Photosynthetic Protein-Based Edible Quality Formation in Various Porphyra dentata Harvests Determined by Label-Free Proteomics Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Total Protein Extraction
2.3. Protein Digestion
2.4. Peptide Desalination and Quantification
2.5. Liquid Chromatography-Tandem Mass Spectrometry (LC–MS/MS) Analysis
2.6. Protein Identification
2.7. Bioinformatics Analysis
2.8. Western Blotting
3. Results
3.1. Identified by Label-Free Proteomic Analysis
3.2. GO and KEGG Pathway Annotation Analysis of the DAPs
3.3. GO and KEGG Pathway Enrichment Analysis of the DAPs
3.4. Differential Expression of Photosynthesis-Related Proteins
3.5. Western Blotting
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belghit, I.; Rasinger, J.D.; Heesch, S.; Biancarosa, I.; Liland, N.; Torstensen, B.; Waagbø, R.; Lock, E.J.; Bruckner, C.G. In-depth metabolic profiling of marine macroalgae confirms strong biochemical differences between brown, red and green algae. Algal Res. 2017, 26, 240–249. [Google Scholar] [CrossRef]
- Kim, W.; Kim, J.Y.; Jeong, S.J.; Yang, H.C.; Cho, J.Y. Physicochemical characteristics and antioxidant activities of laver cultivars harvested at different times. Korean J. Food Preserv. 2021, 28, 705–715. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, Q.; Chen, W.; Zhang, T.; Tian, C.; Zhu, J. Study of Porphyra species from some islands of guangdong province. South China Fish. Sci. 2014, 10, 11–17. (In Chinese) [Google Scholar] [CrossRef]
- Bito, T.; Teng, F.; Watanabe, F. Bioactive compounds of edible purple laver Porphyra sp. (Nori). J. Agric. Food Chem. 2017, 65, 10685–10692. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Zhao, J.; Wang, C.; Ming, W.; Dang, T.; Deng, Y.; Jing, S.; Song, S.; Huang, L.; Wang, Z. Structural characterization and antioxidant activities of the degradation products from Porphyra haitanensis polysaccharides. Process Biochem. 2018, 74, 185–193. [Google Scholar] [CrossRef]
- Temjensangba, I. Nutritional value of seaweeds and their potential to serve as nutraceutical supplements. Phycologia 2021, 60, 534–546. [Google Scholar] [CrossRef]
- Cao, J.; Wang, J.; Wang, S.; Xu, X. Porphyra species: A mini-review of its pharmacological and nutritional properties. J. Med. Food 2016, 19, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Mohibbullah, M.; Bhuiyan, M.M.H.; Hannan, M.A.; Getachew, P.; Hong, Y.K.; Choi, J.S.; Choi, I.S.; Moon, I.S. The edible red alga Porphyra yezoensis promotes neuronal survival and cytoarchitecture in primary hippocampal neurons. Cell Mol. Neurboiol. 2016, 36, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.M.; Kang, S.G.; Kim, K.T.; Lee, H.J.; Kim, A.; Shin, H.W. The analysis of proximate composition, minerals and amino acid content of red alga Pyropia dentata by cultivation sites. Korean J. Environ. Ecol. 2015, 29, 1–6. [Google Scholar] [CrossRef]
- Kazłowska, K.; Lin, H.T.V.; Chang, S.H.; Tsai, G.J. In vitro and in vivo anticancer effects of sterol fraction from red algae Porphyra dentata. Evid. Based Complementary Altern. Med. 2013, 2013, 493869. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.C.; Lin, Y.P. Investigation on intermittent microwave-assisted extraction of sulfated polysaccharides from Porphyra dentata. J. Mar. Sci. Tech.-Taiw. 2015, 23, 29. [Google Scholar]
- Aung, T.; Eun, J.B. Production and characterization of a novel beverage from laver (Porphyra dentata) through fermentation with kombucha consortium. Food Chem. 2021, 350, 129274. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yu, J.; Hu, X.; Yang, X.; Li, L.; Qi, B.; Deng, J. In vitro antioxidant effects of Porphyra haitanensis peptides on h2o2-induced damage in hepg2 cells. J. Ocean. China 2021, 20, 421–428. [Google Scholar] [CrossRef]
- Pan, C.; Ma, J.; Tao, F.; Ji, C.; Zhao, Y.; Chen, S.; Yang, X. Novel insight into the antioxidant proteins derived from laver (Porphyra haitanensis) by proteomics analysis and protein based bioinformatics. Food Biosci. 2021, 42, 101134. [Google Scholar] [CrossRef]
- Ballaré, C.L. Light regulation of plant defense. Annu. Rev. Plant. Biol. 2014, 65, 335–363. [Google Scholar] [CrossRef]
- Zhong, Z.; Wang, W.; Sun, X.; Liu, F.; Liang, Z.; Wang, F.; Chen, W. Developmental and physiological properties of Pyropia dentata (Bangiales, Rhodophyta) conchocelis in culture. J. Appl. Phycol. 2016, 28, 3435–3445. [Google Scholar] [CrossRef]
- Henderson, K.A.; Murdock, J.N.; Lizotte, R.E. Water depth in-fluences algal distribution and productivity in shallow agricul-tural lakes. Ecohydrology 2021, 14, e2319. [Google Scholar] [CrossRef]
- Yang, J.; Feng, Z.; Niu, J.; Gu, W.; He, B.; Liu, X.; Shao, Z.; Zheng, Z.; Wang, X.; Wang, G. Preliminary study on the mechanism of rotten diseases induced by low salinity and high temperature in Pyrople yezoensis. Oceanol. Limnol. Sin. 2021, 52, 1214–1223. (In Chinese) [Google Scholar] [CrossRef]
- Wang, D.; Yu, X.; Xu, K.; Bi, G.; Cao, M.; Zelzion, E.; Fu, C.; Sun, P.; Liu, Y.; Kong, F. Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wen, J.; Zou, D. Effects of surface water film and desiccation on chlorophyll fluorescence characteristics of emersed Pyropia haitanensis thalli. J. Trop Oceanogr. 2021, 40, 82–90. (In Chinese) [Google Scholar] [CrossRef]
- Xu, K.; Xu, Y.; Ji, D.; Xie, J.; Chen, C.; Xie, C. Proteomic analysis of the economic seaweed Pyropia haitanensis in response to desiccation. Algal Res. 2016, 19, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Choi., J. Proteomic analysis of Pyropia yezoensis mutant induced by gamma irradiation. Phycologia 2017, 56, 113. [Google Scholar]
- Xiang, Y.; Sun, C.; Zhao, Y.; Li, L.; Yang, X.; Wu, Y.; Chen, S.; Wei, Y.; Li, C.; Wang, Y. Label-free proteomic analysis reveals freshness-related proteins in sea bass (Lateolabrax japonicus) fillets stored on ice. LWT 2022, 155, 112885. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, X.; Liu, Y.; Zheng, X.; Wang, Y.; Cong, J.; Yu, C.; Liu, N.; Liu, J.; Sand, W. Fructose as an additional co-metabolite promotes refractory dye degradation: Performance and mechanism. Bioresour. Technol. 2019, 280, 430–440. [Google Scholar] [CrossRef]
- Moreira, D.; Le Guyader, H.; Philippe, H. The origin of red algae and the evolution of chloroplasts. Nature 2000, 405, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, H.; Fang, E.; Gao, Y.; Guo, B.; Liu, K.; Xu, F.; Chen, W. Preliminary study on the cultivation of Porphyra yezoensis in Bohai bay. Mar. Sci. Bull. 2019, 21, 87–96. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Z.; Wang, G. Expression analysis of psba and psbd genes of Porphyra yezoensis in different developmental stages. Mar. Sci. 2008, 32, 52–56. (In Chinese) [Google Scholar]
- Chapman, R.L. Algae: The world’s most important “plants”—An introduction. Mitig. Adapt. Strateg. Glob. Change 2013, 18, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Allakhverdiev, S.I. Editorial for the special issue on photosynthesis and hydrogen energy research for sustainabil-ity—2019. Photosynth. Res. 2020, 146, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Huang, G.; You, X.; Zhu, Q.; Wang, W.; Kuang, T.; Han, G.; Sui, S. Structural insights into cyanobacterial photosystem II intermediates associated with Psb28 and Tsl0063. Nat. Plants 2021, 7, 1132–1142. [Google Scholar] [CrossRef]
- Bečková, M.; Gardian, Z.; Yu, J.; Konik, P.; Nixon, P.J.; Komenda, J. Association of Psb28 and Psb27 proteins with PSII-PSI supercomplexes upon exposure of Synechocystis sp. PCC 6803 to high light. Mol. Plant. 2016, 10, 62–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo, I.C.; Duarte, P.M.; Marinho, G.S.; Neumann, F.; Sousa-Pinto, I. Growth of Saccharina latissima (Laminariales, Phaeophyceae) cultivated offshore under exposed conditions. Phycologia 2019, 58, 504–515. [Google Scholar] [CrossRef]
- Inoue-Kashino, N.; Kashino, Y.; Satoh, K.; Terashima, I.; Pakrasi, H.B. PsbU provides a stable architecture for the oxygen-evolving system in cyanobacterial photosystem II. Biochem. US 2015, 44, 12214–12228. [Google Scholar] [CrossRef] [PubMed]
- Sasi, S.; Venkatesh, J.; Daneshi, R.F.; Gururani, M.A. Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plants 2018, 7, 100. [Google Scholar] [CrossRef] [Green Version]
- Alberta, P.; Roberto, B. Molecular mechanisms involved in plant photoprotection. Biochem. Soc. Trans. 2018, 46, 467–482. [Google Scholar] [CrossRef]
- Yamori, W.; Shikanai, T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu. Rev. Plant. Biol. 2016, 67, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zhang, Q.S.; Zhao, W.; Liu, Z.; Ma, M.Y.; Zhong, M.Y.; Wang, M.X. The highly efficient NDH-dependent photosystem I cyclic electron flow pathway in the marine angiosperm Zostera Marina. Photosynth. Res. 2020, 144, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Chotewutmontri, P.; Barkan, A. Light-induced psbA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit. Proc. Natl. Acad. Sci. USA 2020, 117, 21775–21784. [Google Scholar] [CrossRef]
- Chen, W.; Xu, J.; Wu, W.; Jiang, H.; Zhu, J.; Lu, Q. Physiological responses of three species of Pyropia thallus to high temperature stress. J. Trop. Oceanogr. 2015, 34, 49–55. (In Chinese) [Google Scholar] [CrossRef]
- Yamamoto, Y. Quality control of photosystem II: The mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Front. Plant. Sci. 2016, 7, 1136. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Li, J.; Ma, F.; Lu, Q.; Shen, Z.; Zhu, J. Study of photosynthetic characteristics of the Pyropia yezoensis thallus during the cultivation process. J. Appl. Phycol. 2014, 26, 859–865. [Google Scholar] [CrossRef]
- Venkatraman, K.L.; Mehta, A. Health benefits and pharmacological effects of Porphyra species. Plant. Foods Hum. Nutr. 2019, 74, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, M.G.; Ciarmiello, L.F.; Woodrow, P.; Dell’Aversana, E.; Carillo, P. Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Front. Plant. Sci. 2019, 10, 230. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Xue, S.; Chen, J.; Shang, S.; Tang, X. Effects of different short-term UV-B radiation intensities on metabolic characteristics of Porphyra haitanensis. Int. J. Mol. Sci. 2021, 22, 2180. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Fan, M.; Wang, C.; Liao, Z.; Li, P.; Xu, N.; Wang, J. Comparative transcriptome study of Ulva prolifera to calcium chloride treatment under high temperature stress. Oceanol. Limnol. Sin. 2020, 52, 766–776. (In Chinese) [Google Scholar] [CrossRef]
- Roose, J.L.; Pakrasi, H.B. Evidence that D1 processing is required for manganese binding and extrinsic protein assembly into photosystem II. J. Biol. Chem. 2004, 279, 45417–45422. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Che, Y.; Wang, Y.; Luan, S.; Hou, X. Loss of mature D1 leads to compromised CP43 assembly in Arabidopsis thaliana. BMC Plant Biol. 2021, 21, 1–10. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, L.; Tu, W.; Sun, R.; Li, F.; Lin, Y.; Zhang, Y.; Liu, C.; Yang, C. Photosynthetic inner antenna CP47 plays important roles in ephemeral plants in adapting to high light stress. J. Plant. Physiol 2020, 251, 153189. [Google Scholar] [CrossRef]
- De Vries, J.; Curtis, B.A.; Gould, S.B.; Archibald, J.M. Embryophyte stress signaling evolved in the algal progenitors of land plants. Proc. Natl. Acad. Sci. USA 2018, 115, E3471–E3480. [Google Scholar] [CrossRef] [Green Version]
- Wientjes, E.; Van Stokkum, I.H.; Van Amerongen, H.; Croce, R. Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes. Biophys. J. 2011, 100, 1372–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Leister, D.; Bolle, C. Photosynthetic lesions can trigger accelerated senescence in Arabidopsis thaliana. J. Exp. Bot. 2015, 66, 6891–6903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Accession | Protein Name | Ko Name | First/Fifth Harvest FC | p-Value |
---|---|---|---|---|
TRINITY_DN4391_c0_g1_i1_orfp1 | Extrinsic protein in photosystem II | Xdh | 129.68 | 0 |
TRINITY_DN20824_c0_g2_i1_orf1 | Photosystem I P700 chlorophyll a apoprotein A1 | PsaA | 1.625 | 0.012 |
TRINITY_DN43883_c0_g1_i1_orf1 | Photosystem II protein D1 | PsbA | 1.363 | 0.031 |
TRINITY_DN8817_c0_g1_i1_orf1 | Photosystem II 44 kDa protein | psbC | 1.485 | 0.020 |
TRINITY_DN14993_c0_g1_i1_orf1 | Photosystem II protein W | Psb28 | 1.235 | 0.093 |
TRINITY_DN12291_c0_g1_i1_orfp1 | Photosystem II 12 kDa extrinsic protein, chloroplastic | PsbU | 129.68 | 0 |
TRINITY_DN376_c0_g2_i1_orfp1 | NADH-ubiquinone oxidoreductase | 129.68 | 0 | |
TRINITY_DN31442_c0_g1_i1_orf1 | Chlorophyll a/b-binding protein | Lhca1 | 1.891 | 0.321 |
TRINITY_DN2334_c0_g3_i3_orf1 | Light-harvesting protein | Lhca1 | 0.762 | 0.142 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Ma, L.; Yang, X.; Li, L.; Chen, S.; Qi, B.; Wang, Y.; Li, C.; Wei, Y.; Zhao, Y. Photosynthetic Protein-Based Edible Quality Formation in Various Porphyra dentata Harvests Determined by Label-Free Proteomics Analysis. Cells 2022, 11, 1136. https://doi.org/10.3390/cells11071136
Yang M, Ma L, Yang X, Li L, Chen S, Qi B, Wang Y, Li C, Wei Y, Zhao Y. Photosynthetic Protein-Based Edible Quality Formation in Various Porphyra dentata Harvests Determined by Label-Free Proteomics Analysis. Cells. 2022; 11(7):1136. https://doi.org/10.3390/cells11071136
Chicago/Turabian StyleYang, Mingchang, Lizhen Ma, Xianqing Yang, Laihao Li, Shengjun Chen, Bo Qi, Yueqi Wang, Chunsheng Li, Ya Wei, and Yongqiang Zhao. 2022. "Photosynthetic Protein-Based Edible Quality Formation in Various Porphyra dentata Harvests Determined by Label-Free Proteomics Analysis" Cells 11, no. 7: 1136. https://doi.org/10.3390/cells11071136
APA StyleYang, M., Ma, L., Yang, X., Li, L., Chen, S., Qi, B., Wang, Y., Li, C., Wei, Y., & Zhao, Y. (2022). Photosynthetic Protein-Based Edible Quality Formation in Various Porphyra dentata Harvests Determined by Label-Free Proteomics Analysis. Cells, 11(7), 1136. https://doi.org/10.3390/cells11071136