Regulation of Tau Expression in Superior Cervical Ganglion (SCG) Neurons In Vivo and In Vitro
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Tissue Preparation
2.2. Primary SCG Culture
2.3. SCG Explant Culture
2.4. Western Blots
2.5. Polymerase Chain Reaction (PCR)
2.6. Immunocytochemical/Histochemical Staining
2.7. Statistical Analysis
3. Results
3.1. Expression and Structure of Big Tau
3.2. Developmental Regulation of Tau Expression in SCG
3.3. Histological Analysis of Big Tau
3.4. Expression of Big Tau in Cultured Postnatal SCG Neurons
3.5. Analysis of Big Tau in SCG Explants
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DRG | dorsal root ganglion |
SCG | superior cervical ganglion |
LMW | low molecular weight |
kDa | kilo-Dalton |
CNS | central nervous system |
PNS | peripheral nervous system |
NGF | nerve growth factor |
FBS | fetal bovine serum |
PBS | phosphate-buffered saline |
PFA | paraformaldehyde |
PCR | polymerase chain reaction |
MAP | microtubule associated protein |
MAPT | microtubule-associated protein tau |
MTBD | microtubule binding domain |
CGRP | calcitonin gene related peptide |
References
- Holt, M.; Adams, B.; Chandrasekaran, V. Culturing Rat Sympathetic Neurons from Embryonic Superior Cervical Ganglia for Morphological and Proteomic Analysis. J. Vis. Exp. 2020, 163. [Google Scholar] [CrossRef] [PubMed]
- de Almeida-Leite, C.M.; Arantes, R.M. Primary Culture of Glial Cells from Mouse Sympathetic Cervical Ganglion: A Valuable Tool for Studying Glial Cell Biology. J. Neurosci. Methods 2010, 194, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Peng, I.; Binder, L.I.; Black, M.M. Biochemical and Immunological Analyses of Cytoskeletal Domains of Neurons. J. Cell Biol. 1986, 102, 252–262. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Baas, P.W. Growing and Working with Peripheral Neurons. Methods Cell Biol. 2003, 71, 17–35. [Google Scholar] [PubMed]
- Amendola, J.; Boumedine, N.; Sangiardi, M.; El Far, O. Optimization of Neuronal Cultures from Rat Superior Cervical Ganglia for Dual Patch Recording. Sci. Rep. 2015, 5, 14455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Horn, J.P. Physiological Classification of Sympathetic Neurons in the Rat Superior Cervical Ganglion. J. Neurophysiol. 2006, 95, 187–195. [Google Scholar] [CrossRef]
- Gilley, J.; Loreto, A. Microinjection of Superior Cervical Ganglion Neurons for Studying Axon Degeneration. Methods Mol. Biol. 2020, 2143, 25–39. [Google Scholar]
- Fischer, I.; Baas, P.W. Resurrecting the Mysteries of Big Tau. Trends Neurosci. 2020, 43, 493–504. [Google Scholar] [CrossRef]
- Black, M.M.; Slaughter, T.; Moshiach, S.; Obrocka, M.; Fischer, I. Tau Is Enriched on Dynamic Microtubules in the Distal Region of Growing Axons. J. Neurosci. 1996, 16, 3601–3619. [Google Scholar] [CrossRef] [Green Version]
- Goedert, M.; Spillantini, M.G.; Crowther, R.A. Cloning of a Big Tau Microtubule-Associated Protein Characteristic of the Peripheral Nervous System. Proc. Natl. Acad. Sci. USA 1992, 89, 1983–1987. [Google Scholar] [CrossRef] [Green Version]
- Couchie, D.; Mavilia, C.; Georgieff, I.S.; Liem, R.K.; Shelanski, M.L.; Nunez, J. Primary Structure of High Molecular Weight Tau Present in the Peripheral Nervous System. Proc. Natl. Acad. Sci. USA 1992, 89, 4378–4381. [Google Scholar] [CrossRef] [PubMed]
- Georgieff, I.S.; Liem, R.K.; Couchie, D.; Mavilia, C.; Nunez, J.; Shelanski, M.L. Expression of High Molecular Weight Tau in the Central and Peripheral Nervous Systems. J. Cell Sci. 1993, 105, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Boyne, L.J.; Tessler, A.; Murray, M.; Fischer, I. Distribution of Big Tau in the Central Nervous System of the Adult and Developing Rat. J. Comp. Neurol. 1995, 358, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Olesen, O.F.; Kawabata-Fukui, H.; Yoshizato, K.; Noro, N. Molecular Cloning of Xtp, a Tau-Like Microtubule-Associated Protein from Xenopus Laevis Tadpoles. Gene 2002, 283, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Fischer, I. Evolutionary Perspective of Big Tau Structure: 4a Exon Variants of Mapt. Front. Mol. Neurosci. 2022, 15, 1019999. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. Nih Image to Imagej: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Frappier, T.F.; Georgieff, I.S.; Brown, K.; Shelanski, M.L. Tau Regulation of Microtubule-Microtubule Spacing and Bundling. J. Neurochem. 1994, 63, 2288–2294. [Google Scholar] [CrossRef]
- Baas, P.W.; Pienkowski, T.P.; Cimbalnik, K.A.; Toyama, K.; Bakalis, S.; Ahmad, F.J.; Kosik, K.S. Tau Confers Drug Stability but Not Cold Stability to Microtubules in Living Cells. J. Cell Sci. 1994, 107, 135–143. [Google Scholar] [CrossRef]
- Wehner, A.B.; Abdesselem, H.; Dickendesher, T.L.; Imai, F.; Yoshida, Y.; Giger, R.J.; Pierchala, B.A. Semaphorin 3a Is a Retrograde Cell Death Signal in Developing Sympathetic Neurons. Development 2016, 143, 1560–1570. [Google Scholar] [CrossRef] [Green Version]
- Kawataki, T.; Osafune, K.; Suzuki, M.; Koike, T. Neuronal Maturation-Associated Resistance of Neurite Degeneration Caused by Trophic Factor Deprivation or Microtubule-Disrupting Agents. Brain Res. 2008, 1230, 37–49. [Google Scholar] [CrossRef]
- Majdazari, A.; Stubbusch, J.; Muller, C.M.; Hennchen, M.; Weber, M.; Deng, C.X.; Mishina, Y.; Schutz, G.; Deller, T.; Rohrer, H. Dendrite Complexity of Sympathetic Neurons Is Controlled During Postnatal Development by Bmp Signaling. J. Neurosci. 2013, 33, 15132–15144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrino, M.J.; Habecker, B.A. Stat3 Integrates Cytokine and Neurotrophin Signals to Promote Sympathetic Axon Regeneration. Mol. Cell Neurosci. 2013, 56, 272–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Fukui, K.; Koike, T.; Zheng, X. Induction of Autophagy in Neurite Degeneration of Mouse Superior Cervical Ganglion Neurons. Eur. J. Neurosci. 2007, 26, 2979–2988. [Google Scholar] [CrossRef] [PubMed]
- Jean, D.C.; Baas, P.W.; Black, M.M. A Novel Role for Doublecortin and Doublecortin-Like Kinase in Regulating Growth Cone Microtubules. Hum. Mol. Genet. 2012, 21, 5511–5527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.; Leugers, C.J. Tau and Tauopathies. Prog. Mol. Biol. Transl. Sci. 2012, 107, 263–293. [Google Scholar]
- Ruiz-Gabarre, D.; Carnero-Espejo, A.; Avila, J.; Garcia-Escudero, V. What’s in a Gene? The Outstanding Diversity of Mapt. Cells 2022, 11, 840. [Google Scholar] [CrossRef]
- Castellani, R.J. The Significance of Tau Aggregates in the Human Brain. Brain Sci. 2020, 10, 972. [Google Scholar] [CrossRef]
- Song, L.; Wells, E.A.; Robinson, A.S. Critical Molecular and Cellular Contributors to Tau Pathology. Biomedicines 2021, 9, 190. [Google Scholar] [CrossRef]
- Rosler, T.W.; Tayaranian Marvian, A.; Brendel, M.; Nykanen, N.P.; Hollerhage, M.; Schwarz, S.C.; Hopfner, F.; Koeglsperger, T.; Respondek, G.; Schweyer, K.; et al. Four-Repeat Tauopathies. Prog. Neurobiol. 2019, 180, 101644. [Google Scholar] [CrossRef]
- Haberberger, R.V.; Barry, C.; Dominguez, N.; Matusica, D. Human Dorsal Root Ganglia. Front Cell Neurosci. 2019, 13, 271. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Petitpre, C.; Fontanet, P.; Sharma, A.; Bellardita, C.; Quadros, R.M.; Jannig, P.R.; Wang, Y.; Heimel, J.A.; Cheung, K.K.Y.; et al. Distinct Subtypes of Proprioceptive Dorsal Root Ganglion Neurons Regulate Adaptive Proprioception in Mice. Nat. Commun. 2021, 12, 1026. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.Q.; von Buchholtz, L.J.; Reker, A.N.; Ryba, N.J.; Davidson, S. Single-Nucleus Transcriptomic Analysis of Human Dorsal Root Ganglion Neurons. eLife 2021, 10, e71752. [Google Scholar] [CrossRef] [PubMed]
- Oblinger, M.M.; Argasinski, A.; Wong, J.; Kosik, K.S. Tau Gene Expression in Rat Sensory Neurons During Development and Regeneration. J. Neurosci. 1991, 11, 2453–2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon-Weeks, P.R.; Fischer, I. Map1b Expression and Microtubule Stability in Growing and Regenerating Axons. Microsc. Res. Technol. 2000, 48, 63–74. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Connors, T.; Bouyer, J.; Fischer, I. Regulation of Tau Expression in Superior Cervical Ganglion (SCG) Neurons In Vivo and In Vitro. Cells 2023, 12, 226. https://doi.org/10.3390/cells12020226
Jin Y, Connors T, Bouyer J, Fischer I. Regulation of Tau Expression in Superior Cervical Ganglion (SCG) Neurons In Vivo and In Vitro. Cells. 2023; 12(2):226. https://doi.org/10.3390/cells12020226
Chicago/Turabian StyleJin, Ying, Theresa Connors, Julien Bouyer, and Itzhak Fischer. 2023. "Regulation of Tau Expression in Superior Cervical Ganglion (SCG) Neurons In Vivo and In Vitro" Cells 12, no. 2: 226. https://doi.org/10.3390/cells12020226
APA StyleJin, Y., Connors, T., Bouyer, J., & Fischer, I. (2023). Regulation of Tau Expression in Superior Cervical Ganglion (SCG) Neurons In Vivo and In Vitro. Cells, 12(2), 226. https://doi.org/10.3390/cells12020226