Cytokine-Induced Myeloid-Derived Suppressor Cells Demonstrate Their Immunoregulatory Functions to Prolong the Survival of Diabetic Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mouse Models
2.2. Culture of cMDSCs
2.3. cMDSCs Cotransplanted with Immunized Splenic T Cells into NOD–SCID Mice
2.4. Flow Cytometry Analysis
2.5. Quantitative Reverse Transcription Polymerase Chain Reaction
2.6. Immunofluorescence Staining and Confocal Microscopy
2.7. Immunohistochemistry
2.8. Blood and Urine Analysis
2.9. Statistical Analysis
3. Results
3.1. Spontaneous Pancreatic Insulitis and Renal Glomerulosclerosis in NOD Mice
3.2. MDSCs Differentiated from GM-CSF, IL-6, and IL-1β Cytokines Displayed Potent Immunosuppressive Activity
3.3. Application of cMDSCs Reduced Renal Fibronectin Production and Improved Pancreatic Insulitis to Prolong Diabetes-Free Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Atkinson, M.-A.; Eisenbarth, G.-S.; Michels, A.-W. Type 1 Diabetes. Lancet 2014, 383, 69–82. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Burrack, A.-L.; Martinov, T.; Fife, B.-T. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front. Endocrinol. 2017, 8, 343. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Atkinson, M.-A.; Maclaren, N.-K. The Pathogenesis of Insulin-Dependent Diabetes Mellitus. N. Engl. J. Med. 1994, 331, 1428–1436. [Google Scholar] [CrossRef] [PubMed]
- Gabrilovich, D.-I.; Nagaraj, S. Myeloid-Derived Suppressor Cells as Regulators of the Immune System. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef][Green Version]
- Gabrilovich, D.-I. Myeloid-Derived Suppressor Cells. Cancer Immunol. Res. 2017, 5, 3–8. [Google Scholar] [CrossRef][Green Version]
- Kusmartsev, S.; Nefedova, Y.; Yoder, D.; Gabrilovich, D.-I. Antigen-Specific Inhibition of CD8+ T Cell Response by Immature Myeloid Cells in Cancer Is Mediated by Reactive Oxygen Species. J. Immunol. 2004, 172, 989–999. [Google Scholar] [CrossRef][Green Version]
- Ochoa, A.-C.; Zea, A.-H.; Hernandez, C.; Rodriguez, P.-C. Arginase, Prostaglandins, and Myeloid-Derived Suppressor Cells in Renal Cell Carcinoma. Clin. Cancer Res. 2007, 13, 721s–726s. [Google Scholar] [CrossRef][Green Version]
- Almand, B.; Clark, J.-I.; Nikitina, E.; van Beynen, J.; English, N.-R.; Knight, S.-C.; Carbone, D.-P.; Gabrilovich, D.-I. Increased Production of Immature Myeloid Cells in Cancer Patients: A Mechanism of Immunosuppression in Cancer. J. Immunol. 2001, 166, 678–689. [Google Scholar] [CrossRef][Green Version]
- Rodriguez, P.-C.; Hernandez, C.-P.; Quiceno, D.; Dubinett, S.-M.; Zabaleta, J.; Ochoa, J.-B.; Gilbert, J.; Ochoa, A.-C. Arginase I in Myeloid Suppressor Cells Is Induced by COX-2 in Lung Carcinoma. J. Exp. Med. 2005, 202, 931–939. [Google Scholar] [CrossRef][Green Version]
- Rodríguez, P.-C.; Ochoa, A.-C. Arginine Regulation by Myeloid Derived Suppressor Cells and Tolerance in Cancer: Mechanisms and Therapeutic Perspectives. Immunol. Rev. 2008, 222, 180–191. [Google Scholar] [CrossRef][Green Version]
- Kusmartsev, S.; Nagaraj, S.; Gabrilovich, D.-I. Tumor-Associated CD8+ T Cell Tolerance Induced by Bone Marrow-Derived Immature Myeloid Cells. J. Immunol. 2005, 175, 4583–4592. [Google Scholar] [CrossRef][Green Version]
- Agostinelli, E.; Seiler, N. Non-Irradiation-Derived Reactive Oxygen Species (ROS) and Cancer: Therapeutic Implications. Amino Acids 2006, 31, 341–355. [Google Scholar] [CrossRef]
- Yang, R.; Cai, Z.; Zhang, Y.; Yutzy, W.-H.; Roby, K.-F.; Roden, R.-B. CD80 in Immune Suppression by Mouse Ovarian Carcinoma-Associated Gr-1+CD11b+ Myeloid Cells. Cancer Res. 2006, 66, 6807–6815. [Google Scholar] [CrossRef][Green Version]
- Huang, B.; Pan, P.-Y.; Li, Q.; Sato, A.-I.; Levy, D.-E.; Bromberg, J.; Divino, C.M.; Chen, S.-H. Gr-1+CD115+ Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host. Cancer Res. 2006, 66, 1123–1131. [Google Scholar] [CrossRef][Green Version]
- Ostrand-Rosenberg, S.; Fenselau, C. Myeloid-Derived Suppressor Cells: Immune-Suppressive Cells That Impair Antitumor Immunity and Are Sculpted by Their Environment. J. Immunol. 2018, 200, 422–431. [Google Scholar] [CrossRef][Green Version]
- Ruffell, B.; Coussens, L.-M. Macrophages and Therapeutic Resistance in Cancer. Cancer Cell 2015, 27, 462–472. [Google Scholar] [CrossRef][Green Version]
- Law, A.-M.-K.; Valdes-Mora, F.; Gallego-Ortega, D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020, 9, 561. [Google Scholar] [CrossRef][Green Version]
- Corzo, C.-A.; Condamine, T.; Lu, L.; Cotter, M.-J.; Youn, J.-I.; Cheng, P.; Cho, H.-I.; Celis, E.; Quiceno, D.-G.; Padhya, T.; et al. HIF-1α Regulates Function and Differentiation of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. J. Exp. Med. 2010, 207, 2439–2453. [Google Scholar] [CrossRef]
- Lutz, M.-B.; Kukutsch, N.-A.; Menges, M.; Rössner, S.; Schuler, G. Culture of Bone Marrow Cells in GM-CSF plus High Doses of Lipopolysaccharide Generates Exclusively Immature Dendritic Cells Which Induce Alloantigen-Specific CD4 T Cell Anergy in Vitro. Eur. J. Immunol. 2000, 30, 1048–1052. [Google Scholar] [CrossRef]
- Boelte, K.-C.; Gordy, L.-E.; Joyce, S.; Thompson, M.-A.; Yang, L.; Lin, P.-C. Rgs2 Mediates Pro-Angiogenic Function of Myeloid Derived Suppressor Cells in the Tumor Microenvironment via Upregulation of MCP-1. PLoS ONE 2011, 6, e18534. [Google Scholar] [CrossRef]
- Elkabets, M.; Ribeiro, V.-S.-G.; Dinarello, C.-A.; Ostrand-Rosenberg, S.; Di Santo, J.-P.; Apte, R.-N.; Vosshenrich, C.-A.J. IL-1β Regulates a Novel Myeloid-Derived Suppressor Cell Subset That Impairs NK Cell Development and Function. Eur. J. Immunol. 2010, 40, 3347–3357. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.-S.; Hsieh, C.-C.; Yang, H.-R.; Wang, L.; Arakawa, Y.; Brown, K.; Wu, Q.; Lin, F.; Peters, M.; Fung, J.-J.; et al. Hepatic Stellate Cells Regulate Immune Response by Way of Induction of Myeloid Suppressor Cells in Mice. Hepatology 2011, 53, 1007–1019. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hsieh, C.-C.; Chou, H.-S.; Yang, H.-R.; Lin, F.; Bhatt, S.; Qin, J.; Wang, L.; Fung, J.-J.; Qian, S.; Lu, L. The Role of Complement Component 3 (C3) in Differentiation of Myeloid-Derived Suppressor Cells. Blood 2013, 121, 1760–1768. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-T.; Hsieh, C.-C.; Lin, C.-C.; Chen, W.-C.; Hong, J.-H.; Chen, M.-F. Significance of IL-6 in the Transition of Hormone-Resistant Prostate Cancer and the Induction of Myeloid-Derived Suppressor Cells. J. Mol. Med. 2012, 90, 1343–1355. [Google Scholar] [CrossRef]
- Chen, M.-F.; Hsieh, C.-C.; Chen, W.-C.; Lai, C.-H. Role of Interleukin-6 in the Radiation Response of Liver Tumors. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, e621–e630. [Google Scholar] [CrossRef]
- Chen, P.-T.; Hsieh, C.-C.; Wu, C.-T.; Yen, T.-C.; Lin, P.-Y.; Chen, W.-C.; Chen, M.-F. 1α,25-Dihydroxyvitamin D3 Inhibits Esophageal Squamous Cell Carcinoma Progression by Reducing IL6 Signaling. Mol. Cancer Ther. 2015, 14, 1365–1375. [Google Scholar] [CrossRef][Green Version]
- Hsieh, C.-C.; Hung, C.-H.; Chiang, M.; Tsai, Y.-C.; He, J.-T. Hepatic Stellate Cells Enhance Liver Cancer Progression by Inducing Myeloid-Derived Suppressor Cells through Interleukin-6 Signaling. Int. J. Mol. Sci. 2019, 20, 5079. [Google Scholar] [CrossRef][Green Version]
- Lin, W.-Y.; Hsieh, C.-C.; Yang, T.-Y.; Chen, M.-L.; Huang, L.-Y.; Lin, Y.-P.; Chang, P.-J.; Levin, R.-M.; Wei, Y.-H. Transient Increase in Circulating Myeloid-Derived Suppressor Cells after Partial Bladder Outlet Obstruction. J. Urol. 2014, 192, 1569–1573. [Google Scholar] [CrossRef]
- Peng, K.-T.; Hsieh, C.-C.; Huang, T.-Y.; Chen, P.-C.; Shih, H.-N.; Lee, M.-S.; Chang, P.-J. Staphylococcus Aureus Biofilm Elicits the Expansion, Activation and Polarization of Myeloid-Derived Suppressor Cells in Vivo and in Vitro. PLoS ONE 2017, 12, e0183271. [Google Scholar] [CrossRef]
- Titov, A.; Zmievskaya, E.; Ganeeva, I.; Valiullina, A.; Petukhov, A.; Rakhmatullina, A.; Miftakhova, R.; Fainshtein, M.; Rizvanov, A.; Bulatov, E. Adoptive Immunotherapy beyond CAR T-Cells. Cancers 2021, 13, 743. [Google Scholar] [CrossRef]
- Zmievskaya, E.; Valiullina, A.; Ganeeva, I.; Petukhov, A.; Rizvanov, A.; Bulatov, E. Application of CAR-T Cell Therapy beyond Oncology: Autoimmune Diseases and Viral Infections. Biomedicines 2021, 9, 59. [Google Scholar] [CrossRef]
- Das, S.; Shapiro, B.; Vucic, E.-A.; Vogt, S.; Bar-Sagi, D. Tumor Cell-Derived IL1β Promotes Desmoplasia and Immune Suppression in Pancreatic Cancer. Cancer Res. 2020, 80, 1088–1101. [Google Scholar] [CrossRef][Green Version]
- Lechner, M.-G.; Liebertz, D.-J.; Epstein, A.L. Characterization of Cytokine-Induced Myeloid-Derived Suppressor Cells from Normal Human Peripheral Blood Mononuclear Cells. J. Immunol. 2010, 185, 2273–2284. [Google Scholar] [CrossRef][Green Version]
- Chen, Y.-G.; Mathews, C.-E.; Driver, J.-P. The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front. Endocrinol. 2018, 9, 51. [Google Scholar] [CrossRef]
- Melanitou, E.; Devendra, D.; Liu, E.; Miao, D.; Eisenbarth, G.-S. Early and Quantal (by Litter) Expression of Insulin Autoantibodies in the Nonobese Diabetic Mice Predict Early Diabetes Onset. J. Immunol. 2004, 173, 6603–6610. [Google Scholar] [CrossRef][Green Version]
- Al-Awar, A.; Kupai, K.; Veszelka, M.; Szűcs, G.; Attieh, Z.; Murlasits, Z.; Török, S.; Pósa, A.; Varga, C. Experimental Diabetes Mellitus in Different Animal Models. J. Diabetes Res. 2016, 2016, 9051426. [Google Scholar] [CrossRef][Green Version]
- Schieppati, A.; Remuzzi, G. Chronic Renal Diseases as a Public Health Problem: Epidemiology, Social, and Economic Implications. Kidney Int. 2005, 68, S7–S10. [Google Scholar] [CrossRef][Green Version]
- Hsieh, C.-C.; Lin, C.-L.; He, J.-T.; Chiang, M.; Wang, Y.; Tsai, Y.-C.; Hung, C.-H.; Chang, P.-J. Administration of Cytokine-Induced Myeloid-Derived Suppressor Cells Ameliorates Renal Fibrosis in Diabetic Mice. Stem Cell Res. Ther. 2018, 9, 183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.-T.; Lin, C.-L.; Chiang, M.; He, J.-T.; Hung, C.-H.; Hsieh, C.-C. Cytokine-Induced Myeloid-Derived Suppressor Cells Demonstrate Their Immunoregulatory Functions to Prolong the Survival of Diabetic Mice. Cells 2023, 12, 1507. https://doi.org/10.3390/cells12111507
Li T-T, Lin C-L, Chiang M, He J-T, Hung C-H, Hsieh C-C. Cytokine-Induced Myeloid-Derived Suppressor Cells Demonstrate Their Immunoregulatory Functions to Prolong the Survival of Diabetic Mice. Cells. 2023; 12(11):1507. https://doi.org/10.3390/cells12111507
Chicago/Turabian StyleLi, Tung-Teng, Chun-Liang Lin, Meihua Chiang, Jie-Teng He, Chien-Hui Hung, and Ching-Chuan Hsieh. 2023. "Cytokine-Induced Myeloid-Derived Suppressor Cells Demonstrate Their Immunoregulatory Functions to Prolong the Survival of Diabetic Mice" Cells 12, no. 11: 1507. https://doi.org/10.3390/cells12111507
APA StyleLi, T.-T., Lin, C.-L., Chiang, M., He, J.-T., Hung, C.-H., & Hsieh, C.-C. (2023). Cytokine-Induced Myeloid-Derived Suppressor Cells Demonstrate Their Immunoregulatory Functions to Prolong the Survival of Diabetic Mice. Cells, 12(11), 1507. https://doi.org/10.3390/cells12111507