Evaluation of Homogentisic Acid, a Prospective Antibacterial Agent Highlighted by the Suitability of Nitisinone in Alkaptonuria 2 (SONIA 2) Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Growth Media and Chemicals
2.2. HGA Stability Studies
2.3. Antibacterial Activity and Mechanism of Action
2.4. In Vitro Toxicity
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, J. Review on antimicrobial resistance. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. 2014. [Google Scholar]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Årdal, C.; Baraldi, E.; Theuretzbacher, U.; Outterson, K.; Plahte, J.; Ciabuschi, F.; Røttingen, J.-A. Insights into early stage of antibiotic development in small- and medium-sized enterprises: A survey of targets, costs, and durations. J. Pharm. Policy Pract. 2018, 11, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consden, R.; Forbes, H.A.W.; Glynn, L.E.; Stanier, W.M. Observations on the oxidation of homogentisic acid in urine. Biochem. J. 1951, 50, 274–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranganath, L.R.; Milan, A.M.; Hughes, A.T.; Khedr, M.; Davison, A.S.; Shweihdi, E.; Norman, B.P.; Hughes, J.H.; Bygott, H.; Luangrath, E.; et al. Homogentisic acid is not only eliminated by glomerular filtration and tubular secretion but also produced in the kidney in alkaptonuria. J. Inherit. Metab. Dis. 2020, 43, 737–747. [Google Scholar] [CrossRef] [PubMed]
- La Du, B.N.; Zannoni, V.G.; Laster, L.; Seegmiller, J. The nature of the defect in tyrosine metabolism in alcaptonuria. J. Biol. Chem. 1958, 230, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Ranganath, L.R.; Psarelli, E.E.; Arnoux, J.-B.; Braconi, D.; Briggs, M.; Bröijersén, A.; Loftus, N.; Bygott, H.; Cox, T.F.; Davison, A.S.; et al. Efficacy and safety of once-daily nitisinone for patients with alkaptonuria (SONIA 2): An international, multicentre, open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2020, 8, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Lindstedt, S.; Holme, E.; Lock, E.A.; Hjalmarson, O.; Strandvik, B. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 1992, 340, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Ranganath, L.; Hughes, A.; Davison, A.; Khedr, M.; Olsson, B.; Rudebeck, M.; Imrich, R.; Norman, B.; Bou-Gharios, G.; Gallagher, J.; et al. Temporal adaptations in the phenylalanine/tyrosine pathway and related factors during nitisinone-induced tyrosinaemia in alkaptonuria. Mol. Genet. Metab. 2022. [Google Scholar] [CrossRef] [PubMed]
- Abbott, L.D.; Smith, J.D.; Reid, J.D. Antibacterial Activity of Gentisyl Alcohol and Homogentisic Acid. Exp. Biol. Med. 1948, 69, 201–202. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: M07-A9, 9th ed.; CLSI: Wayne, NJ, USA, 2012. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Determining Bactericidal Activity of Antimicrobial Agents: M26-A, 1st ed.; CLSI: Wayne, NJ, USA, 1999. [Google Scholar]
- Hilliard, J.J.; Goldschmidt, R.M.; Licata, L.; Baum, E.Z.; Bush, K. Multiple Mechanisms of Action for Inhibitors of Histidine Protein Kinases from Bacterial Two-Component Systems. Antimicrob. Agents Chemother. 1999, 43, 1693–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooi, N.; Chopra, I.; Eady, A.; Cove, J.; Bojar, R.; O’Neill, A.J. Antibacterial activity and mode of action of tert-butylhydroquinone (TBHQ) and its oxidation product, tert-butylbenzoquinone (TBBQ). J. Antimicrob. Chemother. 2013, 68, 1297–1304. [Google Scholar] [CrossRef] [Green Version]
- Ooi, N.; E Lee, V.; Chalam-Judge, N.; Newman, R.; Wilkinson, A.J.; Cooper, I.R.; Orr, D.; Lee, S.; Savage, V.J. Restoring carbapenem efficacy: A novel carbapenem companion targeting metallo-β-lactamases in carbapenem-resistant Enterobacterales. J. Antimicrob. Chemother. 2021, 76, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.P.; Batkoff, B. Homogentisic acid autoxidation and oxygen radical generation: Implications for the etiology of alkaptonuric arthritis. Free. Radic. Biol. Med. 1987, 3, 241–250. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-resistant Bacterial Infections, Including Tuberculosis; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Hawkey, P.M.; E Warren, R.; Livermore, D.M.; McNulty, C.A.M.; A Enoch, D.; A Otter, J.; Wilson, A.P.R. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: Report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party†. J. Antimicrob. Chemother. 2018, 73, iii2–iii78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streicher, L.M. Exploring the future of infectious disease treatment in a post-antibiotic era: A comparative review of alternative therapeutics. J. Glob. Antimicrob. Resist. 2021, 24, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, A.-M.; Chen, R.; Mullin, M.; Foulkes, L.; Percival, S. In Vitro Evaluation of Resistance Development to Silver Sulfadiazine and Subsequent Cross-Resistance to Antibiotics. Surg. Technol. Int. 2022, 40, 55–60. [Google Scholar] [CrossRef] [PubMed]
Organism [pH] | MIC (µg/mL) | |
---|---|---|
Homogentisic Acid | Ciprofloxacin | |
Staphylococcus aureus ATCC 29213 [pH 5] | 2048 | nd |
Staphylococcus aureus ATCC 29213 [pH 6] | 4096 | nd |
Staphylococcus aureus ATCC 29213 [pH 7] | 4096 | nd |
Staphylococcus aureus ATCC 29213 [pH 8] | 4096 | nd |
Staphylococcus aureus ATCC 29213 [pH 9] | >4096 | nd |
Staphylococcus aureus ATCC 29213 | 4096 | 0.25 |
Escherichia coli W4573 | 4096 | 0.03 |
Escherichia coli N43 * | 4096 | 0.004 |
Staphylococcus epidermidis ATCC 12228 | 4096 | 0.25 |
Pseudomonas aeruginosa PAO1 | >4096 | 0.5 |
Pseudomonas aeruginosa PAO750 * | 4096 | 0.03 |
Haemophilus influenzae ATCC 49247 | 2048 | 0.008 |
Compound | Concentration (µg/mL) [×MIC] | % Loss S. aureus * Membrane Integrity (±SD) | % Haemolysis (±SD) | % Loss HepG2 Viability (±SD) |
---|---|---|---|---|
Tetracycline | 8 [4 × MIC *] | 11.0 ± 9.2 | nd | nd |
Ciprofloxacin | 1 [4 × MIC *] | 21.6 ± 7.2 | nd | nd |
CTAB | 4 [4 × MIC *] | 81.0 ± 4.2 | nd | nd |
Homogentisic acid | 4096 [1 × MIC *] | 81.2 ± 4.4 | nd | nd |
Homogentisic acid | 512 [0.125 × MIC *#] | 79.9 ± 3.7 | −0.7 ± 0.6 | 99.6 ± 0.1 |
Colistin | 128 [512 × MIC #] | nd | 16.1 ± 4.0 | −13.9 ± 15.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ooi, N.; Cooper, I.R.; Norman, B.; Gallagher, J.A.; Sireau, N.; Bou-Gharios, G.; Ranganath, L.R.; Savage, V.J. Evaluation of Homogentisic Acid, a Prospective Antibacterial Agent Highlighted by the Suitability of Nitisinone in Alkaptonuria 2 (SONIA 2) Clinical Trial. Cells 2023, 12, 1683. https://doi.org/10.3390/cells12131683
Ooi N, Cooper IR, Norman B, Gallagher JA, Sireau N, Bou-Gharios G, Ranganath LR, Savage VJ. Evaluation of Homogentisic Acid, a Prospective Antibacterial Agent Highlighted by the Suitability of Nitisinone in Alkaptonuria 2 (SONIA 2) Clinical Trial. Cells. 2023; 12(13):1683. https://doi.org/10.3390/cells12131683
Chicago/Turabian StyleOoi, Nicola, Ian R. Cooper, Brendan Norman, James A. Gallagher, Nick Sireau, George Bou-Gharios, Lakshminarayan R. Ranganath, and Victoria J. Savage. 2023. "Evaluation of Homogentisic Acid, a Prospective Antibacterial Agent Highlighted by the Suitability of Nitisinone in Alkaptonuria 2 (SONIA 2) Clinical Trial" Cells 12, no. 13: 1683. https://doi.org/10.3390/cells12131683
APA StyleOoi, N., Cooper, I. R., Norman, B., Gallagher, J. A., Sireau, N., Bou-Gharios, G., Ranganath, L. R., & Savage, V. J. (2023). Evaluation of Homogentisic Acid, a Prospective Antibacterial Agent Highlighted by the Suitability of Nitisinone in Alkaptonuria 2 (SONIA 2) Clinical Trial. Cells, 12(13), 1683. https://doi.org/10.3390/cells12131683