Cytokine Gene Polymorphisms in Patients with Chronic Inflammatory Demyelinating Polyneuropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Extraction and SNP Detection
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van den Bergh, P.Y.K.; van Doorn, P.A.; Hadden, R.D.M.; Avau, B.; Vankrunkelsven, P.; Allen, J.A.; Attarian, S.; Blomkwist-Markens, P.H.; Cornblath, D.R.; Eftimov, F.; et al. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: Report of a joint Task Force-Second revision. J. Peripher. Nerv. Syst. 2021, 26, 242–268. [Google Scholar]
- Hagen, K.M.; Ousman, S.S. The immune response and aging in chronic inflammatory demyelinating polyradiculoneuropathy. J. Neuroinflamm. 2021, 18, 78. [Google Scholar] [CrossRef]
- Kamali, A.N.; Noorbakhsh, S.M.; Hamedifar, H.; Jadidi-Niaragh, F.; Yazdani, R.; Bautista, J.M.; Azizi, G. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol. Immunol. 2019, 105, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Matsumuro, K.; Izumo, S.; Umehara, F.; Osame, M. Chronic inflammatory demyelinating polyneuropathy: Histological and immunopathological studies on biopsied sural nerves. J. Neurol. Sci. 1994, 127, 170–178. [Google Scholar] [CrossRef]
- Schneider-Hohendorf, T.; Schwab, N.; Uçeyler, N.; Göbel, K.; Sommer, C.; Wiendl, H. CD8+ T-cell immunity in chronic inflammatory demyelinating polyradiculoneuropathy. Neurology 2012, 78, 402–408. [Google Scholar] [CrossRef]
- Staudt, M.; Diederich, J.M.; Meisel, C.; Meisel, A.; Klehmet, J. Differences in peripheral myelin antigen-specific T cell responses and T memory subsets in atypical versus typical CIDP. BMC Neurol. 2017, 17, 81. [Google Scholar]
- Oka, N.; Akiguchi, I.; Kawasaki, T.; Mizutani, K.; Satoi, H.; Kimura, J. Tumor necrosis factor-alpha in peripheral nerve lesions. Acta Neuropathol. 1998, 95, 57–62. [Google Scholar] [CrossRef]
- Sommer, C.; Koch, S.; Lammens, M.; Gabreels-Festen, A.; Stoll, G.; Toyka, K.V. Macrophage clustering as a diagnostic marker in sural nerve biopsies of patients with CIDP. Neurology 2005, 65, 1924–1929. [Google Scholar] [CrossRef]
- Rentzos, M.; Angeli, A.V.; Rombos, A.; Kyrozis, A.; Nikolaou, C.; Zouvelou, V.; Dimitriou, A.; Zoga, M.; Evangelopoulos, M.E.; Tsatsi, A.; et al. Proinflammatory cytokines in serum and cerebrospinal fluid of CIDP patients. Neurol. Res. 2012, 34, 842–846. [Google Scholar] [CrossRef]
- van Langelaar, J.; van der Vuurst de Vries, R.M.; Janssen, M.; Wierenga-Wolf, A.F.; Spilt, I.M.; Siepman, T.A.; Dankers, W.; Verjans, G.M.; De Vries, H.E.; Lubberts, E.; et al. T helper 17.1 cells associate with multiple sclerosis disease activity: Perspectives for early intervention. Brain 2018, 141, 1334–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, L.J.; Xu, W.H.; Zhang, Z.W.; Huang, H.T.; Zhang, L.M.; Zhou, J. Distribution of Th17 cells and Th1 cells in peripheral blood and cerebrospinal fluid in chronic inflammatory demyelinating polyradiculoneuropathy. J. Peripher. Nerv. Syst. 2010, 15, 345–356. [Google Scholar] [CrossRef]
- Takahashi, T.; Kuniyasu, Y.; Toda, M.; Sakaguchi, N.; Itoh, M.; Iwata, M.; Shimizu, J.; Sakaguchi, S. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: Induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 1998, 10, 1969–1980. [Google Scholar] [PubMed] [Green Version]
- Asseman, C.; Mauze, S.; Leach, M.W.; Coffman, R.L.; Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 1999, 190, 995–1004. [Google Scholar] [CrossRef]
- Sanvito, L.; Makowska, A.; Gregson, N.; Nemni, R.; Hughes, R.A. Circulating subsets and CD4(+)CD25(+) regulatory T cell function in chronic inflammatory demyelinating polyradiculoneuropathy. Autoimmunity 2009, 42, 667–677. [Google Scholar] [PubMed]
- Dziadkowiak, E.; Waliszewska-Prosół, M.; Nowakowska-Kotas, M.; Budrewicz, S.; Koszewicz, Z.; Koszewicz, M. Pathophysiology of the Different Clinical Phenotypes of Chronic Inflammatory Demyelinating Polyradiculoneuropathy (CIDP). Int. J. Mol. Sci. 2021, 23, 179. [Google Scholar] [CrossRef] [PubMed]
- Querol, L.; Lleixà, C. Novel Immunological and Therapeutic Insights in Guillain-Barré Syndrome and CIDP. Neurotherapeutics 2021, 18, 2222–2235. [Google Scholar] [PubMed]
- Koneczny, I.; Tzartos, J.; Mané-Damas, M.; Yilmaz, V.; Huijbers, M.G.; Lazaridis, K.; Höftberger, R.; Tüzün, E.; Martinez-Martinez, P.; Tzartos, S.; et al. IgG4 Autoantibodies in Organ-Specific Autoimmunopathies: Reviewing Class Switching, Antibody-Producing Cells, and Specific Immunotherapies. Front. Immunol. 2022, 13, 834342. [Google Scholar] [CrossRef]
- Amr, K.; El-Awady, R.; Raslan, H. Assessment of the −174G/C (rs1800795) and −572G/C (rs1800796) Interleukin 6 Gene Polymorphisms in Egyptian Patients with Rheumatoid Arthritis. Open Access Maced. J. Med. Sci. 2016, 4, 574–577. [Google Scholar] [CrossRef] [Green Version]
- Khoo, A.; Frasca, J.; Schultz, D. Measuring disease activity and predicting response to intravenous immunoglobulin in chronic inflammatory demyelinating polyneuropathy. Biomark. Res. 2019, 7, 3. [Google Scholar]
- Hindorff, L.A.; Sethupathy, P.; Junkins, H.A.; Ramos, E.M.; Mehta, J.P.; Collins, F.S.; Manolio, T.A. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 2009, 106, 9362–9367. [Google Scholar]
- Iijima, M.; Koike, H.; Katsuno, M.; Sobue, G. Polymorphism of transient axonal glycoprotein-1 in chronic inflammatory demyelinating polyneuropathy. J. Peripher. Nerv. Syst. 2011, 16 (Suppl. S1), 52–55. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M.; Tomita, M.; Morozumi, S.; Kawagashira, Y.; Nakamura, T.; Koike, H.; Katsuno, M.; Hattori, N.; Tanaka, F.; Yamamoto, M.; et al. Single nucleotide polymorphism of TAG-1 influences IVIg responsiveness of Japanese patients with CIDP. Neurology 2009, 73, 1348–1352. [Google Scholar] [CrossRef]
- Lehmann, H.C.; Kieseier, B.C. Predicting treatment responses to IV immunoglobulins: Can we already ask the genes? Neurology 2009, 73, 1344–1345. [Google Scholar] [CrossRef]
- Pang, S.Y.; Chan, K.H.; Mak, W.W.; Kung, M.H.; Lee, C.N.; Tsoi, T.H.; Yip, E.K.; Ho, S.L. Single-nucleotide polymorphism of transient axonal glycoprotein-1 and its correlation with clinical features and prognosis in chronic inflammatory demyelinating polyneuropathy. J. Peripher. Nerv. Syst. 2012, 17, 72–75. [Google Scholar] [CrossRef]
- Yamamoto-Watanabe, Y.; Watanabe, M.; Jackson, M.; Akimoto, H.; Sugimoto, K.; Yasujima, M.; Wakasaya, Y.; Matsubara, E.; Kawarabayashi, T.; Harigaya, Y.; et al. Quantification of cystatin C in cerebrospinal fluid from various neurological disorders and correlation with G73A polymorphism in CST3. Brain Res. 2010, 1361, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Lunn, M.P.; Manji, H.; Choudhary, P.P.; Hughes, R.A.; Thomas, P.K. Chronic inflammatory demyelinating polyradiculoneuropathy: A prevalence study in south east England. J. Neurol. Neurosurg. Psychiatry 1999, 66, 677–680. [Google Scholar] [CrossRef] [Green Version]
- Sejvar, J.J.; Kohl, K.S.; Gidudu, J.; Amato, A.; Bakshi, N.; Baxter, R.; Burwen, D.R.; Cornblath, D.R.; Cleerbout, J.; Edwards, K.M.; et al. Guillain-Barré syndrome and Fisher syndrome: Case definitions and guidelines for collection, analysis, and presentation of immunization safety data. Vaccine 2011, 29, 599–612. [Google Scholar] [CrossRef] [Green Version]
- Kleyweg, R.P.; van der Meché, F.G.; Schmitz, P.I. Interobserver agreement in the assessment of muscle strength and functional abilities in Guillain-Barré syndrome. Muscle Nerve 1991, 14, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Breiner, A.; Barnett, C.; Bril, V. INCAT disability score: A critical analysis of its measurement properties. Muscle Nerve 2014, 50, 164–169. [Google Scholar] [CrossRef]
- Gorson, K.C.; Van Schaik, I.N.; Merkies, I.S.; Lewis, R.A.; Barohn, R.J.; Koski, C.L.; Cornblath, D.R.; Hughes, R.A.; Hahn, A.F.; Baumgarten, M.; et al. Chronic inflammatory demyelinating polyneuropathy disease activity status: Recommendations for clinical research standards and use in clinical practice. J. Peripher. Nerv. Syst. 2010, 15, 326–333. [Google Scholar] [CrossRef]
- Popadic, S.; Savic, E.; Markovic, M.; Ramic, Z.; Medenica, L.; Pravica, V.; Spuran, Z.; Trajkovic, V.; Popadic, D. TNF, IL12B, and IFNG Gene Polymorphisms in Serbian Patients with Psoriasis. Ann. Dermatol. 2015, 27, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.M.; Williams, D.M.; Sankaran, D.; Lazarus, M.; Sinnott, P.J.; Hutchinson, I.V. An investigation of polymorphism in the interleukin-10 gene promoter. Eur. J. Immunogenet. 1997, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mijac, D.; Petrovic, I.V.; Djuranovic, S.; Perovic, V.; Bojic, D.; Culafic, D.; Popovic, D.; Krstic, M.; Jankovic, G.; Djoric, M.; et al. The Polymorphism rs3024505 (C/T) Downstream of the IL10 Gene Is Associated with Crohn’s Disease in Serbian Patients with Inflammatory Bowel Disease. Tohoku J. Exp. Med. 2016, 240, 15–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perovic, V.; Markovic, M.; Kravljaca, M.; Milosevic, E.; Djoric, M.; Pravica, V.; Naumovic, R. Cytokine Gene Polymorphism Profiles in Kidney Transplant Patients—Association of +1188A/C RS3212227 SNP in the IL12B Gene Prevents Delayed Graft Function. Arch. Med. Res. 2018, 49, 101–108. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Sabat, R.; Grütz, G.; Warszawska, K.; Kirsch, S.; Witte, E.; Wolk, K.; Geginat, J. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010, 21, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Braga, M.; Lara-Armi, F.F.; Neves, J.S.F.; Rocha-Loures, M.A.; Terron-Monich, M.S.; Bahls-Pinto, L.D.; de Lima Neto, Q.A.; Zacarias, J.M.V.; Sell, A.M.; Visentainer, J.E.L. Influence of IL10 (rs1800896) Polymorphism and TNF-α, IL-10, IL-17A, and IL-17F Serum Levels in Ankylosing Spondylitis. Front. Immunol. 2021, 12, 653611. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.S.; Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef] [Green Version]
- Godsell, J.; Rudloff, I.; Kandane-Rathnayake, R.; Hoi, A.; Nold, M.F.; Morand, E.F.; Harris, J. Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Sci. Rep. 2016, 6, 34604. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.H.; Song, G.G.; Kim, J.H.; Choi, S.J. Association of Interleukin 10 Gene Polymorphisms with Autoimmune Thyroid Disease: Meta-Analysis. Scand. J. Immunol. 2016, 84, 272–277. [Google Scholar] [CrossRef]
- Indhumathi, S.; Rajappa, M.; Chandrashekar, L.; Ananthanarayanan, P.H.; Thappa, D.M.; Negi, V.S. T helper-2 cytokine/regulatory T-cell gene polymorphisms and their relation with risk of psoriasis in a South Indian Tamil cohort. Hum. Immunol. 2017, 78, 209–215. [Google Scholar] [CrossRef]
- Luomala, M.; Lehtimäki, T.; Huhtala, H.; Ukkonen, M.; Koivula, T.; Hurme, M.; Elovaara, I. Promoter polymorphism of IL-10 and severity of multiple sclerosis. Acta Neurol. Scand. 2003, 108, 396–400. [Google Scholar] [CrossRef]
- Schotte, H.; Schlüter, B.; Schmidt, H.; Gaubitz, M.; Drynda, S.; Kekow, J.; Willeke, P. Putative IL-10 Low Producer Genotypes Are Associated with a Favourable Etanercept Response in Patients with Rheumatoid Arthritis. PLoS ONE 2015, 10, e0130907. [Google Scholar] [CrossRef]
- Kim, H.J.; Jung, C.G.; Jensen, M.A.; Dukala, D.; Soliven, B. Targeting of myelin protein zero in a spontaneous autoimmune polyneuropathy. J. Immunol. 2008, 181, 8753–8760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, S.; Kim, H.J.; Dukala, D.; Sheng, J.R.; Soliven, B. Impaired dendritic cell function in a spontaneous autoimmune polyneuropathy. J. Immunol. 2015, 194, 4175–4184. [Google Scholar] [PubMed] [Green Version]
- Dace, D.S.; Khan, A.A.; Stark, J.L.; Kelly, J.; Cross, A.H.; Apte, R.S. Interleukin-10 overexpression promotes Fas-ligand-dependent chronic macrophage-mediated demyelinating polyneuropathy. PLoS ONE 2009, 4, e7121. [Google Scholar] [CrossRef]
- Smith, C.J.; Allard, D.E.; Wang, Y.; Howard, J.F., Jr.; Montgomery, S.A.; Su, M.A. IL-10 Paradoxically Promotes Autoimmune Neuropathy through S1PR1-Dependent CD4(+) T Cell Migration. J. Immunol. 2018, 200, 1580–1592. [Google Scholar]
- Gironi, M.; Saresella, M.; Marventano, I.; Guerini, F.R.; Gatti, A.; Antonini, G.; Ceresa, L.; Morino, S.; Beghi, E.; Angelici, A.; et al. Distinct cytokine patterns associated with different forms of chronic dysimmune neuropathy. Muscle Nerve 2010, 42, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Stork, A.C.J.; Rijkers, G.T.; Vlam, L.; Cats, E.A.; de Jong, B.A.W.; Fritsch-Stork, R.D.E.; Veldink, J.H.; van den Berg, L.H.; Notermans, N.C.; van der Pol, W.L. Serum cytokine patterns in immunoglobulin m monoclonal gammopathy-associated polyneuropathy. Muscle Nerve 2019, 59, 694–698. [Google Scholar] [CrossRef]
- Madia, F.; Frisullo, G.; Nociti, V.; Conte, A.; Luigetti, M.; Del Grande, A.; Patanella, A.K.; Iorio, R.; Tonali, P.A.; Batocchi, A.P.; et al. pSTAT1, pSTAT3, and T-bet as markers of disease activity in chronic inflammatory demyelinating polyradiculoneuropathy. J. Peripher. Nerv. Syst. 2009, 14, 107–117. [Google Scholar]
- Tanaka, T.; Kishimoto, T. Targeting interleukin-6: All the way to treat autoimmune and inflammatory diseases. Int. J. Biol. Sci. 2012, 8, 1227–1236. [Google Scholar]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [PubMed]
- Fishman, D.; Faulds, G.; Jeffery, R.; Mohamed-Ali, V.; Yudkin, J.S.; Humphries, S.; Woo, P. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Investig. 1998, 102, 1369–1376. [Google Scholar] [CrossRef] [Green Version]
- Siniauskaya, E.; Kuzhir, T.; Victor, Y.; Goncharova, R. IL6-174G/C (rs1800795) Polymorphism Rather than IL6R (rs2228145 and rs4845618 Polymorphisms is Associated with susceptibility to Rheumatoid Arthritis in the Belarusian Population. Genet. Genom. Sci. 2020, 5, 15. [Google Scholar]
- Illig, T.; Bongardt, F.; Schöpfer, A.; Müller-Scholze, S.; Rathmann, W.; Koenig, W.; Thorand, B.; Vollmert, C.; Holle, R.; Kolb, H.; et al. Significant association of the interleukin-6 gene polymorphisms C-174G and A-598G with type 2 diabetes. J. Clin. Endocrinol. Metab. 2004, 89, 5053–5058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, J.W.; Hurel, S.J.; Cooper, J.A.; Acharya, J.; Miller, G.J.; Humphries, S.E. A common functional variant in the interleukin-6 gene is associated with increased body mass index in subjects with type 2 diabetes mellitus. Mol. Genet. Metab. 2004, 82, 180–186. [Google Scholar] [CrossRef]
- Testa, R.; Olivieri, F.; Bonfigli, A.R.; Sirolla, C.; Boemi, M.; Marchegiani, F.; Marra, M.; Cenerelli, S.; Antonicelli, R.; Dolci, A.; et al. Interleukin-6-174 G>C polymorphism affects the association between IL-6 plasma levels and insulin resistance in type 2 diabetic patients. Diabetes Res. Clin. Pract. 2006, 71, 299–305. [Google Scholar] [PubMed]
- Plataki, M.N.; Zervou, M.I.; Samonis, G.; Daraki, V.; Goulielmos, G.N.; Kofteridis, D.P. Association of the Interleukin-6 rs1800795 Polymorphism with Type 2 Diabetes Mellitus in the Population of the Island of Crete, Greece. Genet. Test. Mol. Biomark. 2018, 22, 448–452. [Google Scholar] [CrossRef]
- Qi, L.; van Dam, R.M.; Meigs, J.B.; Manson, J.E.; Hunter, D.; Hu, F.B. Genetic variation in IL6 gene and type 2 diabetes: Tagging-SNP haplotype analysis in large-scale case-control study and meta-analysis. Hum. Mol. Genet. 2006, 15, 1914–1920. [Google Scholar] [CrossRef]
- Rajabally, Y.A.; Peric, S.; Cobeljic, M.; Afzal, S.; Bozovic, I.; Palibrk, A.; Basta, I. Chronic inflammatory demyelinating polyneuropathy associated with diabetes: A European multicentre comparative reappraisal. J. Neurol. Neurosurg. Psychiatry 2020, 91, 1100–1104. [Google Scholar] [CrossRef]
- Basta, I.; Delic, N.; Gunjic, I.; Arsenijevic-Zdraljevic, M.; Kacar, A.; Bozovic, I.; Peric, S. Chronic inflammatory demyelinating polyradiculoneuropathy: Diagnostic problems in clinical practice in Serbia. J. Peripher. Nerv. Syst. 2023, 28, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Patsopoulos, N.A. Genetics of Multiple Sclerosis: An Overview and New Directions. Cold Spring Harb. Perspect. Med. 2018, 8, a028951. [Google Scholar] [CrossRef] [PubMed]
CIDP Features | At Testing |
---|---|
Male gender (n (%)) | 61 (69.3%) |
Age at onset (years ± SD) | 53.7 ± 14.2 |
Disease duration (months ± SD) | 78.2 ± 76.0 |
EFNS/PNS diagnostic criteria (n (%)) Definite CIDP | 76 (86.3%) |
Definite CIDP | 76 (86.3%) |
Probable CIDP | 6 (6.8%) |
Disease onset (n (%)) Unknown | 3 (3.4%) |
Acute | 12 (13.6%) |
Subacute | 8 (9.1%) |
Chronic | 65 (73.9%) |
Precipitating factor (n (%)) Unknown | 2 (2.3%) |
None | 70 (79.5%) |
Respiratory infection | 6 (6.8%) |
Gastrointestinal infection | 4 (4.5%) |
Other | 6 (6.8%) |
INCAT disability scale at disease nadir Upper limbs | 1.6 ± 1.0 |
Lower limbs | 1.8 ± 1.3 |
Total | 3.4 ± 2.0 |
INCAT disability at sampling Upper limbs | 0.7 ± 0.9 |
Lower limbs | 1.2 ± 1.3 |
Total | 1.9 ± 1.9 |
CIDP variants (n (%)) Typical | 57 (64.8%) |
Pure sensory | 8 (9.1%) |
Pure motor | 8 (9.1%) |
Focal | 3 (3.4%) |
DADS | 9 (10.2%) |
LSS | 1 (1.2%) |
Comorbid disorders (n (%)) T2D | 25 (28.4%) |
MGUS | 14 (15.9%) |
Connective tissue disease | 1 (1.1%) |
Therapy (any time during disease course) (n (%)) Oral prednisone | 68 (77.3%) |
Pulsed methylprednisolone | 17 (19.3%) |
IVIg | 34 (38.6%) |
PLEx | 7 (8.0%) |
Immunosuppressant drugs | 17 (19.3%) |
Treatment response (n (%)) Further worsening | 17 (19.3%) |
Partial | 22 (25.0%) |
Good | 44 (50.0%) |
Unknown | 5 (5.7%) |
Gene (SNP) | HCs (n = 486) n (%) | CIDP Patients (n = 88) n (%) | p Value | OR (95% CI) |
---|---|---|---|---|
IL10 (rs1800896) Allele G A Genotype GG GA AA | 972 409 (42.1%) 563 (57.9%) 486 91 (18.7%) 227 (46.7%) 168 (34.6%) | 176 82 (46.6%) 94 (53.4%) 88 15 (17.0%) 52 (59.1%) 21 (23.9%) | 0.265 0.708 0.032 0.049 | 1.201 (0.870–1.658) 0.892 (0.489–1.626) 1.648 (1.040–2.613) 0.593 (0.351–1.002) |
IL10 (rs1800871) Allele C T Genotype CC CT TT | 972 250 (25.7%) 722 (74.3%) 486 34 (7.0%) 182 (37.4%) 270 (55.6%) | 176 33 (18.7%) 143 (81.3%) 88 3 (3.4%) 27 (30.7%) 58 (65.9%) | 0.048 0.207 0.225 0.071 | 0.666 (0.444–0.999) 0.469 (0.141–1.562) 0.739 (0.453–1.205) 1.547 (0.961–2.489) |
IL10 (rs1800872) Allele C A Genotype CC CA AA | 972 250 (25.7%) 722 (74.3%) 486 34 (7.0%) 182 (37.4%) 270 (55.6%) | 176 33 (18.7%) 143 (81.3%) 88 3 (3.4%) 27 (30.7%) 58 (65.9%) | 0.048 0.207 0.225 0.071 | 0.666 (0.444–0.999) 0.469 (0.141–1.562) 0.739 (0.453–1.205) 1.547 (0.961–2.489) |
IL10 (rs3024505) Allele A G Genotype AA AG GG | 970 145 (14.9%) 825 (85.1%) 485 10 (2.0%) 125 (25.8%) 350 (72.2%) | 176 26 (14.8%) 150 (85.2%) 88 3 (3.4%) 20 (22.7%) 65 (73.9%) | 1.000 0.433 † 0.543 0.740 | 0.986 (0.627–1.550) 1.676 (0.452–6.218) 0.847 (0.494–1.451) 1.090 (0.651–1.825) |
IL6 (rs1800795) Allele G C Genotype GG CG CC | 972 587 (60.4%) 385 (39.6%) 486 173 (35.6%) 241 (49.6%) 72 (14.8%) | 176 113 (64.2%) 63 (35.8%) 88 41 (46.6%) 31 (35.2%) 16 (18.2%) | 0.340 0.049 0.013 0.420 | 1.176 (0.842–1.643) 1.578 (0.998–2.495) 0.553 (0.345–0.886) 1.278 (0.704–2.321) |
IL12B (rs3212227) Allele G T Genotype GG GT TT | 456 82 (18.0%) 374 (82.0%) 228 6 (2.6%) 70 (30.7%) 152 (66.7%) | 176 40 (22.7%) 136 (77.3%) 88 6 (6.8%) 28 (31.8%) 54 (61.4%) | 0.175 0.101 † 0.841 0.374 | 1.341 (0.876/2.054) 2.707 (0.849–8.633) 1.053 (0.620–1.789) 0.794 (0.477–1.322) |
TNF (rs1800629) Allele A G Genotype AA AG GG | 972 130 (13.4%) 842 (86.6%) 486 6 (1.2%) 118 (24.3%) 362 (74.5%) | 176 26 (14.8%) 150 (85.2%) 88 1 (1.1%) 24 (27.3%) 63 (71.6%) | 0.617 1.000 † 0.548 0.572 | 1.123 (0.712-1.770) 0.919 (0.109–7.733) 1.169 (0.700–1.953) 0.863 (0.520–1.432) |
TNF (rs361525) Allele A G Genotype AA AG GG | 972 31 (3.2%) 941 (96.8%) 486 0 (0%) 31 (6.4%) 455 (93.6%) | 176 7 (4.0%) 169 (96.0%) 88 0 (0%) 7 (8.0%) 81 (92.0%) | 0.590 1.000 † 0.584 0.584 | 1.257 (0.545–2.902) NA 1.268 (0.540–2.978) 0.788 (0.336–1.851) |
CSF2 (rs25882) Allele T C Genotype TT TC CC | 966 763 (79.0%) 203 (21.0%) 483 301 (62.4%) 161 (33.3%) 21 (4.3%) | 176 137 (77.8%) 39 (22.2%) 88 54 (61.4%) 29 (32.9%) 5 (5.7%) | 0.729 0.862 1.000 † 0.783 † | 0.934 (0.634–1.378) 0.960 (0.602–1.532) 0.983 (0.606–1.593) 1.325 (0.486–3.613) |
IL17F (rs11465553) Allele T C Genotype TT TC CC | 848 37 (4.4%) 811 (95.6%) 424 4 (1.0%) 29 (6.8%) 391 (92.2%) | 176 3 (1.7%) 173 (98.3%) 88 0 (0%) 3 (3.4%) 85 (96.6%) | 0.098 0.607 † 0.332 † 0.173 † | 0.380 (0.116–1.247) NA 0.481 (0.143–1.615) 2.391 (0.716–7.979) |
IFNG (rs2430561) Allele A T Genotype AA AT TT | 518 276 (53.3%) 242 (46.7%) 259 74 (28.6%) 128 (49.4%) 57 (22.0%) | 176 97 (55.1%) 79 (44.9%) 88 24 (27.3%) 49 (55.7%) 15 (17.0%) | 0.671 0.823 0.310 0.322 | 1.077 (0.764–1.518) 0.937 (0.546–1.610) 1.286 (0.791–2.091) 0.728 (0.388–1.365) |
IL10 Haplotypes | HCs † (n = 486) n (%) | CIDP Patients (n = 88) n (%) | p Value | OR (95% CI) |
---|---|---|---|---|
GCC | 406 (41.8) | 82 (46.6) | 0.233 | 1.216 (0.881–1.679) |
ACC | 316 (32.5) | 61 (34.6) | 0.578 | 1.101 (0.785–1.544) |
ATA | 247 (25.4) | 33 (18.7) | 0.058 | 0.677 (0.452–1.016) |
Total | 972 | 176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozovic, I.; Perovic, V.; Basta, I.; Peric, S.; Stevic, Z.; Popadic, D.; Vukovic, I.; Stojanov, A.; Milosevic, E. Cytokine Gene Polymorphisms in Patients with Chronic Inflammatory Demyelinating Polyneuropathy. Cells 2023, 12, 2033. https://doi.org/10.3390/cells12162033
Bozovic I, Perovic V, Basta I, Peric S, Stevic Z, Popadic D, Vukovic I, Stojanov A, Milosevic E. Cytokine Gene Polymorphisms in Patients with Chronic Inflammatory Demyelinating Polyneuropathy. Cells. 2023; 12(16):2033. https://doi.org/10.3390/cells12162033
Chicago/Turabian StyleBozovic, Ivo, Vladimir Perovic, Ivana Basta, Stojan Peric, Zorica Stevic, Dusan Popadic, Irena Vukovic, Aleksandar Stojanov, and Emina Milosevic. 2023. "Cytokine Gene Polymorphisms in Patients with Chronic Inflammatory Demyelinating Polyneuropathy" Cells 12, no. 16: 2033. https://doi.org/10.3390/cells12162033
APA StyleBozovic, I., Perovic, V., Basta, I., Peric, S., Stevic, Z., Popadic, D., Vukovic, I., Stojanov, A., & Milosevic, E. (2023). Cytokine Gene Polymorphisms in Patients with Chronic Inflammatory Demyelinating Polyneuropathy. Cells, 12(16), 2033. https://doi.org/10.3390/cells12162033