Galanin System in the Human Bile Duct and Perihilar Cholangiocarcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Sample Characteristics
2.3. Clinical Parameters
2.4. Immunohistochemical Staining (IHC)
2.5. Bright Field Microscopy and Slide Scanner
2.6. Image Analysis and Scoring
2.7. Statistical Evaluation
3. Results
3.1. Galanin in Bile Duct Tissue
3.1.1. Cholangiocytes
3.1.2. Arteries, Veins and Capillaries
3.1.3. Muscle Cells, Nerve Fibres, Adipocytes and Connective Tissue
3.2. Galanin 1 Receptor—GAL1-R
3.2.1. Cholangiocytes
3.2.2. Arteries, Veins and Capillaries
3.2.3. Muscle Cells, Nerve Fibres, Adipocytes and Connective Tissue
3.3. Galanin 2 Receptor—GAL2-R
3.3.1. Cholangiocytes
3.3.2. Arteries, Veins and Capillaries
3.3.3. Muscle Cells, Nerve Fibres, Adipocytes and Connective Tissue
3.4. Galanin 3 Receptor—GAL3-R
3.4.1. Cholangiocytes
3.4.2. Arteries, Veins and Capillaries
3.4.3. Muscle Cells, Nerve Fibres, Adipocytes and Connective Tissue
3.5. The Galanin System in pCCA
3.5.1. Galanin
3.5.2. GAL1-R
3.5.3. GAL2-R
3.5.4. GAL3-R
3.6. Correlation of Galanin and Receptor Expression with Clinical Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, A.S.; Dageforde, L.A. Cholangiocarcinoma. Surg. Clin. North Am. 2019, 99, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.M.; Cardinale, V.; Carpino, G.; Marzioni, M.; Andersen, J.B.; Invernizzi, P.; Lind, G.E.; Folseraas, T.; Forbes, S.J.; Fouassier, L.; et al. Expert consensus document: Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 261–280. [Google Scholar] [CrossRef]
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.W.; Borbath, I.; Khan, S.A.; Huguet, F.; Gruenberger, T.; Arnold, D.; Committee, E.G. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, v28–v37. [Google Scholar] [CrossRef]
- Qi, F.; Zhou, B.; Xia, J. Nomograms predict survival outcome of Klatskin tumors patients. PeerJ 2020, 8, e8570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Liu, H. Klatskin Tumor: A Population-Based Study of Incidence and Survival. Med. Sci. Monit. 2019, 25, 4503–4512. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Lim, J.; Han, S.S.; Park, H.M.; Kim, S.W.; Won, Y.J.; Park, S.J. Impact of changes in the topographic classification of Klatskin tumor on incidence of intra- and extrahepatic bile duct cancer: A population-based national cancer registry study. J. Hepatobiliary Pancreat. Sci. 2021, 28, 740–750. [Google Scholar] [CrossRef]
- Fouassier, L.; Marzioni, M.; Afonso, M.B.; Dooley, S.; Gaston, K.; Giannelli, G.; Rodrigues, C.M.P.; Lozano, E.; Mancarella, S.; Segatto, O.; et al. Signalling networks in cholangiocarcinoma: Molecular pathogenesis, targeted therapies and drug resistance. Liver Int. 2019, 39 (Suppl. 1), 43–62. [Google Scholar] [CrossRef] [Green Version]
- Labib, P.L.; Goodchild, G.; Pereira, S.P. Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer 2019, 19, 185. [Google Scholar] [CrossRef] [Green Version]
- Sha, M.; Cao, J.; Sun, H.Y.; Tong, Y.; Xia, Q. Neuroendocrine regulation of cholangiocarcinoma: A status quo review. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 66–73. [Google Scholar] [CrossRef]
- Marzioni, M.; Glaser, S.; Francis, H.; Marucci, L.; Benedetti, A.; Alvaro, D.; Taffetani, S.; Ueno, Y.; Roskams, T.; Phinizy, J.L.; et al. Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology 2005, 128, 121–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laothong, U.; Hiraku, Y.; Oikawa, S.; Intuyod, K.; Murata, M.; Pinlaor, S. Melatonin induces apoptosis in cholangiocarcinoma cell lines by activating the reactive oxygen species-mediated mitochondrial pathway. Oncol. Rep. 2015, 33, 1443–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancino, A.; Mancino, M.G.; Glaser, S.S.; Alpini, G.; Bolognese, A.; Izzo, L.; Francis, H.; Onori, P.; Franchitto, A.; Ginanni-Corradini, S.; et al. Estrogens stimulate the proliferation of human cholangiocarcinoma by inducing the expression and secretion of vascular endothelial growth factor. Dig. Liver Dis. 2009, 41, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, L.; Scrushy, M.; Meng, F.; Lairmore, T.C.; Alpini, G.; Glaser, S. Biliary epithelium: A neuroendocrine compartment in cholestatic liver disease. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 296–305. [Google Scholar] [CrossRef]
- Tatemoto, K.; Rokaeus, A.; Jornvall, H.; McDonald, T.J.; Mutt, V. Galanin—A novel biologically active peptide from porcine intestine. FEBS Lett. 1983, 164, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.; Gundlach, A.L.; Holmes, F.E.; Hobson, S.A.; Wynick, D.; Hokfelt, T.; Kofler, B. Physiology, signaling, and pharmacology of galanin peptides and receptors: Three decades of emerging diversity. Pharmacol. Rev. 2015, 67, 118–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, W.E.; Kratzin, H.; Eckart, K.; Drevs, D.; Mundkowski, G.; Clemens, A.; Katsoulis, S.; Schafer, H.; Gallwitz, B.; Creutzfeldt, W. Isolation and primary structure of pituitary human galanin, a 30-residue nonamidated neuropeptide. Proc. Natl. Acad. Sci. USA 1991, 88, 11435–11439. [Google Scholar] [CrossRef] [Green Version]
- Evans, H.; Baumgartner, M.; Shine, J.; Herzog, H. Genomic organization and localization of the gene encoding human preprogalanin. Genomics 1993, 18, 473–477. [Google Scholar] [CrossRef]
- Evans, H.F.; Shine, J. Human galanin: Molecular cloning reveals a unique structure. Endocrinology 1991, 129, 1682–1684. [Google Scholar] [CrossRef]
- Rokaeus, A.; Jiang, K.; Spyrou, G.; Waschek, J.A. Transcriptional control of the galanin gene. Tissue-specific expression and induction by NGF, protein kinase C, and estrogen. Ann. N. Y. Acad. Sci. 1998, 863, 1–13. [Google Scholar] [CrossRef]
- Rokaeus, A.; Pruss, R.M.; Eiden, L.E. Galanin gene expression in chromaffin cells is controlled by calcium and protein kinase signaling pathways. Endocrinology 1990, 127, 3096–3102. [Google Scholar] [CrossRef] [PubMed]
- Habert-Ortoli, E.; Amiranoff, B.; Loquet, I.; Laburthe, M.; Mayaux, J.F. Molecular cloning of a functional human galanin receptor. Proc. Natl. Acad. Sci. USA 1994, 91, 9780–9783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolakowski, L.F., Jr.; O’Neill, G.P.; Howard, A.D.; Broussard, S.R.; Sullivan, K.A.; Feighner, S.D.; Sawzdargo, M.; Nguyen, T.; Kargman, S.; Shiao, L.L.; et al. Molecular characterization and expression of cloned human galanin receptors GALR2 and GALR3. J. Neurochem. 1998, 71, 2239–2251. [Google Scholar] [CrossRef]
- Berger, A.; Lang, R.; Moritz, K.; Santic, R.; Hermann, A.; Sperl, W.; Kofler, B. Galanin receptor subtype GalR2 mediates apoptosis in SH-SY5Y neuroblastoma cells. Endocrinology 2004, 145, 500–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, A.; Santic, R.; Hauser-Kronberger, C.; Schilling, F.H.; Kogner, P.; Ratschek, M.; Gamper, A.; Jones, N.; Sperl, W.; Kofler, B. Galanin and galanin receptors in human cancers. Neuropeptides 2005, 39, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Gilaberte, Y.; Vera, J.; Coscojuela, C.; Roca, M.J.; Parrado, C.; Gonzalez, S. Expression of galanin in melanocytic tumors. Actas Dermosifiliogr. 2007, 98, 24–34. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kee, M.K.; Chong, S.A.; Nam, M.J. Galanin is up-regulated in colon adenocarcinoma. Cancer Epidemiol. Biomark. Prev. 2007, 16, 2373–2378. [Google Scholar] [CrossRef] [Green Version]
- Rauch, I.; Kofler, B. The galanin system in cancer. Exp. Suppl. 2010, 102, 223–241. [Google Scholar] [CrossRef]
- Sugimoto, T.; Seki, N.; Shimizu, S.; Kikkawa, N.; Tsukada, J.; Shimada, H.; Sasaki, K.; Hanazawa, T.; Okamoto, Y.; Hata, A. The galanin signaling cascade is a candidate pathway regulating oncogenesis in human squamous cell carcinoma. Genes Chromosomes Cancer 2009, 48, 132–142. [Google Scholar] [CrossRef]
- Stevenson, L.; Allen, W.L.; Turkington, R.; Jithesh, P.V.; Proutski, I.; Stewart, G.; Lenz, H.J.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Identification of galanin and its receptor GalR1 as novel determinants of resistance to chemotherapy and potential biomarkers in colorectal cancer. Clin. Cancer Res. 2012, 18, 5412–5426. [Google Scholar] [CrossRef] [Green Version]
- Kiezun, J.; Godlewski, J.; Krazinski, B.E.; Kozielec, Z.; Kmiec, Z. Galanin Receptors (GalR1, GalR2, and GalR3) Expression in Colorectal Cancer Tissue and Correlations to the Overall Survival and Poor Prognosis of CRC Patients. Int. J. Mol. Sci. 2022, 23, 3735. [Google Scholar] [CrossRef]
- Kiezun, J.; Kiezun, M.; Krazinski, B.E.; Paukszto, L.; Koprowicz-Wielguszewska, A.; Kmiec, Z.; Godlewski, J. Galanin Receptors (GALR1, GALR2, and GALR3) Immunoexpression in Enteric Plexuses of Colorectal Cancer Patients: Correlation with the Clinico-Pathological Parameters. Biomolecules 2022, 12, 1769. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, P.; Godlewski, J.; Kiezun, J.; Krazinski, B.E.; Kmiec, Z. Colorectal cancer patients exhibit increased levels of galanin in serum and colon tissues. Oncol. Lett. 2016, 12, 3323–3329. [Google Scholar] [CrossRef] [Green Version]
- Talaat, I.M.; Yakout, N.M.; Soliman, A.S.A.; Venkatachalam, T.; Vinod, A.; Eldohaji, L.; Nair, V.; Hareedy, A.; Kandil, A.; Abdel-Rahman, W.M.; et al. Evaluation of Galanin Expression in Colorectal Cancer: An Immunohistochemical and Transcriptomic Study. Front. Oncol. 2022, 12, 877147. [Google Scholar] [CrossRef]
- Chung, W.; Kwabi-Addo, B.; Ittmann, M.; Jelinek, J.; Shen, L.; Yu, Y.; Issa, J.P. Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling. PLoS ONE 2008, 3, e2079. [Google Scholar] [CrossRef]
- Sanchez, M.L.; Covenas, R. The Galaninergic System: A Target for Cancer Treatment. Cancers 2022, 14, 3755. [Google Scholar] [CrossRef] [PubMed]
- Kendall, T.; Verheij, J.; Gaudio, E.; Evert, M.; Guido, M.; Goeppert, B.; Carpino, G. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 2019, 39 (Suppl. 1), 7–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasinskas, A.M. Cholangiocarcinoma. Surg. Pathol. Clin. 2018, 11, 403–429. [Google Scholar] [CrossRef]
- Nakanuma, Y.; Kakuda, Y. Pathologic classification of cholangiocarcinoma: New concepts. Best Pract. Res. Clin. Gastroenterol. 2015, 29, 277–293. [Google Scholar] [CrossRef]
- Strazzabosco, M.; Fabris, L. Functional anatomy of normal bile ducts. Anat. Rec. 2008, 291, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Glaser, S.S.; Gaudio, E.; Miller, T.; Alvaro, D.; Alpini, G. Cholangiocyte proliferation and liver fibrosis. Expert Rev. Mol. Med. 2009, 11, e7. [Google Scholar] [CrossRef] [PubMed]
- McMillin, M.; Frampton, G.; Grant, S.; DeMorrow, S. The Neuropeptide Galanin Is Up-Regulated during Cholestasis and Contributes to Cholangiocyte Proliferation. Am. J. Pathol. 2017, 187, 819–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrescu, A.D.; Grant, S.; Williams, E.; Frampton, G.; Parks, N.; Blaney, H.; Davies, M.; John, R.; Reinhart, E.H.; McMillin, M.; et al. Coordinated Targeting of Galanin Receptors on Cholangiocytes and Hepatic Stellate Cells Ameliorates Liver Fibrosis in Multidrug Resistance Protein 2 Knockout Mice. Am. J. Pathol. 2020, 190, 586–601. [Google Scholar] [CrossRef]
- Brunner, S.M.; Koller, A.; Stockinger, J.; Sternberg, F.; Leis, S.; Ernst, F.; Strasser, P.; Brodowicz, B.; Ebner, S.; Holub, B.S.; et al. Validation of antibody-based tools for galanin research. Peptides 2019, 120, 170009. [Google Scholar] [CrossRef]
- Stummer, N.; Weghuber, D.; Feichtinger, R.G.; Huber, S.; Mayr, J.A.; Kofler, B.; Neureiter, D.; Klieser, E.; Hochmann, S.; Lauth, W.; et al. Hydrogen Sulfide Metabolizing Enzymes in the Intestinal Mucosa in Pediatric and Adult Inflammatory Bowel Disease. Antioxidants 2022, 11, 2235. [Google Scholar] [CrossRef] [PubMed]
- De Medeiros, M.C.; Liu, M.; Banerjee, R.; Bellile, E.; D’Silva, N.J.; Rossa, C., Jr. Galanin mediates tumor-induced immunosuppression in head and neck squamous cell carcinoma. Cell Oncol. 2022, 45, 241–256. [Google Scholar] [CrossRef]
- Koller, A.; Brunner, S.M.; Bianchini, R.; Ramspacher, A.; Emberger, M.; Sternberg, F.; Schlager, S.; Kofler, B. Galanin is a potent modulator of cytokine and chemokine expression in human macrophages. Sci. Rep. 2019, 9, 7237. [Google Scholar] [CrossRef]
- Bauer, F.E.; Zintel, A.; Kenny, M.J.; Calder, D.; Ghatei, M.A.; Bloom, S.R. Inhibitory effect of galanin on postprandial gastrointestinal motility and gut hormone release in humans. Gastroenterology 1989, 97, 260–264. [Google Scholar] [CrossRef]
- Ekblad, E.; Rokaeus, A.; Hakanson, R.; Sundler, F. Galanin nerve fibers in the rat gut: Distribution, origin and projections. Neuroscience 1985, 16, 355–363. [Google Scholar] [CrossRef]
- Brunner, S.M.; Reichmann, F.; Leitner, J.; Wolfl, S.; Bereswill, S.; Farzi, A.; Schneider, A.M.; Klieser, E.; Neureiter, D.; Emberger, M.; et al. Galanin receptor 3 attenuates inflammation and influences the gut microbiota in an experimental murine colitis model. Sci. Rep. 2021, 11, 564. [Google Scholar] [CrossRef]
- Kanazawa, T.; Iwashita, T.; Kommareddi, P.; Nair, T.; Misawa, K.; Misawa, Y.; Ueda, Y.; Tono, T.; Carey, T.E. Galanin and galanin receptor type 1 suppress proliferation in squamous carcinoma cells: Activation of the extracellular signal regulated kinase pathway and induction of cyclin-dependent kinase inhibitors. Oncogene 2007, 26, 5762–5771. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, R.; Henson, B.S.; Russo, N.; Tsodikov, A.; D’Silva, N.J. Rap1 mediates galanin receptor 2-induced proliferation and survival in squamous cell carcinoma. Cell Signal. 2011, 23, 1110–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Fang, P.; Chai, C.; Shao, L.; Mao, H.; Qiao, D.; Kong, G.; Dong, X.; Shi, M.; Zhang, Z.; et al. Galanin expression is down-regulated in patients with gastric cancer. J. Int. Med. Res. 2019, 47, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.; Bae, K.; Lee, M.K.; Kim, J.H.; Yoon, K.A. Galanin is an epigenetically silenced tumor suppressor gene in gastric cancer cells. PLoS ONE 2018, 13, e0193275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozlowska, A.; Kozera, P.; Majewski, M.; Godlewski, J. Co-expression of caspase-3 or caspase-8 with galanin in the human stomach section affected by carcinoma. Apoptosis 2018, 23, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Komuta, M.; Govaere, O.; Vandecaveye, V.; Akiba, J.; Van Steenbergen, W.; Verslype, C.; Laleman, W.; Pirenne, J.; Aerts, R.; Yano, H.; et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology 2012, 55, 1876–1888. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.S.; Kilcoyne, A.; Everett, J.M.; Mino-Kenudson, M.; Harisinghani, M.G.; Ganesan, K. Cholangiocarcinoma: Classification, diagnosis, staging, imaging features, and management. Abdom. Radiol. 2017, 42, 1637–1649. [Google Scholar] [CrossRef]
- Schmidhuber, S.M.; Rauch, I.; Kofler, B.; Brain, S.D. Evidence that the modulatory effect of galanin on inflammatory edema formation is mediated by the galanin receptor 3 in the murine microvasculature. J. Mol. Neurosci. 2009, 37, 177–181. [Google Scholar] [CrossRef]
- Schmidhuber, S.M.; Santic, R.; Tam, C.W.; Bauer, J.W.; Kofler, B.; Brain, S.D. Galanin-like peptides exert potent vasoactive functions in vivo. J. Investig. Dermatol. 2007, 127, 716–721. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Uehara, T.; Kanazawa, T.; Mizukami, H.; Uchibori, R.; Tsukahara, T.; Urabe, M.; Kume, A.; Misawa, K.; Carey, T.E.; Suzuki, M.; et al. Novel anti-tumor mechanism of galanin receptor type 2 in head and neck squamous cell carcinoma cells. Cancer Sci. 2014, 105, 72–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, K.J.; Lang, H.; Wohlschlaeger, J.; Sotiropoulos, G.C.; Reis, H.; Schmid, K.W.; Baba, H.A. AKT and ERK1/2 signaling in intrahepatic cholangiocarcinoma. World J. Gastroenterol. 2007, 13, 6470–6477. [Google Scholar] [CrossRef] [PubMed]
Origin | Sample Group | Abbreviation | Sample Size (n) |
---|---|---|---|
Healthy patient | Control tissue | Control | 5 |
pCCA patient | Peritumoural without cholestasis | PIT-C | 10 |
Peritumoural with cholestasis | PIT+C | 10 | |
Klatskin tumour | pCCA | 33 |
Antibody | Species | Dilution * | Company | Order No. |
---|---|---|---|---|
GAL | rabbit | 1:300 | Peninsula | T-4325 |
GAL1-R | rabbit | 1:200 | Genetex | GTX108207 |
GAL2-R | rabbit | 1:400 | PTG-Lab | S4510-1 |
GAL3-R | rabbit | 1:500 | Genetex | GTX108163 |
Score Values | Comparison of PIT-C VS. Ctrl | Comparison of PIT+C VS. Ctrl | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tissue | Control Mean ± SEM | PIT-C Mean ± SEM | PIT+C Mean ± SEM | Rel. Diff. | p Value | Rel. Diff. | p Value | Subcellular Localisation | ||
GAL | ||||||||||
Ch | 195 ± 11 | 209 ± 18 | 205 ± 13 | 7% | 0.2956 | 5% | 0.9770 | Plasma membrane, cytoplasm | ||
Muc | 34 ± 10 | 30 ± 9 | 13 ± 4 | 12% | 0.5238 | 62% | 0.0622 | |||
Mus | 10 ± 4 | 17 ± 5 | 10 ± 3 | 70% | 0.7928 | 0% | nc | |||
Adv | 5 ± 2 | 25 ± 12 | 12 ± 5 | 400% | 0.4066 | 140% | 0.3144 | |||
Musc | 112 ± 12 | 44 ± 20 | 61 ± 21 | 61% | 0.0622 | 46% | 0.1255 | |||
LNB | 93 ± 29 | 145 ± 20 | 149 ± 13 | 56% | 0.2795 | 60% | 0.2222 | |||
SNB | 119 ± 22 | 144 ± 23 | 153 ± 24 | 21% | 0.4409 | 29% | 0.4584 | |||
Adi | 112 ± 43 | 131 ± 29 | 111 ± 30 | 17% | 0.8227 | 0.9% | >0.9999 | |||
ArtMuc | 192 ± 32 | 89 ± 22 | 43 ± 14 | 54% | 0.0420 | 78% | 0.0025 | |||
VenMuc | 192 ± 18 | 122 ± 20 | 116 ± 24 | 36% | 0.0383 | 40% | 0.0303 | |||
CapMuc | 188 ± 30 | 130 ± 22 | 106 ± 24 | 31% | 0.2166 | 44% | 0.0759 | |||
ArtAdv | 154 ± 27 | 69 ± 27 | 23 ± 17 | 55% | 0.0694 | 85% | 0.0051 | |||
VenAdv | 176 ± 29 | 91 ± 32 | 44 ± 14 | 48% | 0.1061 | 75% | 0.0051 | |||
CapAdv | 209 ± 11 | 121 ± 40 | 93 ± 25 | 42% | 0.1190 | 56% | 0.0152 | |||
GAL1-R | ||||||||||
Ch | 40 ± 11 | 72 ± 14 | 80 ± 27 | 80% | 0.3808 | 100% | 0.5185 | Plasma membrane, cytoplasm | ||
Muc | 3 ± 3 | 7 ± 5 | 4 ± 2 | 133% | >0.9999 | 33% | 0.8352 | Plasma membrane | ||
Mus | 1 ± 1 | 7 ± 4 | 2 ± 1 | 600% | 0.6478 | 100% | 0.5431 | Plasma membrane | ||
Adv | 9 ± 8 | 15 ± 5 | 31 ± 13 | 67% | 0.4180 | 244% | 0.0808 | |||
Musc | 10 ± 9 | 3 ± 3 | 6 ± 4 | 70% | 0.4322 | 40% | >0.9999 | |||
LNB | 48 ± 33 | 70 ± 20 | 36 ± 13 | 46% | 0.5462 | 25% | 0.9138 | |||
SNB | 49 ± 34 | 42 ± 19 | 45 ± 13 | 14% | 0.7558 | 8% | 0.5689 | |||
Adi | 7 ± 4 | 39 ± 16 | 48 ± 23 | 457% | 0.1916 | 586% | 0.0341 | |||
ArtMuc | 57 ± 32 | 12 ± 7 | 36 ± 17 | 79% | 0.2692 | 37% | 0.7790 | |||
VenMuc | 35 ± 22 | 40 ± 11 | 44 ±17 | 14% | 0.8759 | 26% | 0.9264 | |||
CapMuc | 27 ± 21 | 20 ± 10 | 39 ± 17 | 26% | 0.1696 | 44% | 0.7208 | |||
ArtAdv | 32 ± 30 | 4 ± 1 | 34 ± 27 | 88% | 0.7727 | 6% | 0.5707 | |||
VenAdv | 42 ± 29 | 3 ± 1 | 45 ± 25 | 93% | 0.2992 | 7% | >0.9999 | |||
CapAdv | 40 ± 30 | 16 ± 7 | 13 ± 9 | 60% | 0.8377 | 68% | 0.6212 | |||
GAL2-R | ||||||||||
Ch | 2 ± 1 | 1 ± 1 | 0 | 50% | 0.7663 | 100% | 0.3407 | Plasma membrane | ||
Muc | 3 ± 1 | 2 ± 2 | 2 ± 1 | 33% | 0.0374 | 33% | 0.1938 | |||
Mus | 0 | 0 | 3 ± 2 | 0% | nc | nd | 0.2582 | |||
Adv | 2 ± 1 | 6 ± 5 | 2 ± 1 | 200% | >0.9999 | 0% | nc | |||
Musc | 0 | 0 | 1 ± 1 | 0% | nc | nd | >0.9999 | |||
LNB | 0 | 0 | 1 ± 1 | 0% | nc | nd | 0.4872 | |||
SNB | 0 | 0 | 0 | 0% | nc | 0% | nc | |||
Adi | 0 | 4 ± 2 | 2 ± 1 | nd | 0.2328 | nd | 0.6703 | |||
ArtMuc | 0 | 0 | 0 | 0% | nc | 0% | nc | |||
VenMuc | 1 ± 1 | 0 | 0 | 100% | >0.9999 | 100% | 0.4167 | |||
CapMuc | 2 ± 2 | 0 | 0 | 100% | 0.6870 | 100% | 0.3571 | |||
ArtAdv | 0 | 1 ± 1 | 0 | nd | 0.4697 | 0% | nc | |||
VenAdv | 1 ± 1 | 0 | 0 | 100% | >0.9999 | 100% | >0.9999 | Plasma membrane | ||
CapAdv | 0 | 0 | 1 ± 0 | 0% | nc | nd | 0.4697 | |||
GAL3-R | ||||||||||
Ch | 23 ± 9 | 8 ± 5 | 23 ± 17 | 65% | 0.0799 | 0% | nc | Plasma membrane | ||
Muc | 0 | 0 | 1 ± 1 | 0% | nc | nd | >0.9999 | |||
Mus | 0 | 0 | 0 | 0% | nc | 0% | nc | |||
Adv | 0 | 0 | 0 | 0% | nc | 0% | nc | |||
Musc | 0 | 0 | 0 | 0% | nc | 0% | nc | |||
LNB | 0 | 0 | 0 | 0% | nc | 0% | nc | |||
SNB | 0 | 0 | 0 | 0% | nc | 0% | nc | |||
Adi | 0 | 0 | 2 ± 2 | 0% | nc | nd | >0.9999 | |||
ArtMuc | 0 | 0 | 0 | 0% | nc | 0% | nc | |||
VenMuc | 0 | 0 | 0 | 0% | nc | 0% | nc | |||
CapMuc | 93 ± 30 | 19 ± 13 | 30 ± 27 | 80% | 0.0030 | 68% | 0.0326 | |||
ArtAdv | 0 | 0 | 0 | 0% | nc | 0% | nc | |||
VenAdv | 2 ± 1 | 0 | 0 | 100% | 0.1282 | 100% | 0.1515 | |||
CapAdv | 0 | 0 | 4 ± 4 | 0% | nc | nd | 0.4697 |
Score Values | Comparison of pCCA VS. Ctrl | Comparison of pCCA VS. PIT | ||||||
---|---|---|---|---|---|---|---|---|
Staining | Control Mean ± SEM | PIT Mean ± SEM | pCCA Mean ± SEM | Rel. Diff. | p Value | Rel. Diff. | p Value | Subcellular Localisation |
GAL | 195 ± 11 | 207 ± 55 | 180 ± 11 | 8% | >0.9999 | 13% | 0.3301 | Plasma membrane, cytoplasm |
GAL1-R | 40 ± 11 | 75 ± 13 | 37 ± 6 | 8% | >0.9999 | 51% | 0.0459 | Plasma membrane, cytoplasm |
GAL2-R | 2 ± 1 | 1 ± 0 | 1 ± 0 | 50% | 0.4680 | 0% | >0.9999 | Plasma membrane |
GAL3-R | 23 ± 9 | 13 ± 7 | 5 ± 3 | 78% | 0.0120 | 62% | 0.1280 | Plasma membrane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huber, S.; Fitzner, T.; Feichtinger, R.G.; Hochmann, S.; Kraus, T.; Sotlar, K.; Kofler, B.; Varga, M. Galanin System in the Human Bile Duct and Perihilar Cholangiocarcinoma. Cells 2023, 12, 1678. https://doi.org/10.3390/cells12131678
Huber S, Fitzner T, Feichtinger RG, Hochmann S, Kraus T, Sotlar K, Kofler B, Varga M. Galanin System in the Human Bile Duct and Perihilar Cholangiocarcinoma. Cells. 2023; 12(13):1678. https://doi.org/10.3390/cells12131678
Chicago/Turabian StyleHuber, Sara, Theresia Fitzner, René G. Feichtinger, Sarah Hochmann, Theo Kraus, Karl Sotlar, Barbara Kofler, and Martin Varga. 2023. "Galanin System in the Human Bile Duct and Perihilar Cholangiocarcinoma" Cells 12, no. 13: 1678. https://doi.org/10.3390/cells12131678
APA StyleHuber, S., Fitzner, T., Feichtinger, R. G., Hochmann, S., Kraus, T., Sotlar, K., Kofler, B., & Varga, M. (2023). Galanin System in the Human Bile Duct and Perihilar Cholangiocarcinoma. Cells, 12(13), 1678. https://doi.org/10.3390/cells12131678