413: Molybdate Transport in Anabaena. Mol. Microbiol. 2004, 51, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Kentemich, T.; Danneberg, G.; Hundeshagen, B.; Bothe, H. Evidence for the Occurrence of the Alternative, Vanadium-Containing Nitrogenase in the Cyanobacterium Anabaena Variabilis. FEMS Microbiol. Lett. 1988, 51, 19–24. [Google Scholar] [CrossRef]
- Miller, R.W.; Eady, R.R. Molybdenum and Vanadium Nitrogenases of Azotobacter Chroococcum. Low Temperature Favours N2 Reduction by Vanadium Nitrogenase. Biochem. J. 1988, 256, 429–432. [Google Scholar] [CrossRef] [Green Version]
- Seefeldt, L.C.; Yang, Z.-Y.; Lukoyanov, D.A.; Harris, D.F.; Dean, D.R.; Raugei, S.; Hoffman, B.M. Reduction of Substrates by Nitrogenases. Chem. Rev. 2020, 120, 5082–5106. [Google Scholar] [CrossRef]
- Devadasu, E.; Chinthapalli, D.K.; Chouhan, N.; Madireddi, S.K.; Rasineni, G.K.; Sripadi, P.; Subramanyam, R. Changes in the Photosynthetic Apparatus and Lipid Droplet Formation in Chlamydomonas Reinhardtii under Iron Deficiency. Photosynth. Res. 2019, 139, 253–266. [Google Scholar] [CrossRef]
- Rueter, J.G.; Petersen, R.R. Micronutrient Effects on Cyanobacterial Growth and Physiology. N. Z. J. Mar. Freshw. Res. 1987, 21, 435–445. [Google Scholar] [CrossRef]
- Yadavalli, V.; Jolley, C.C.; Malleda, C.; Thangaraj, B.; Fromme, P.; Subramanyam, R. Alteration of Proteins and Pigments Influence the Function of Photosystem I under Iron Deficiency from Chlamydomonas Reinhardtii. PLoS ONE 2012, 7, e35084. [Google Scholar] [CrossRef] [Green Version]
- Devadasu, E.; Pandey, J.; Dhokne, K.; Subramanyam, R. Restoration of Photosynthetic Activity and Supercomplexes from Severe Iron Starvation in Chlamydomonas Reinhardtii. Biochim. Biophys. Acta (BBA) Bioenerg. 2021, 1862, 148331. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhang, J.-Y.; Zeng, X.; Zhang, C.-C. C-Di-GMP Homeostasis Is Critical for Heterocyst Development in Anabaena sp. PCC 7120. Front. Microbiol. 2021, 12, 793336. [Google Scholar] [CrossRef] [PubMed]
- Rochaix, J.-D. Reprint of: Regulation of Photosynthetic Electron Transport. Biochim. Biophys. Acta (BBA) Bioenerg. 2011, 1807, 878–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | Growth Coefficient, µ (per Day) | DW, g L−1 |
---|---|---|
Trichormus variabilis K-31 | 0.28 ± 0.02 | 1.06 ± 0.09 |
Nostoc sp. J-14 | 0.27 ± 0.02 | 1.01 ± 0.09 |
Cylindrospermum badium J-8 | 0.19 ± 0.02 | 0.87 ± 0.08 |
Tolypothrix tenuis J-1 | 0.24 ± 0.02 | 0.91 ± 0.07 |
Strain | Metal | Concentration, µmol | Pigment Content, mg g−1 DW | ||
---|---|---|---|---|---|
Chlorophyll a | Carotenoid | Phycocyanin | |||
Trichormus variabilis K-31 | Mo | 1 | 0.38 ± 0.024 | 0.18 ± 0.016 | 0.19 ± 0.011 |
Fe | 10 | 0.46 ± 0.018 | 0.23 ± 0.014 | 0.58 ± 0.018 | |
Control A 1 | NA 3 | 0.29 ± 0.015 | 0.14 ± 0.012 | 0.15 ± 0.011 | |
Control B 2 | NA | 0.45 ± 0.014 | 0.22 ± 0.011 | 0.18 ± 0.012 | |
Nostoc sp. J-14 | Mo | 1 | 0.31 ± 0.021 | 0.23 ± 0.023 | 0.13 ± 0.013 |
Fe | 10 | 0.37 ± 0.019 | 0.25 ± 0.016 | 0.47 ± 0.015 | |
Control A 1 | NA | 0.31 ± 0.011 | 0.22 ± 0.011 | 0.11 ± 0.012 | |
Control B 2 | NA | 0.35 ± 0.011 | 0.24 ± 0.019 | 0.21 ± 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadvakasova, A.K.; Kossalbayev, B.D.; Token, A.I.; Bauenova, M.O.; Wang, J.; Zayadan, B.K.; Balouch, H.; Alwasel, S.; Leong, Y.K.; Chang, J.-S.; et al. Influence of Mo and Fe on Photosynthetic and Nitrogenase Activities of Nitrogen-Fixing Cyanobacteria under Nitrogen Starvation. Cells 2022, 11, 904. https://doi.org/10.3390/cells11050904
Sadvakasova AK, Kossalbayev BD, Token AI, Bauenova MO, Wang J, Zayadan BK, Balouch H, Alwasel S, Leong YK, Chang J-S, et al. Influence of Mo and Fe on Photosynthetic and Nitrogenase Activities of Nitrogen-Fixing Cyanobacteria under Nitrogen Starvation. Cells. 2022; 11(5):904. https://doi.org/10.3390/cells11050904
Chicago/Turabian StyleSadvakasova, Asemgul K., Bekzhan D. Kossalbayev, Aziza I. Token, Meruert O. Bauenova, Jingjing Wang, Bolatkhan K. Zayadan, Huma Balouch, Saleh Alwasel, Yoong Kit Leong, Jo-Shu Chang, and et al. 2022. "Influence of Mo and Fe on Photosynthetic and Nitrogenase Activities of Nitrogen-Fixing Cyanobacteria under Nitrogen Starvation" Cells 11, no. 5: 904. https://doi.org/10.3390/cells11050904
APA StyleSadvakasova, A. K., Kossalbayev, B. D., Token, A. I., Bauenova, M. O., Wang, J., Zayadan, B. K., Balouch, H., Alwasel, S., Leong, Y. K., Chang, J.-S., & Allakhverdiev, S. I. (2022). Influence of Mo and Fe on Photosynthetic and Nitrogenase Activities of Nitrogen-Fixing Cyanobacteria under Nitrogen Starvation. Cells, 11(5), 904. https://doi.org/10.3390/cells11050904