Metabolomic Changes as Key Factors of Green Plant Regeneration Efficiency of Triticale In Vitro Anther Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Infrared Spectroscopy
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Ascorbic Acid |
ETC | Electron Transport Chain |
FTIR | Fourier Transform Infrared |
GPRE | Green Plant Regeneration Efficiency |
GSH | Glutathione |
HG | Homogalacturonan |
IM | Induction Medium |
PDC | Pyruvate Dehydrogenase Complex |
PDH | Pyruvate Dehydrogenase |
ROS | Reactive Oxygen Species |
SAM | S-Adenosyl-L-Methionine |
SEM | Structural Equation Model |
TCA | Tricarboxylic Acid |
TCIV | Tissue Culture-Induced Variation |
References
- Oleszczuk, S.; Rabiza-Swider, J.; Zimny, J.; Lukaszewski, A.J. Aneuploidy among androgenic progeny of hexaploid triticale (XTriticosecale Wittmack). Plant Cell Rep. 2011, 30, 575–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machczyńska, J.; Zimny, J.; Bednarek, P. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants. Plant Mol. Biol. 2015, 89, 279–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machczyńska, J.; Orłowska, R.; Mańkowski, D.R.; Zimny, J.; Bednarek, P.T. DNA methylation changes in triticale due to in vitro culture plant regeneration and consecutive reproduction. Plant Cell Tissue Organ Cult. 2014, 119, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Pachota, K.A.; Orłowska, R.; Bednarek, P.T. Medium composition affects the tissue culture-induced variation in triticale regenerants. Plant Cell Tissue Organ Cult. 2022, 151, 35–46. [Google Scholar] [CrossRef]
- Oleszczuk, S.; Tyrka, M.; Zimny, J. The origin of clones among androgenic regenerants of hexaploid triticale. Euphytica 2014, 198, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Oleszczuk, S.; Sowa, S.; Zimny, J. Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (Triticosecale Wittmack) cv. Bogo. Plant Cell Rep. 2004, 22, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Bednarek, P.T.; Orłowska, R.; Mańkowski, D.R.; Oleszczuk, S.; Zebrowski, J. Structural Equation Modeling (SEM) analysis of sequence variation and green plant regeneration via anther culture in barley. Cells 2021, 10, 2774. [Google Scholar] [CrossRef]
- Bednarek, P.T.; Zebrowski, J.; Orłowska, R. Exploring the biochemical origin of DNA sequence variation in barley plants regenerated via in vitro anther culture. Int. J. Mol. Sci. 2020, 21, 5770. [Google Scholar] [CrossRef]
- Bednarek, P.T.; Orłowska, R.; Mańkowski, D.R.; Zimny, J.; Kowalczyk, K.; Nowak, M.; Zebrowski, J. Glutathione and copper ions as critical factors of green plant regeneration efficiency of triticale in vitro anther culture. Front. Plant Sci. 2022, 13, 926305. [Google Scholar] [CrossRef]
- Orłowska, R.; Pachota, K.A.; Machczyńska, J.; Niedziela, A.; Makowska, K.; Zimny, J.; Bednarek, P.T. Improvement of anther cultures conditions using the Taguchi method in three cereal crops. Electron. J. Biotechnol. 2020, 43, 8–15. [Google Scholar] [CrossRef]
- Wu, L.M.; Wei, Y.M.; Zheng, Y.L. Effects of silver nitrate on the tissue culture of immature wheat embryos. Russ. J. Plant Physiol. 2006, 53, 530–534. [Google Scholar] [CrossRef]
- Morgan, M.J.; Lehmann, M.; Schwarzländer, M.; Baxter, C.J.; Sienkiewicz-Porzucek, A.; Williams, T.C.; Schauer, N.; Fernie, A.R.; Fricker, M.D.; Ratcliffe, R.G.; et al. Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol. 2008, 147, 101–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, S.I.; Castruita, M.; Malasarn, D.; Urzica, E.; Erde, J.; Page, M.D.; Yamasaki, H.; Casero, D.; Pellegrini, M.; Merchant, S.S.; et al. The proteome of copper, iron, zinc, and manganese micronutrient deficiency in Chlamydomonas reinhardtii. Mol. Cell. Proteom. MCP 2013, 12, 65–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Sharma, D.; Verma, S.K. In silico Study of Iron, Zinc and Copper Binding Proteins of Pseudomonas syringae pv. lapsa: Emphasis on Secreted Metalloproteins. Front. Microbiol. 2018, 9, 1838. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satbhai, S.B. Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress 2021, 1, 100008. [Google Scholar] [CrossRef]
- Kroh, G.E.; Pilon, M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int. J. Mol. Sci. 2020, 21, 3395. [Google Scholar] [CrossRef]
- Alejandro, S.; Cailliatte, R.; Alcon, C.; Dirick, L.; Domergue, F.; Correia, D.; Castaings, L.; Briat, J.-F.; Mari, S.; Curie, C. Intracellular distribution of manganese by the trans-Golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis. Plant Cell 2017, 29, 3068–3084. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Y.; Ding, Z.; Wang, H.; Song, L.; Jia, S.; Ma, D. Zinc stress affects ionome and metabolome in tea plants. Plant Physiol. Biochem. 2017, 111, 318–328. [Google Scholar] [CrossRef]
- Xing, J.; Wang, T.; Ni, Z. Epigenetic regulation of iron homeostasis in Arabidopsis. Plant Signal Behav. 2015, 10, e1064574. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.W.; Zhu, H.H.; Wang, J.Y.; Han, G.H.; Huang, R.N.; Hong, Y.G.; Yang, J.L. Comparative Physiological and Transcriptomic Analyses Reveal Altered Fe-Deficiency Responses in Tomato Epimutant Colorless Non-ripening. Front. Plant Sci. 2022, 12, 3382. [Google Scholar] [CrossRef]
- Rodríguez-Celma, J.; Tsai, Y.-H.; Wen, T.-N.; Wu, Y.-C.; Curie, C.; Schmidt, W. Systems-wide analysis of manganese deficiency-induced changes in gene activity of Arabidopsis roots. Sci. Rep. 2016, 6, 35846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orłowska, R.; Zebrowski, J.; Zimny, J.; Androsiuk, P.; Bednarek, P.T. S-Adenosyl-L-Methionine and Cu(II) Impact Green Plant Regeneration Efficiency. Cells 2022, 11, 2700. [Google Scholar] [CrossRef]
- Żur, I.; Dubas, E.; Krzewska, M.; Zieliński, K.; Fodor, J.; Janowiak, F. Glutathione provides antioxidative defence and promotes microspore-derived embryo development in isolated microspore cultures of triticale (×Triticosecale Wittm.). Plant Cell Rep. 2019, 38, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Szalai, G.; Kellős, T.; Galiba, G.; Kocsy, G. Glutathione as an Antioxidant and Regulatory Molecule in Plants Under Abiotic Stress Conditions. J. Plant Growth Regul. 2009, 28, 66–80. [Google Scholar] [CrossRef]
- Hernández, L.E.; Sobrino-Plata, J.; Montero-Palmero, M.B.; Carrasco-Gil, S.; Flores-Cáceres, M.L.; Ortega-Villasante, C.; Escobar, C. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J. Exp. Bot. 2015, 66, 2901–2911. [Google Scholar] [CrossRef] [Green Version]
- Schnaubelt, D.; Queval, G.; Dong, Y.; Diaz-Vivancos, P.; Makgopa, M.E.; Howell, G.; De Simone, A.; Bai, J.; Hannah, M.A.; Foyer, C.H. Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. Plant Cell Environ. 2015, 38, 266–279. [Google Scholar] [CrossRef]
- Orłowska, R.; Pachota, K.A.; Androsiuk, P.; Bednarek, P.T. Triticale Green Plant Regeneration Is Due to DNA Methylation and Sequence Changes Affecting Distinct Sequence Contexts in the Presence of Copper Ions in Induction Medium. Cells 2022, 11, 84. [Google Scholar] [CrossRef]
- Yan, G.; Li, X.; Yang, J.; Li, Z.; Hou, J.; Rao, B.; Hu, Y.; Ma, L.; Wang, Y. Cost-Effective Production of ATP and S-Adenosylmethionine Using Engineered Multidomain Scaffold Proteins. Biomolecules 2021, 11, 1706. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.; Geresh, S.; Whitesides, G.M. Enzymatic synthesis of S-adenosyl-L-methionine from L-methionine and ATP. Appl. Biochem. Biotechnol. 1983, 8, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Mansilla, N.; Racca, S.; Gras, D.E.; Gonzalez, D.H.; Welchen, E. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants. Int. J. Mol. Sci. 2018, 19, 662. [Google Scholar] [CrossRef]
- Fukumoto, K.; Ito, K.; Saer, B.; Taylor, G.; Ye, S.; Yamano, M.; Toriba, Y.; Hayes, A.; Okamura, H.; Fustin, J.-M. Excess S-adenosylmethionine inhibits methylation via catabolism to adenine. Commun. Biol. 2022, 5, 313. [Google Scholar] [CrossRef]
- Temple, H.; Phyo, P.; Yang, W.; Lyczakowski, J.J.; Echevarría-Poza, A.; Yakunin, I.; Parra-Rojas, J.P.; Terrett, O.M.; Saez-Aguayo, S.; Dupree, R.; et al. Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. Nat. Plants 2022, 8, 656–669. [Google Scholar] [CrossRef]
- Shima, H.; Matsumoto, M.; Ishigami, Y.; Ebina, M.; Muto, A.; Sato, Y.; Kumagai, S.; Ochiai, K.; Suzuki, T.; Igarashi, K. S-Adenosylmethionine Synthesis Is Regulated by Selective N6-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1. Cell Rep. 2017, 21, 3354–3363. [Google Scholar] [CrossRef] [Green Version]
- Bélanger, S.; Marchand, S.; Jacques, P.-É.; Meyers, B.; Belzile, F. Differential Expression Profiling of Microspores During the Early Stages of Isolated Microspore Culture Using the Responsive Barley Cultivar Gobernadora. G3 Genes|Genomes|Genet 2018, 8, 1603–1614. [Google Scholar] [CrossRef] [Green Version]
- Camacho-Fernández, C.; Seguí-Simarro, J.M.; Mir, R.; Boutilier, K.; Corral-Martínez, P. Cell Wall Composition and Structure Define the Developmental Fate of Embryogenic Microspores in Brassica napus. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef]
- Vithanage, H.I.; Gleeson, P.A.; Clarke, A.E. The nature of callose produced during self-pollination in Secale cereale. Planta 1980, 148, 498–509. [Google Scholar] [CrossRef]
- Parra-Vega, V.; Corral-Martínez, P.; Rivas-Sendra, A.; Seguí-Simarro, J.M. Induction of Embryogenesis in Brassica Napus Microspores Produces a Callosic Subintinal Layer and Abnormal Cell Walls with Altered Levels of Callose and Cellulose. Front. Plant Sci. 2015, 6, 1018. [Google Scholar] [CrossRef] [Green Version]
- Rivas-Sendra, A.; Corral-Martínez, P.; Porcel, R.; Camacho-Fernández, C.; Calabuig-Serna, A.; Seguí-Simarro, J.M. Embryogenic competence of microspores is associated with their ability to form a callosic, osmoprotective subintinal layer. J. Exp. Bot. 2019, 70, 1267–1281. [Google Scholar] [CrossRef] [Green Version]
- Roulin, S.; Buchala, A.J.; Fincher, G.B. Induction of (1→3,1→4)-β-D-glucan hydrolases in leaves of dark-incubated barley seedlings. Planta 2002, 215, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Horn, S.J.; Vaaje-Kolstad, G.; Westereng, B.; Eijsink, V.G. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 2012, 5, 45. [Google Scholar] [CrossRef]
- Burton, R.A.; Fincher, G.B. (1,3;1,4)-β-D-Glucans in Cell Walls of the Poaceae, Lower Plants, and Fungi: A Tale of Two Linkages. Mol. Plant 2009, 2, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Gibeaut, D.M.; Pauly, M.; Bacic, A.; Fincher, G.B. Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles. Planta 2005, 221, 729–738. [Google Scholar] [CrossRef]
- Fernie, A.R.; Carrari, F.; Sweetlove, L.J. Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 2004, 7, 254–261. [Google Scholar] [CrossRef]
- Saffer, A.M. Expanding roles for pectins in plant development. J. Integr. Plant Biol. 2018, 60, 910–923. [Google Scholar] [CrossRef]
- Ropartz, D.; Ralet, M.-C. Pectin structure. In Pectin: Technological and Physiological Properties; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–36. [Google Scholar]
- Shin, Y.; Chane, A.; Jung, M.; Lee, Y. Recent Advances in Understanding the Roles of Pectin as an Active Participant in Plant Signaling Networks. Plants 2021, 10, 1712. [Google Scholar] [CrossRef]
- Daher, F.B.; Braybrook, S.A. How to let go: Pectin and plant cell adhesion. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Kohorn, B.D. Cell wall-associated kinases and pectin perception. J. Exp. Bot. 2015, 67, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.T. We be jammin’: An update on pectin biosynthesis, trafficking and dynamics. J. Exp. Bot. 2015, 67, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Di Matteo, A.; Sacco, A.; Anacleria, M.; Pezzotti, M.; Delledonne, M.; Ferrarini, A.; Frusciante, L.; Barone, A. The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biol. 2010, 10, 163. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H.; Pellny, T.K.; Locato, V.; De Gara, L. Analysis of Redox Relationships in the Plant Cell Cycle: Determinations of Ascorbate, Glutathione and Poly (ADPribose) Polymerase (PARP) in Plant Cell Cultures. In Redox-Mediated Signal Transduction: Methods and Protocols; Hancock, J.T., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 193–209. [Google Scholar]
- Fukushima, A.; Iwasa, M.; Nakabayashi, R.; Kobayashi, M.; Nishizawa, T.; Okazaki, Y.; Saito, K.; Kusano, M. Effects of Combined Low Glutathione with Mild Oxidative and Low Phosphorus Stress on the Metabolism of Arabidopsis thaliana. Front. Plant Sci. 2017, 8, 1464. [Google Scholar] [CrossRef]
- Cenigaonandia-Campillo, A.; Serna-Blasco, R.; Gómez-Ocabo, L.; Solanes-Casado, S.; Baños-Herraiz, N.; Puerto-Nevado, L.D.; Cañas, J.A.; Aceñero, M.J.; García-Foncillas, J.; Aguilera, Ó. Vitamin C activates pyruvate dehydrogenase (PDH) targeting the mitochondrial tricarboxylic acid (TCA) cycle in hypoxic KRAS mutant colon cancer. Theranostics 2021, 11, 3595–3606. [Google Scholar] [CrossRef]
- Asad, J.; Hidemitsu, N.; Hirokazu, H.; Hiroaki, I.; Hiroshi, M.; Setsuko, K. Gibberellin Regulates Mitochondrial Pyruvate Dehydrogenase Activity in Rice. Plant Cell Physiol. 2006, 47, 244–253. [Google Scholar] [CrossRef]
- Palin, R.; Geitmann, A. The role of pectin in plant morphogenesis. Biosystems 2012, 109, 397–402. [Google Scholar] [CrossRef]
- Qi, J.; Wu, B.; Feng, S.; Lü, S.; Guan, C.; Zhang, X.; Qiu, D.; Hu, Y.; Zhou, Y.; Li, C.; et al. Mechanical regulation of organ asymmetry in leaves. Nat. Plants 2017, 3, 724–733. [Google Scholar] [CrossRef] [Green Version]
- Bartoli, C.G.; Buet, A.; Gergoff Grozeff, G.; Galatro, A.; Simontacchi, M. Ascorbate-Glutathione Cycle and Abiotic Stress Tolerance in Plants. In Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Hossain, M.A., Munné-Bosch, S., Burritt, D.J., Diaz-Vivancos, P., Fujita, M., Lorence, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 177–200. [Google Scholar]
- Foyer, C.H.; Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Young, R.E.; McFarlane, H.E.; Hahn, M.G.; Western, T.L.; Haughn, G.W.; Samuels, A.L. Analysis of the Golgi Apparatus in Arabidopsis Seed Coat Cells during Polarized Secretion of Pectin-Rich Mucilage. Plant Cell 2008, 20, 1623–1638. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, J.J.; Xu, J. Increasing differentiation frequencies in wheat pollen callus. In Cell and Tissue Culture Techniques for Cereal Crop Improvement; Hu, H., Vega, M.R., Eds.; Science Press: Beijing, China, 1983; p. 431. [Google Scholar]
- Chu, C.C. The N6 medium and its applications to anther culture of cereal crops. In Proceedings of Symposium on Plant Tissue Culture; Hu, H., Ed.; Science Press: Peking, China, 1978; pp. 43–50. [Google Scholar]
- Hanson, B.A. ChemoSpec: Exploratory Chemometrics for Spectroscopy; R Package Version 4.4.97; DePauw University: Greencastle, IN, USA, 2017; Available online: https://CRAN.R-project.org/package=ChemoSpec (accessed on 12 December 2017).
- R Core Team, R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project.org (accessed on 31 March 2021).
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- IBMCorp. IBM SPSS Statistics for Windows, 28.0.0; IBMCorp: Amronk, NY, USA, 2021. [Google Scholar]
- Arbuckle, J.L. Amos, Version 27.0; IBM SPSS: Chicago, IL, USA, 2014. [Google Scholar]
- Taboga, M. Lectures on Probability Theory and Mathematical Statistics; CreateSpace Independent Publishing Platform: North Charleston, SC, USA, 2012. [Google Scholar]
- MacCallum, R.C.; Browne, M.W.; Sugawara, H.M. Power analysis and determination of sample size for covariance structure modeling. Psychol. Methods 1996, 1, 130–149. [Google Scholar] [CrossRef]
- Kenny, D.A.; McCoach, D.B. Effect of the Number of Variables on Measures of Fit in Structural Equation Modeling. Struct. Equ. Modeling A Multidiscip. J. 2003, 10, 333–351. [Google Scholar] [CrossRef]
- Orłowska, R. Triticale doubled haploid plant regeneration factors linked by structural equation modeling. J. Appl. Genet. 2022, 63, 677–690. [Google Scholar] [CrossRef]
- Pawełkowicz, M.E.; Skarzyńska, A.; Mróz, T.; Bystrzycki, E.; Pląder, W. Molecular insight into somaclonal variation phenomena from transcriptome profiling of cucumber (Cucumis sativus L.) lines. Plant Cell Tissue Organ Cult. (PCTOC) 2021, 145, 239–259. [Google Scholar] [CrossRef]
- Filipecki, M.; Wiśniewska, A.; Yin, Z.; Malepszy, S. The heritable changes in metabolic profiles of plants regenerated in different types of in vitro culture. Plant Cell Tissue Organ Cult. 2005, 82, 349–356. [Google Scholar] [CrossRef]
- Orłowska, R.; Machczyńska, J.; Oleszczuk, S.; Zimny, J.; Bednarek, P.T. DNA methylation changes and TE activity induced in tissue cultures of barley (Hordeum vulgare L.). J. Biol. Res. (Thessalon. Greece) 2016, 23, 19. [Google Scholar] [CrossRef] [Green Version]
- Pachota, K.A.; Orłowska, R. Effect of copper and silver ions on sequence and DNA methylation changes in triticale regenerants gained via somatic embryogenesis. J. Appl. Genet. 2022, 63, 663–675. [Google Scholar] [CrossRef]
- Wang, N.; Yu, Y.; Zhang, D.; Zhang, Z.; Wang, Z.; Xun, H.; Li, G.; Liu, B.; Zhang, J. Modification of Gene Expression, DNA Methylation and Small RNAs Expression in Rice Plants under In Vitro Culture. Agronomy 2022, 12, 1675. [Google Scholar] [CrossRef]
- Pattyn, J.; Vaughan-Hirsch, J.; Van de Poel, B. The regulation of ethylene biosynthesis: A complex multilevel control circuitry. New Phytol. 2021, 229, 770–782. [Google Scholar] [CrossRef]
- Chiang, P.K.; Gordon, R.K.; Tal, J.; Zeng, G.C.; Doctor, B.P.; Pardhasaradhi, K.; McCann, P.P. S-Adenosylmetionine and methylation. FASEB J. 1996, 10, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Bednarek, P.T.; Orłowska, R. CG demethylation leads to sequence mutations in an anther culture of barley due to the presence of Cu, Ag ions in the medium and culture time. Int. J. Mol. Sci. 2020, 21, 4401. [Google Scholar] [CrossRef]
- Li, D.; Calderone, R. Exploiting mitochondria as targets for the development of new antifungals. Virulence 2017, 8, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Langenaeken, N.A.; Ieven, P.; Hedlund, E.G.; Kyomugasho, C.; van de Walle, D.; Dewettinck, K.; Van Loey, A.M.; Roeffaers, M.B.J.; Courtin, C.M. Arabinoxylan, β-glucan and pectin in barley and malt endosperm cell walls: A microstructure study using CLSM and cryo-SEM. Plant J. 2020, 103, 1477–1489. [Google Scholar] [CrossRef]
- Henrion, M.; Francey, C.; Lê, K.-A.; Lamothe, L. Cereal B-Glucans: The Impact of Processing and How It Affects Physiological Responses. Nutrients 2019, 11, 1729. [Google Scholar] [CrossRef] [Green Version]
- Wood, P.J. REVIEW: Oat and Rye β-Glucan: Properties and Function. Cereal Chem. 2010, 87, 315–330. [Google Scholar] [CrossRef]
- Šandula, J.; Kogan, G.; Kačuráková, M.; Machová, E. Microbial (1→3)-β-d-glucans, their preparation, physico-chemical characterization and immunomodulatory activity. Carbohydr. Polym. 1999, 38, 247–253. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Zhang, S.; Gao, Q.; Lu, Q.; Peng, R.; Xu, P.; Shang, H.; Yuan, Y.; Zou, H. Micro-FTIR combined with curve fitting method to study cellulose crystallinity of developing cotton fibers. Anal. Bioanal. Chem. 2021, 413, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.Q.; Hu, X.; Wang, B.; Ai, L. Polysaccharides: Structure and Solubility. In Solubility of Polysaccharides; Zhenbo, X., Ed.; IntechOpen: Rijeka, Croatia, 2017; p. Ch. 2. [Google Scholar]
- Szymanska-Chargot, M.; Zdunek, A. Use of FT-IR Spectra and PCA to the Bulk Characterization of Cell Wall Residues of Fruits and Vegetables Along a Fraction Process. Food Biophys. 2013, 8, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Bidhendi, A.J.; Geitmann, A. Relating the mechanics of the primary plant cell wall to morphogenesis. J. Exp. Bot. 2016, 67, 449–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, M.; Cheung, A.Y.; Hepler, P.K. Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol. 2005, 138, 1334–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peaucelle, A.; Wightman, R.; Höfte, H. The Control of Growth Symmetry Breaking in the Arabidopsis Hypocotyl. Curr. Biol. 2015, 25, 1746–1752. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wilson, L.; Cosgrove, D.J. Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep. J. Exp. Bot. 2020, 71, 2629–2640. [Google Scholar] [CrossRef] [Green Version]
- Haas, K.T.; Wightman, R.; Meyerowitz, E.M.; Peaucelle, A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 2020, 367, 1003–1007. [Google Scholar] [CrossRef]
- Knudsen, K.E.B. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets1. Poult. Sci. 2014, 93, 2380–2393. [Google Scholar] [CrossRef]
- Theander, O.; Westerlund, E.; Åman, P.; Graham, H. Plant cell walls and monogastric diets. Anim. Feed Sci. Technol. 1989, 23, 205–225. [Google Scholar] [CrossRef]
- Zieliński, K.; Krzewska, M.; Żur, I.; Juzoń, K.; Kopeć, P.; Nowicka, A.; Moravčiková, J.; Skrzypek, E.; Dubas, E. The effect of glutathione and mannitol on androgenesis in anther and isolated microspore cultures of rye (Secale cereale L.). Plant Cell Tissue Organ Cult. 2020, 140, 577–592. [Google Scholar] [CrossRef] [Green Version]
- Kudełko, K.; Gaj, M.D. Glutathione (GSH) induces embryogenic response in in vitro cultured explants of Arabidopsis thaliana via auxin-related mechanism. Plant Growth Regul. 2019, 89, 25–36. [Google Scholar] [CrossRef]
Trial | In Vitro Anther Culture Conditions | GSH 1 (2550_2540 cm−1) | SAM (1630_1590 + 1490_1470 = 1630…1470 cm−1) | β-Glucans?/ Pectins? (990_950 cm−1) | GPRE | ||
---|---|---|---|---|---|---|---|
Cu (μM) | Ag (μM) | Time (Days) | |||||
A | 0.1 | 10 | 42 | 0.004591 | 3.40998 | 0.42449 | 0.87 |
0.1 | 10 | 42 | 0.004940 | 3.68581 | 0.46012 | 0.87 | |
0.1 | 10 | 42 | 0.005324 | 4.25217 | 0.42903 | 0.87 | |
B | 0.1 | 60 | 49 | 0.004879 | 3.2412 | 0.53629 | 1.52 |
0.1 | 60 | 49 | 0.005120 | 3.99229 | 0.70485 | 1.52 | |
0.1 | 60 | 49 | 0.005144 | 3.96066 | 0.63372 | 1.52 | |
0.1 | 60 | 49 | 0.004353 | 3.26579 | 0.54054 | 1.52 | |
0.1 | 60 | 49 | 0.004985 | 3.84068 | 0.52415 | 1.52 | |
C | 5 | 60 | 42 | 0.004768 | 4.32409 | 0.48983 | 0.71 |
5 | 60 | 42 | 0.005038 | 4.26221 | 0.51636 | 0.71 | |
5 | 60 | 42 | 0.004120 | 3.35044 | 0.39522 | 0.71 | |
D | 5 | 0 | 49 | 0.005176 | 4.34178 | 0.59499 | 2.38 |
5 | 0 | 49 | 0.005264 | 4.22150 | 0.54191 | 2.38 | |
5 | 0 | 49 | 0.005502 | 3.97269 | 0.35829 | 2.38 | |
5 | 0 | 49 | 0.006040 | 4.60325 | 0.61184 | 2.38 | |
5 | 0 | 49 | 0.005451 | 4.01752 | 0.47999 | 2.38 | |
5 | 0 | 49 | 0.005293 | 3.98898 | 0.41253 | 2.38 | |
5 | 0 | 49 | 0.005133 | 4.26056 | 0.48079 | 2.38 | |
5 | 0 | 49 | 0.005520 | 4.61482 | 0.54557 | 2.38 | |
5 | 0 | 49 | 0.004793 | 4.18367 | 0.55962 | 2.38 | |
5 | 0 | 49 | 0.005358 | 4.54641 | 0.71383 | 2.38 | |
E | 5 | 10 | 35 | 0.004881 | 4.24147 | 0.63052 | 1.17 |
5 | 10 | 35 | 0.004362 | 3.52101 | 0.59939 | 1.17 | |
5 | 10 | 35 | 0.004652 | 3.75418 | 0.70079 | 1.17 | |
5 | 10 | 35 | 0.005249 | 4.08202 | 0.62406 | 1.17 | |
5 | 10 | 35 | 0.005302 | 4.18035 | 0.94729 | 1.17 | |
F | 10 | 10 | 49 | 0.005046 | 3.31130 | 0.42781 | 3.79 |
10 | 10 | 49 | 0.005121 | 3.33494 | 0.43148 | 3.79 | |
10 | 10 | 49 | 0.005566 | 3.64536 | 0.47079 | 3.79 | |
G | 10 | 60 | 35 | 0.005394 | 4.52669 | 0.69809 | 4.24 |
10 | 60 | 35 | 0.005685 | 4.41428 | 0.70797 | 4.24 | |
10 | 60 | 35 | 0.005823 | 4.65225 | 0.68606 | 4.24 | |
10 | 60 | 35 | 0.005085 | 3.92419 | 0.66115 | 4.24 | |
H | 10 | 0 | 42 | 0.005692 | 4.26782 | 0.45602 | 6.06 |
10 | 0 | 42 | 0.005502 | 3.86516 | 0.44444 | 6.06 | |
10 | 0 | 42 | 0.004594 | 2.65280 | 0.51390 | 6.06 | |
10 | 0 | 42 | 0.005502 | 3.87212 | 0.44032 | 6.06 | |
Means | 0.005142 | 3.961688 | 0.551190 | 2.56 | |||
SD | 0.000425 | 0.463502 | 0.122311 | 1.66 |
Variables | Mean | SD 1 | Variance | Skewness | Kurtosis |
---|---|---|---|---|---|
[Cu(II)] | 5.4270 | 3.5759 | 12.787 | −0.102 | −1.008 |
[Ag(I)] | 22.4324 | 26.7089 | 713.363 | 0.704 | −1.480 |
[Time] | 43.7027 | 5.8112 | 33.770 | −0.495 | −1.371 |
[1630...1470] | 3.9617 | 0.4635 | 0.215 | −0.709 | 0.278 |
[2550_2540] | 0.0051 | 0.0004 | 0.000 | −0.351 | 0.054 |
[990_950] | 0.5512 | 0.1223 | 0.015 | 0.951 | 1.406 |
[GPRE] | 2.5563 | 1.6589 | 2.752 | 0.932 | −0.122 |
Variables | [Cu(II)] | [Ag(I)] | [Time] | [1630...1470] | [2550_2540] | [990_950] | [GPRE] |
---|---|---|---|---|---|---|---|
[Cu(II)] | 1 | ||||||
[Ag(I)] | −0.181 | 1 | |||||
[Time] | −0.312 | −0.203 | 1 | ||||
[1630...1470] | 0.075 | −0.020 | −0.116 | 1 | |||
[2550_2540] | 0.385 * | −0.229 | 0.081 | 0.650 ** | 1 | ||
[990_950] | 0.009 | 0.252 | −0.451 ** | 0.388 * | 0.137 | 1 | |
[GPRE] | 0.807 ** | −0.201 | −0.061 | −0.052 | 0.461 ** | −0.117 | 1 |
Statistics | Goodness-of-Fit Statistics | |
---|---|---|
Ad hoc indices of fit | Chi-square (χ2) | 1.4658 |
Degree of freedom (df) | 3 | |
p-value (p) | 0.6902 | |
CMIN(χ2)/df | 0.4886 | |
Root Mean Square Residual (RMR) | 0.0354 | |
Standardized RMR (SRMS) | 0.0448 | |
Goodness-of-fit index (GFI) | 0.9842 | |
Adjusted Goodness-of-fit Index (AGFI) | 0.9211 | |
Parsimony GFI (PGFI) | 0.1968 | |
Comparative or incremental indices of fit | Normed Fit Index (NFI) | 0.9833 |
Relative Fit Index (RFI) | 0.9443 | |
Incremental Fit Index (IFI) | 1.0181 | |
Tucker-Lewis Index (TLI) | 1.0658 | |
Comparative Fit Index (CFI) | 1 | |
Model parsimony | PRATIO | 0.3 |
PNFI | 0.295 | |
PCFI | 0.3 | |
Error approximation index | Root Mean Square Error of Approximation (RMSEA) | 0 |
PCLOSE | 0.7194 | |
Expected Cross-Validation Index (ECVI) | 0.7074 | |
Hoelter’s Critical N (0.5) | 192 |
Parameter | Effect | Estimate (b) | Standard Error | Test Statistic | Standardized Estimate (β) | ||
---|---|---|---|---|---|---|---|
Path coefficients | |||||||
λ1 | [990_950] | → | [1630…1470] | 1.4717 | 0.582 | 2.5287 * | 0.3884 |
λ2 | [Cu(II)] | → | [2550_2540] | 0 | 0 | 2.9726 ** | 0.3437 |
λ3 | [1630...1470] | → | [2550_2540] | 0.0006 | 0.0001 | 5.4822 *** | 0.6339 |
λ4 | [Cu(II)] | → | [GPRE] | 0.304 | 0.0416 | 7.3094 *** | 0.6511 |
λ5 | [2550_2540] | → | [GPRE] | 1850.4849 | 459.0907 | 4.0308 *** | 0.4638 |
λ6 | [1630...1470] | → | [GPRE] | −1.4651 | 0.3895 | −3.7613 *** | −0.4067 |
Covariances | |||||||
Cu(II) | ←→ | [F990_950] | 0.0038 | 0.0709 | 0.0536 | ||
Variances | |||||||
δ1 | 0.1775 | 0.0418 | 4.2426 *** | ||||
δ2 | 0 | 0 | 4.2426 *** | ||||
δ3 | 0.6188 | 0.1458 | 4.2426 *** | ||||
[Cu(II)] | 12.4414 | 2.9325 | 4.2426 *** | ||||
[990_950] | 0.0146 | 0.0034 | 4.2426 *** |
Effect | Estimates (b) | Standardized Estimates (β) | ||||||
---|---|---|---|---|---|---|---|---|
Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | Total Effect | |||
[GPRE] | ||||||||
[990_950] | → | [GPRE] | 0 | −0.598 | −0.598 | 0 | −0.044 | −0.044 |
[Cu(II)] | → | [GPRE] | 0.304 | 0.0744 | 0.3785 | 0.6511 | 0.1594 | 0.8105 |
[1630…1470] | → | [GPRE] | −1.465 | 1.059 | −0.406 | −0.407 | 0.294 | −0.113 |
[2550_2540] | → | [GPRE] | 1850.5 | 0 | 1850.5 | 0.4638 | 0 | 0.4638 |
[2550_2540] (GSH) | ||||||||
[990_950] | → | [2550_2540] | 0 | 0.0008 | 0.0008 | 0 | 0.2462 | 0.2462 |
[Cu(II)] | → | [2550_2540] | 0 | 0 | 0 | 0.3437 | 0 | 0.3437 |
[1630…1470] | → | [2550_2540] | 0.0006 | 0 | 0.0006 | 0.6339 | 0 | 0.6339 |
[1630…1470] (SAM) | ||||||||
[990_950] | → | [1630…1470] | 1.4717 | 0 | 1.4717 | 0.3884 | 0 | 0.3884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orłowska, R.; Zebrowski, J.; Dynkowska, W.M.; Androsiuk, P.; Bednarek, P.T. Metabolomic Changes as Key Factors of Green Plant Regeneration Efficiency of Triticale In Vitro Anther Culture. Cells 2023, 12, 163. https://doi.org/10.3390/cells12010163
Orłowska R, Zebrowski J, Dynkowska WM, Androsiuk P, Bednarek PT. Metabolomic Changes as Key Factors of Green Plant Regeneration Efficiency of Triticale In Vitro Anther Culture. Cells. 2023; 12(1):163. https://doi.org/10.3390/cells12010163
Chicago/Turabian StyleOrłowska, Renata, Jacek Zebrowski, Wioletta Monika Dynkowska, Piotr Androsiuk, and Piotr Tomasz Bednarek. 2023. "Metabolomic Changes as Key Factors of Green Plant Regeneration Efficiency of Triticale In Vitro Anther Culture" Cells 12, no. 1: 163. https://doi.org/10.3390/cells12010163
APA StyleOrłowska, R., Zebrowski, J., Dynkowska, W. M., Androsiuk, P., & Bednarek, P. T. (2023). Metabolomic Changes as Key Factors of Green Plant Regeneration Efficiency of Triticale In Vitro Anther Culture. Cells, 12(1), 163. https://doi.org/10.3390/cells12010163