Electrical Remodelling in Cardiac Disease
1. Introduction
2. Cardiac Electrical Activity and Disease-Induced Electrical Remodelling
3. Ion Channels
4. Calcium-Handling Proteins
5. Conduction
6. Fibrosis
7. Arrhythmias Associated with Specific Cardiac Diseases
8. Computational Simulation of Electrical Remodelling
9. Outlook
Acknowledgments
Conflicts of Interest
References
- Tse, G. Mechanisms of cardiac arrhythmias. J. Arrhythmia 2016, 32, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bers, D.M. Sarcoplasmic reticulum Ca release in intact ventricular myocytes. Front. Biosci. A J. Virtual Libr. 2002, 7, d1697–d1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berlin, J.R.; Cannell, M.B.; Lederer, W.J. Cellular origins of the transient inward current in cardiac myocytes. Role of fluctuations and waves of elevated intracellular calcium. Circ. Res. 1989, 65, 115–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ter Keurs, H.E.; Wakayama, Y.; Miura, M.; Shinozaki, T.; Stuyvers, B.D.; Boyden, P.A.; Landesberg, A. Arrhythmogenic Ca2+ release from cardiac myofilaments. Prog. Biophys. Mol. Biol. 2006, 90, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Tanaka, H.; Mani, H.; Nakagami, T.; Takamatsu, T. Burst emergence of intracellular Ca2+ waves evokes arrhythmogenic oscillatory depolarization via the Na+-Ca2+ exchanger: Simultaneous confocal recording of membrane potential and intracellular Ca2+ in the heart. Circ. Res. 2008, 103, 509–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beuckelmann, D.J.; Näbauer, M.; Erdmann, E. Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ. Res. 1993, 73, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Wijffels, M.C.; Kirchhof, C.J.; Dorland, R.; Allessie, M.A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995, 92, 1954–1968. [Google Scholar] [CrossRef]
- Hamill, O.P.; Marty, A.; Neher, E.; Sakmann, B.; Sigworth, F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflug. Arch. Eur. J. Physiol. 1981, 391, 85–100. [Google Scholar] [CrossRef]
- Greiner, J.; Schiatti, T.; Kaltenbacher, W.; Dente, M.; Semenjakin, A.; Kok, T.; Fiegle, D.J.; Seidel, T.; Ravens, U.; Kohl, P.; et al. Consecutive-day ventricular and atrial cardiomyocyte isolations from the same heart: Shifting the cost-benefit balance of cardiac primary cell research. Cells 2022, 11, 233. [Google Scholar] [CrossRef]
- Blandin, C.E.; Gravez, B.J.; Hatem, S.N.; Balse, E. Remodeling of ion channel trafficking and cardiac arrhythmias. Cells 2021, 10, 2417. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, F.; Frey, N.; Schmidt, C. Two-pore-domain potassium (k2p−) channels: Cardiac expression patterns and disease-specific remodelling processes. Cells 2021, 10, 2914. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Wiedmann, F.; Voigt, N.; Zhou, X.B.; Heijman, J.; Lang, S.; Albert, V.; Kallenberger, S.; Ruhparwar, A.; Szabo, G.; et al. Upregulation of K2P3.1 K+ current causes action potential shortening in patients with chronic atrial fibrillation. Circulation 2015, 132, 82–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, C.; Wiedmann, F.; Zhou, X.B.; Heijman, J.; Voigt, N.; Ratte, A.; Lang, S.; Kallenberger, S.M.; Campana, C.; Weymann, A.; et al. Inverse remodelling of K2P3.1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation: Implications for patient-specific antiarrhythmic drug therapy. Eur. Heart J. 2017, 38, 1764. [Google Scholar] [CrossRef] [Green Version]
- Guinamard, R.; Demion, M.; Magaud, C.; Potreau, D.; Bois, P. Functional expression of the TRPM4 cationic current in ventricular cardiomyocytes from spontaneously hypertensive rats. Hypertension 2006, 48, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Reil, J.C.; Hohl, M.; Selejan, S.; Lipp, P.; Drautz, F.; Kazakow, A.; Münz, B.M.; Müller, P.; Steendijk, P.; Reil, G.H.; et al. Aldosterone promotes atrial fibrillation. Eur. Heart J. 2012, 33, 2098–2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simard, C.; Ferchaud, V.; Sallé, L.; Milliez, P.; Manrique, A.; Alexandre, J.; Guinamard, R. TRPM4 participates in aldosterone-salt-induced electrical atrial remodeling in mice. Cells 2021, 10, 636. [Google Scholar] [CrossRef]
- El-Armouche, A.; Boknik, P.; Eschenhagen, T.; Carrier, L.; Knaut, M.; Ravens, U.; Dobrev, D. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation 2006, 114, 670–680. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, F.; Beneke, K.; Pavlidou, N.G.; Conradi, L.; Reichenspurner, H.; Hove-Madsen, L.; Molina, C.E. Abnormal calcium handling in atrial fibrillation is linked to changes in cyclic amp dependent signaling. Cells 2021, 10, 3042. [Google Scholar] [CrossRef]
- Wright, P.T.; Gorelik, J.; Harding, S.E. Electrophysiological Remodeling: Cardiac T-tubules and ß-adrenoceptors. Cells 2021, 10, 2456. [Google Scholar] [CrossRef]
- Zhang, X.; Smith, C.E.R.; Morotti, S.; Edwards, A.G.; Sato, D.; Louch, W.E.; Ni, H.; Grandi, E. Mechanisms of spontaneous Ca2+ release-mediated arrhythmia in a novel 3D human atrial myocyte model: II Ca2+ -handling protein variation. J. Physiol. 2022. early view. [Google Scholar] [CrossRef]
- Han, B.; Trew, M.L.; Zgierski-Johnston, C.M. Cardiac conduction velocity, remodeling and arrhythmogenesis. Cells 2021, 10, 2923. [Google Scholar] [CrossRef] [PubMed]
- Dhein, S.; Salameh, A. Remodeling of cardiac gap junctional cell-cell coupling. Cells 2021, 10, 2422. [Google Scholar] [CrossRef] [PubMed]
- Verheule, S.; Schotten, U. Electrophysiological consequences of cardiac fibrosis. Cells 2021, 10, 3220. [Google Scholar] [CrossRef]
- Morillo, C.A.; Klein, G.J.; Jones, D.L.; Guiraudon, C.M. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 1995, 91, 1588–1595. [Google Scholar] [CrossRef]
- Goette, A.; Kalman, J.M.; Aguinaga, L.; Akar, J.; Cabrera, J.A.; Chen, S.A.; Chugh, S.S.; Corradi, D.; D’Avila, A.; Dobrev, D.; et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: Definition, characterisation, and clinical implication. J. Arrhythmia 2016, 32, 247–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goette, A.; Lendeckel, U. Atrial cardiomyopathy: Pathophysiology and clinical consequences. Cells 2021, 10, 2605. [Google Scholar] [CrossRef] [PubMed]
- Iop, L.; Iliceto, S.; Civieri, G.; Tona, F. Inherited and acquired rhythm disturbances in sick sinus syndrome, brugada syndrome, and atrial fibrillation: Lessons from preclinical modeling. Cells 2021, 10, 3175. [Google Scholar] [CrossRef] [PubMed]
- Husti, Z.; Varró, A.; Baczkó, I. Arrhythmogenic remodeling in the failing heart. Cells 2021, 10, 3203. [Google Scholar] [CrossRef]
- Mages, C.; Gampp, H.; Syren, P.; Rahm, A.K.; André, F.; Frey, N.; Lugenbiel, P.; Thomas, D. Electrical ventricular remodeling in dilated cardiomyopathy. Cells 2021, 10, 2767. [Google Scholar] [CrossRef]
- Santini, L.; Coppini, R.; Cerbai, E. Ion channel impairment and myofilament Ca2+ sensitization: Two parallel mechanisms underlying arrhythmogenesis in hypertrophic cardiomyopathy. Cells 2021, 10, 2789. [Google Scholar] [CrossRef]
- Amoni, M.; Dries, E.; Ingelaere, S.; Vermoortele, D.; Roderick, H.L.; Claus, P.; Willems, R.; Sipido, K.R. Ventricular arrhythmias in ischemic cardiomyopathy-new avenues for mechanism-guided treatment. Cells 2021, 10, 2629. [Google Scholar] [CrossRef] [PubMed]
- Heijman, J.; Sutanto, H.; Crijns, H.; Nattel, S.; Trayanova, N.A. Computational models of atrial fibrillation: Achievements, challenges and perspectives for improving clinical care. Cardiovasc. Res. 2021, 117, 1682–1699. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.A.; Camelliti, P.; Rog-Zielinska, E.A.; Siedlecka, U.; Poggioli, T.; O’Toole, E.T.; Knopfel, T.; Kohl, P. Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc. Natl. Acad. Sci. USA 2016, 113, 14852–14857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, J.; Trenor, B.; Saiz, J.; Dössel, O.; Loewe, A. Fibrotic remodeling during persistent atrial fibrillation: In silico investigation of the role of calcium for human atrial myofibroblast electrophysiology. Cells 2021, 10, 2852. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.I.; Yeh, C.H.; Tsai, T.H.; Chou, Y.J.; Hsu, P.W.; Li, C.H.; Chan, Y.H.; Kuo, L.T.; Mao, C.T.; Shyu, Y.C.; et al. Artificial intelligence-assisted identification of genetic factors predisposing high-risk individuals to asymptomatic heart failure. Cells 2021, 10, 2430. [Google Scholar] [CrossRef]
- Martins-Marques, T.; Girão, H. The good, the bad and the ugly: The impact of extracellular vesicles on the cardiovascular system. J. Physiol. 2022. early view. [Google Scholar] [CrossRef]
- Perkins, D.R.; Talbot, J.S.; Lord, R.N.; Dawkins, T.G.; Baggish, A.L.; Zaidi, A.; Uzun, O.; Mackintosh, K.A.; McNarry, M.A.; Cooper, S.M.; et al. The influence of maturation on exercise-induced cardiac remodelling and haematological adaptation. J. Physiol. 2022, 600, 583–601. [Google Scholar] [CrossRef]
- Harraz, O.F.; Jensen, L.J. Vascular calcium signalling and ageing. J. Physiol. 2021, 599, 5361–5377. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravens, U.; Peyronnet, R. Electrical Remodelling in Cardiac Disease. Cells 2023, 12, 230. https://doi.org/10.3390/cells12020230
Ravens U, Peyronnet R. Electrical Remodelling in Cardiac Disease. Cells. 2023; 12(2):230. https://doi.org/10.3390/cells12020230
Chicago/Turabian StyleRavens, Ursula, and Rémi Peyronnet. 2023. "Electrical Remodelling in Cardiac Disease" Cells 12, no. 2: 230. https://doi.org/10.3390/cells12020230
APA StyleRavens, U., & Peyronnet, R. (2023). Electrical Remodelling in Cardiac Disease. Cells, 12(2), 230. https://doi.org/10.3390/cells12020230