Current Biomarker Strategies in Autoimmune Neuromuscular Diseases
Abstract
:1. Introduction: The Need for Biomarkers in Inflammatory Neuromuscular Disorders
2. On the Concept of Biomarkers
3. Biomarkers in GBS and CIDP
3.1. Current Biomarkers in GBS and CIDP
3.2. Diagnostic Biomarkers
3.3. Predictive Biomarkers
3.4. Prognostic Biomarkers
3.5. Monitoring Biomarkers
3.6. Required Biomarkers in GBS and CIDP
4. Biomarkers in MG
4.1. Current Biomarkers in MG
4.2. Diagnostic Biomarkers
4.3. Predictive Biomarkers
4.4. Prognostic Biomarkers
4.5. Monitoring Biomarkers
4.6. Required Biomarkers in MG
5. Biomarkers in IIM
5.1. Current Biomarkers in IIM
5.2. Myositis-Specific Autoantibodies (MSA)
5.3. Further Biomarkers
5.4. Required Biomarkers in IIM
6. Outlook
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Punga, A.R.; Maddison, P.; Heckmann, J.M.; Guptill, J.T.; Evoli, A. Epidemiology, diagnostics, and biomarkers of autoimmune neuromuscular junction disorders. Lancet Neurol. 2022, 21, 176–188. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Robb, M.A.; McInnes, P.M.; Califf, R.M. Biomarkers and Surrogate Endpoints: Developing Common Terminology and Definitions. JAMA 2016, 315, 1107–1108. [Google Scholar] [CrossRef] [PubMed]
- Islam, Z.; van Belkum, A.; Wagenaar, J.A.; Cody, A.J.; de Boer, A.G.; Tabor, H.; Jacobs, B.C.; Talukder, K.A.; Endtz, H.P. Comparative genotyping of Campylobacter jejuni strains from patients with Guillain-Barré syndrome in Bangladesh. PLoS ONE 2009, 4, e7257. [Google Scholar] [CrossRef] [PubMed]
- Godschalk, P.C.; Kuijf, M.L.; Li, J.; St Michael, F.; Ang, C.W.; Jacobs, B.C.; Karwaski, M.F.; Brochu, D.; Moterassed, A.; Endtz, H.P.; et al. Structural characterization of Campylobacter jejuni lipooligosaccharide outer cores associated with Guillain-Barre and Miller Fisher syndromes. Infect. Immun. 2007, 75, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, N.; Piao, H.; Minohara, M.; Matsushita, T.; Kusunoki, S.; Matsumoto, H.; Ikenaka, K.; Mizunoe, Y.; Kira, J. Campylobacter jejuni DNA-binding protein from starved cells in Guillain-Barré syndrome patients. J. Neuroimmunol. 2011, 240–241, 74–78. [Google Scholar] [CrossRef]
- Cosentino, G.; Di Stefano, V.; Presti, R.L.; Montana, M.; Todisco, M.; Gastaldi, M.; Cortese, A.; Alfonsi, E.; Tassorelli, C.; Fierro, B.; et al. Expression pattern of matrix metalloproteinases-2 and -9 and their tissue inhibitors in patients with chronic inflammatory demyelinating polyneuropathy. Neurol. Sci. 2021, 42, 4297–4300. [Google Scholar] [CrossRef]
- Csurhes, P.A.; Sullivan, A.A.; Green, K.; Pender, M.P.; McCombe, P.A. T cell reactivity to P0, P2, PMP-22, and myelin basic protein in patients with Guillain-Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1431–1439. [Google Scholar] [CrossRef] [PubMed]
- Kwa, M.S.; van Schaik, I.N.; Brand, A.; Baas, F.; Vermeulen, M. Investigation of serum response to PMP22, connexin 32 and P(0) in inflammatory neuropathies. J. Neuroimmunol. 2001, 116, 220–225. [Google Scholar] [CrossRef]
- Gabriel, C.M.; Gregson, N.A.; Hughes, R.A. Anti-PMP22 antibodies in patients with inflammatory neuropathy. J. Neuroimmunol. 2000, 104, 139–146. [Google Scholar] [CrossRef]
- Inglis, H.R.; Csurhes, P.A.; McCombe, P.A. Antibody responses to peptides of peripheral nerve myelin proteins P0 and P2 in patients with inflammatory demyelinating neuropathy. J. Neurol. Neurosurg. Psychiatry 2007, 78, 419–422. [Google Scholar] [CrossRef]
- Makowska, A.; Pritchard, J.; Sanvito, L.; Gregson, N.; Peakman, M.; Hayday, A.; Hughes, R. Immune responses to myelin proteins in Guillain-Barré syndrome. J. Neurol. Neurosurg. Psychiatry 2008, 79, 664–671. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, D.; Ehrhardt, P.; Müller, H.W. Peripheral myelin protein 22 and protein zero: A novel association in peripheral nervous system myelin. J. Neurosci. 1999, 19, 3396–3403. [Google Scholar] [CrossRef]
- Dahle, C.; Ekerfelt, C.; Vrethem, M.; Samuelsson, M.; Ernerudh, J. T helper type 2 like cytokine responses to peptides from P0 and P2 myelin proteins during the recovery phase of Guillain-Barré syndrome. J. Neurol. Sci. 1997, 153, 54–60. [Google Scholar] [CrossRef]
- Capodivento, G.; De Michelis, C.; Carpo, M.; Fancellu, R.; Schirinzi, E.; Severi, D.; Visigalli, D.; Franciotta, D.; Manganelli, F.; Siciliano, G.; et al. CSF sphingomyelin: A new biomarker of demyelination in the diagnosis and management of CIDP and GBS. J. Neurol. Neurosurg. Psychiatry 2021, 92, 303–310. [Google Scholar] [CrossRef]
- Nagai, A.; Murakawa, Y.; Terashima, M.; Shimode, K.; Umegae, N.; Takeuchi, H.; Kobayashi, S. Cystatin C and cathepsin B in CSF from patients with inflammatory neurologic diseases. Neurology 2000, 55, 1828–1832. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.R.; Liu, S.L.; Qin, Z.Y.; Liu, F.J.; Qin, Y.J.; Bai, S.M.; Chen, Z.Y. Comparative proteomics analysis of cerebrospinal fluid of patients with Guillain-Barré syndrome. Cell Mol. Neurobiol. 2008, 28, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, S.; Zhang, R.; Pei, J.; Chen, L.; Cao, Y.; Zhang, H.; Yang, G. Identification of CSF biomarkers by proteomics in Guillain-Barré syndrome. Exp. Med. 2018, 15, 5177–5182. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, S.; Qin, Z.; Cui, Y.; Qin, Y.; Bai, S. Alteration of cystatin C levels in cerebrospinal fluid of patients with Guillain-Barré Syndrome by a proteomical approach. Mol. Biol. Rep. 2009, 36, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Bersano, A.; Allaria, S.; Nobile-Orazio, E. 14-3-3 protein in the CSF of inflammatory peripheral neuropathies. J. Peripher. Nerv. Syst. 2004, 9, 108. [Google Scholar] [CrossRef]
- Bersano, A.; Fiorini, M.; Allaria, S.; Zanusso, G.; Fasoli, E.; Gelati, M.; Monaco, H.; Squintani, G.; Monaco, S.; Nobile-Orazio, E. Detection of CSF 14-3-3 protein in Guillain-Barré syndrome. Neurology 2006, 67, 2211–2216. [Google Scholar] [CrossRef]
- Breville, G.; Lascano, A.M.; Roux-Lombard, P.; Vuilleumier, N.; Lalive, P.H. Interleukin 8, a Biomarker to Differentiate Guillain-Barré Syndrome From CIDP. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1031. [Google Scholar] [CrossRef] [PubMed]
- Koga, M.; Yuki, N.; Ariga, T.; Hirata, K. Antibodies to GD3, GT3, and O-acetylated species in Guillain-Barré and Fisher’s syndromes: Their association with cranial nerve dysfunction. J. Neurol. Sci. 1999, 164, 50–55. [Google Scholar] [CrossRef]
- Shahrizaila, N.; Kokubun, N.; Sawai, S.; Umapathi, T.; Chan, Y.C.; Kuwabara, S.; Hirata, K.; Yuki, N. Antibodies to single glycolipids and glycolipid complexes in Guillain-Barré syndrome subtypes. Neurology 2014, 83, 118–124. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Zhu, J.; Cui, L.; Zhang, H.L. Biomarkers of Guillain-Barré Syndrome: Some Recent Progress, More Still to Be Explored. Mediat. Inflamm. 2015, 2015, 564098. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Uncini, A.; Yuki, N.; Misawa, S.; Notturno, F.; Nasu, S.; Kanai, K.; Noto, Y.; Fujimaki, Y.; Shibuya, K.; et al. Antiganglioside antibodies are associated with axonal Guillain-Barré syndrome: A Japanese-Italian collaborative study. J. Neurol. Neurosurg. Psychiatry 2012, 83, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Rees, J.H.; Gregson, N.A.; Hughes, R.A. Anti-ganglioside GM1 antibodies in Guillain-Barré syndrome and their relationship to Campylobacter jejuni infection. Ann. Neurol. 1995, 38, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, B.C.; van Doorn, P.A.; Schmitz, P.I.; Tio-Gillen, A.P.; Herbrink, P.; Visser, L.H.; Hooijkass, H.; van der Meché, F.G. Campylobacter jejuni infections and anti-GM1 antibodies in Guillain-Barré syndrome. Ann. Neurol. 1996, 40, 181–187. [Google Scholar] [CrossRef]
- Chiba, A.; Kusunoki, S.; Obata, H.; Machinami, R.; Kanazawa, I. Serum anti-GQ1b IgG antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain-Barré syndrome: Clinical and immunohistochemical studies. Neurology 1993, 43, 1911–1917. [Google Scholar] [CrossRef]
- Querol, L.; Nogales-Gadea, G.; Rojas-Garcia, R.; Martinez-Hernandez, E.; Diaz-Manera, J.; Suárez-Calvet, X.; Navas, M.; Araque, J.; Gallardo, E.; Illa, I. Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy. Ann. Neurol. 2013, 73, 370–380. [Google Scholar] [CrossRef]
- Pascual-Goñi, E.; Fehmi, J.; Lleixà, C.; Martín-Aguilar, L.; Devaux, J.; Höftberger, R.; Delmont, E.; Doppler, K.; Sommer, C.; Radunovic, A.; et al. Antibodies to the Caspr1/contactin-1 complex in chronic inflammatory demyelinating polyradiculoneuropathy. Brain 2021, 144, 1183–1196. [Google Scholar] [CrossRef]
- Cortese, A.; Lombardi, R.; Briani, C.; Callegari, I.; Benedetti, L.; Manganelli, F.; Luigetti, M.; Ferrari, S.; Clerici, A.M.; Marfia, G.A.; et al. Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: Clinical relevance of IgG isotype. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e639. [Google Scholar] [CrossRef]
- Ogata, H.; Yamasaki, R.; Hiwatashi, A.; Oka, N.; Kawamura, N.; Matsuse, D.; Kuwahara, M.; Suzuki, H.; Kusunoki, S.; Fujimoto, Y.; et al. Characterization of IgG4 anti-neurofascin 155 antibody-positive polyneuropathy. Ann. Clin. Transl. Neurol. 2015, 2, 960–971. [Google Scholar] [CrossRef]
- Devaux, J.J.; Miura, Y.; Fukami, Y.; Inoue, T.; Manso, C.; Belghazi, M.; Sekiguchi, K.; Kokubun, N.; Ichikawa, H.; Wong, A.H.; et al. Neurofascin-155 IgG4 in chronic inflammatory demyelinating polyneuropathy. Neurology 2016, 86, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Devaux, J.J.; Fukami, Y.; Manso, C.; Belghazi, M.; Wong, A.H.; Yuki, N. Contactin 1 IgG4 associates to chronic inflammatory demyelinating polyneuropathy with sensory ataxia. Brain 2015, 138, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Shelly, S.; Klein, C.J.; Dyck, P.J.B.; Paul, P.; Mauermann, M.L.; Berini, S.E.; Howe, B.; Fryer, J.P.; Basal, E.; Bakri, H.M.; et al. Neurofascin-155 Immunoglobulin Subtypes: Clinicopathologic Associations and Neurologic Outcomes. Neurology 2021, 97, e2392–e2403. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.K.; Malotka, J.; Kawakami, N.; Derfuss, T.; Khademi, M.; Olsson, T.; Linington, C.; Odaka, M.; Tackenberg, B.; Prüss, H.; et al. Neurofascin as a target for autoantibodies in peripheral neuropathies. Neurology 2012, 79, 2241–2248. [Google Scholar] [CrossRef] [PubMed]
- Lonigro, A.; Devaux, J.J. Disruption of neurofascin and gliomedin at nodes of Ranvier precedes demyelination in experimental allergic neuritis. Brain 2009, 132, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Rao, M.V.; Veeranna; Nixon, R.A. Neurofilaments at a glance. J. Cell Sci. 2012, 125, 3257–3263. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A.; Hinds, N.; Murray, N.M.; Hirsch, N.P.; Grant, D.; Keir, G.; Thompson, E.J.; Reilly, M.M. CSF neurofilament levels: A potential prognostic marker in Guillain-Barré syndrome. Neurology 2006, 67, 1071–1073. [Google Scholar] [CrossRef]
- Godelaine, J.; De Schaepdryver, M.; Bossuyt, X.; Van Damme, P.; Claeys, K.G.; Poesen, K. Prognostic value of neurofilament light chain in chronic inflammatory demyelinating polyneuropathy. Brain Commun. 2021, 3. [Google Scholar] [CrossRef]
- Wang, X.K.; Zhang, H.L.; Meng, F.H.; Chang, M.; Wang, Y.Z.; Jin, T.; Mix, E.; Zhu, J. Elevated levels of S100B, tau and pNFH in cerebrospinal fluid are correlated with subtypes of Guillain-Barré syndrome. Neurol. Sci. 2013, 34, 655–661. [Google Scholar] [CrossRef]
- Limberg, M.; Disanto, G.; Barro, C.; Kuhle, J. Neurofilament Light Chain Determination from Peripheral Blood Samples. Methods Mol. Biol. 2016, 1304, 93–98. [Google Scholar] [CrossRef]
- Kmezic, I.; Samuelsson, K.; Finn, A.; Upate, Z.; Blennow, K.; Zetterberg, H.; Press, R. Neurofilament light chain and total tau in the differential diagnosis and prognostic evaluation of acute and chronic inflammatory polyneuropathies. Eur. J. Neurol. 2022, 29, 2810–2822. [Google Scholar] [CrossRef]
- Medeiros, R.; Baglietto-Vargas, D.; LaFerla, F.M. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci. 2011, 17, 514–524. [Google Scholar] [CrossRef]
- Kusunoki, S.; Chiba, A.; Hitoshi, S.; Takizawa, H.; Kanazawa, I. Anti-Gal-C antibody in autoimmune neuropathies subsequent to mycoplasma infection. Muscle Nerve 1995, 18, 409–413. [Google Scholar] [CrossRef]
- Samukawa, M.; Hamada, Y.; Kuwahara, M.; Takada, K.; Hirano, M.; Mitsui, Y.; Sonoo, M.; Kusunoki, S. Clinical features in Guillain-Barré syndrome with anti-Gal-C antibody. J. Neurol. Sci. 2014, 337, 55–60. [Google Scholar] [CrossRef]
- Sterk, M.; Oenings, A.; Eymann, E.; Roos, W. Development of a new automated enzyme immunoassay for the determination of neuron-specific enolase. Anticancer Res. 1999, 19, 2759–2762. [Google Scholar]
- Nagamatsu, M.; Mokuno, K.; Sugimura, K.; Kiyosawa, K.; Aoki, S.; Takahashi, A.; Kato, K. Cerebrospinal fluid levels of S-100b protein and neuron-specific enolase in chronic inflammatory demyelinating polyneuropathy. Acta Neurol. Scand. 1995, 91, 483–487. [Google Scholar] [CrossRef]
- Mokuno, K.; Kiyosawa, K.; Sugimura, K.; Yasuda, T.; Riku, S.; Murayama, T.; Yanagi, T.; Takahashi, A.; Kato, K. Prognostic value of cerebrospinal fluid neuron-specific enolase and S-100b protein in Guillain-Barré syndrome. Acta Neurol. Scand. 1994, 89, 27–30. [Google Scholar] [CrossRef]
- Kropp, S.; Zerr, I.; Schulz-Schaeffer, W.J.; Riedemann, C.; Bodemer, M.; Laske, C.; Kretzschmar, H.A.; Poser, S. Increase of neuron-specific enolase in patients with Creutzfeldt-Jakob disease. Neurosci. Lett. 1999, 261, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Elkarim, R.A.; Dahle, C.; Mustafa, M.; Press, R.; Zou, L.P.; Ekerfelt, C.; Ernerudh, J.; Link, H.; Bakhiet, M. Recovery from Guillain-Barré syndrome is associated with increased levels of neutralizing autoantibodies to interferon-gamma. Clin. Immunol. Immunopathol. 1998, 88, 241–248. [Google Scholar] [CrossRef]
- Li, C.; Zhao, P.; Sun, X.; Che, Y.; Jiang, Y. Elevated levels of cerebrospinal fluid and plasma interleukin-37 in patients with Guillain-Barré syndrome. Mediat. Inflamm. 2013, 2013, 639712. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Wu, L.; Wu, X.; Zhu, J. Can IFN-γ be a therapeutic target in Guillain-Barré syndrome? Expert Opin. Ther. Targets 2014, 18, 355–363. [Google Scholar] [CrossRef]
- Radhakrishnan, V.V.; Sumi, M.G.; Reuben, S.; Mathai, A.; Nair, M.D. Serum tumour necrosis factor-alpha and soluble tumour necrosis factor receptors levels in patients with Guillain-Barre syndrome. Acta Neurol. Scand. 2004, 109, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Yang, X.; Jin, T.; Wu, J.; Hu, L.S.; Chang, M.; Sun, X.J.; Adem, A.; Winblad, B.; Zhu, J. The role of IL-12 and TNF-alpha in AIDP and AMAN. Eur. J. Neurol. 2008, 15, 1100–1105. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jin, T.; Zhang, H.L.; Yu, H.; Meng, F.; Concha Quezada, H.; Zhu, J. Circulating Th17, Th22, and Th1 cells are elevated in the Guillain-Barré syndrome and downregulated by IVIg treatments. Mediat. Inflamm. 2014, 2014, 740947. [Google Scholar] [CrossRef]
- Jander, S.; Stoll, G. Interleukin-18 is induced in acute inflammatory demyelinating polyneuropathy. J. Neuroimmunol. 2001, 114, 253–258. [Google Scholar] [CrossRef]
- Sun, T.; Chen, X.; Shi, S.; Liu, Q.; Cheng, Y. Peripheral Blood and Cerebrospinal Fluid Cytokine Levels in Guillain Barré Syndrome: A Systematic Review and Meta-Analysis. Front. Neurosci. 2019, 13, 717. [Google Scholar] [CrossRef]
- Bao, L.; Lindgren, J.U.; van der Meide, P.; Zhu, S.; Ljunggren, H.G.; Zhu, J. The critical role of IL-12p40 in initiating, enhancing, and perpetuating pathogenic events in murine experimental autoimmune neuritis. Brain Pathol. 2002, 12, 420–429. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhang, Z.; Fauser, U.; Schluesener, H.J. Expression of interleukin-16 in sciatic nerves, spinal roots and spinal cords of experimental autoimmune neuritis rats. Brain Pathol. 2009, 19, 205–213. [Google Scholar] [CrossRef]
- Debnath, M.; Nagappa, M.; Murari, G.; Taly, A.B. IL-23/IL-17 immune axis in Guillain Barré Syndrome: Exploring newer vistas for understanding pathobiology and therapeutic implications. Cytokine 2018, 103, 77–82. [Google Scholar] [CrossRef]
- Hohnoki, K.; Inoue, A.; Koh, C.S. Elevated serum levels of IFN-gamma, IL-4 and TNF-alpha/unelevated serum levels of IL-10 in patients with demyelinating diseases during the acute stage. J. Neuroimmunol. 1998, 87, 27–32. [Google Scholar] [CrossRef]
- Beppu, M.; Sawai, S.; Misawa, S.; Sogawa, K.; Mori, M.; Ishige, T.; Satoh, M.; Nomura, F.; Kuwabara, S. Serum cytokine and chemokine profiles in patients with chronic inflammatory demyelinating polyneuropathy. J. Neuroimmunol. 2015, 279, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Créange, A.; Bélec, L.; Clair, B.; Degos, J.D.; Raphaël, J.C.; Gherardi, R.K. Circulating transforming growth factor beta 1 (TGF-beta1) in Guillain-Barré syndrome: Decreased concentrations in the early course and increase with motor function. J. Neurol. Neurosurg. Psychiatry 1998, 64, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.G.; Ju, W.; Seo, J.-W.; Ha, Y.-E.; Ban, J.-J.; Kwon, Y.N.; Jeong, H.-Y.; Shin, J.-Y.; Kim, S.-M.; Hong, Y.-H.; et al. Serum C3 complement levels predict prognosis and monitor disease activity in Guillain-Barré syndrome. J. Neurol. Sci. 2023, 444, 120512. [Google Scholar] [CrossRef] [PubMed]
- Quast, I.; Keller, C.W.; Hiepe, F.; Tackenberg, B.; Lünemann, J.D. Terminal complement activation is increased and associated with disease severity in CIDP. Ann. Clin. Transl. Neurol. 2016, 3, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Querol, L.A.; Hartung, H.P.; Lewis, R.A.; van Doorn, P.A.; Hammond, T.R.; Atassi, N.; Alonso-Alonso, M.; Dalakas, M.C. The Role of the Complement System in Chronic Inflammatory Demyelinating Polyneuropathy: Implications for Complement-Targeted Therapies. Neurotherapeutics 2022, 19, 864–873. [Google Scholar] [CrossRef]
- Undén, J.; Bellner, J.; Eneroth, M.; Alling, C.; Ingebrigtsen, T.; Romner, B. Raised serum S100B levels after acute bone fractures without cerebral injury. J. Trauma 2005, 58, 59–61. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, J.H.; Jung, J.H.; Kim, S.E.; Kim, H.S.; Jang, M.K.; Park, S.H.; Lee, M.S.; Suk, K.T.; Kim, D.J.; et al. Serum S100B Levels in Patients with Liver Cirrhosis and Hepatic Encephalopathy. Diagnostics 2023, 13, 333. [Google Scholar] [CrossRef]
- Sainaghi, P.P.; Collimedaglia, L.; Alciato, F.; Leone, M.A.; Naldi, P.; Molinari, R.; Monaco, F.; Avanzi, G.C. The expression pattern of inflammatory mediators in cerebrospinal fluid differentiates Guillain-Barré syndrome from chronic inflammatory demyelinating polyneuropathy. Cytokine 2010, 51, 138–143. [Google Scholar] [CrossRef]
- Orlikowski, D.; Chazaud, B.; Plonquet, A.; Poron, F.; Sharshar, T.; Maison, P.; Raphaël, J.C.; Gherardi, R.K.; Créange, A. Monocyte chemoattractant protein 1 and chemokine receptor CCR2 productions in Guillain-Barré syndrome and experimental autoimmune neuritis. J. Neuroimmunol. 2003, 134, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Kieseier, B.C.; Tani, M.; Mahad, D.; Oka, N.; Ho, T.; Woodroofe, N.; Griffin, J.W.; Toyka, K.V.; Ransohoff, R.M.; Hartung, H.P. Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: A central role for IP-10. Brain 2002, 125, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Mahad, D.J.; Howell, S.J.; Woodroofe, M.N. Expression of chemokines in cerebrospinal fluid and serum of patients with chronic inflammatory demyelinating polyneuropathy. J. Neurol. Neurosurg. Psychiatry 2002, 73, 320–323. [Google Scholar] [CrossRef]
- Musso, A.M.; Zanusso, G.L.; Bonazzi, M.L.; Tomelleri, G.; Bonetti, B.; Moretto, G.; Vio, M.; Monaco, S. Increased serum levels of ICAM-1, ELAM-1 and TNF-alpha in inflammatory disorders of the peripheral nervous system. Ital. J. Neurol. Sci. 1994, 15, 267–271. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, F.; Pan, S.; Zhang, J.; Li, W. Fingolimod ameliorates chronic experimental autoimmune neuritis by modulating inflammatory cytokines and Akt/mTOR/NF-κB signaling. Brain Behav. 2023, 13, e2965. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Shi, Q.; Huang, W.; Xing, C.; Hao, Y.; Feng, X.; Yang, Y.; Zhang, A.; Kong, Q.; Yuki, N.; et al. MicroRNA expression profiling in Guillain-Barré syndrome. J. Neuroimmunol. 2016, 301, 12–15. [Google Scholar] [CrossRef]
- Huang, P.; Xu, M.; He, X.Y. Correlations between microRNA-146a and immunoglobulin and inflammatory factors in Guillain-Barré syndrome. J. Int. Med. Res. 2020, 48, 300060520904842. [Google Scholar] [CrossRef]
- Dziadkowiak, E.; Baczyńska, D.; Wieczorek, M.; Olbromski, M.; Moreira, H.; Mrozowska, M.; Budrewicz, S.; Dzięgiel, P.; Barg, E.; Koszewicz, M. miR-31-5p as a Potential Circulating Biomarker and Tracer of Clinical Improvement for Chronic Inflammatory Demyelinating Polyneuropathy. Oxid. Med. Cell Longev. 2023, 2023, 2305163. [Google Scholar] [CrossRef]
- Heldal, A.T.; Eide, G.E.; Romi, F.; Owe, J.F.; Gilhus, N.E. Repeated acetylcholine receptor antibody-concentrations and association to clinical myasthenia gravis development. PLoS ONE 2014, 9, e114060. [Google Scholar] [CrossRef] [PubMed]
- Behbehani, R.; Ali, A.; Al-Moosa, A. Ocular Myasthenia: Clinical Course and the Diagnostic Utility of Assaying Acetylcholine Receptor Antibodies. Neuroophthalmology 2022, 46, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Monte, G.; Spagni, G.; Damato, V.; Iorio, R.; Marino, M.; Evoli, A. Acetylcholine receptor antibody positivity rate in ocular myasthenia gravis: A matter of age? J. Neurol. 2021, 268, 1803–1807. [Google Scholar] [CrossRef] [PubMed]
- Kordas, G.; Lagoumintzis, G.; Sideris, S.; Poulas, K.; Tzartos, S.J. Direct proof of the in vivo pathogenic role of the AChR autoantibodies from myasthenia gravis patients. PLoS ONE 2014, 9, e108327. [Google Scholar] [CrossRef]
- Kostelidou, K.; Trakas, N.; Tzartos, S.J. Extracellular domains of the beta, gamma and epsilon subunits of the human acetylcholine receptor as immunoadsorbents for myasthenic autoantibodies: A combination of immunoadsorbents results in increased efficiency. J. Neuroimmunol. 2007, 190, 44–52. [Google Scholar] [CrossRef]
- Tindall, R.S. Humoral immunity in myasthenia gravis: Biochemical characterization of acquired antireceptor antibodies and clinical correlations. Ann. Neurol. 1981, 10, 437–447. [Google Scholar] [CrossRef]
- Rødgaard, A.; Nielsen, F.C.; Djurup, R.; Somnier, F.; Gammeltoft, S. Acetylcholine receptor antibody in myasthenia gravis: Predominance of IgG subclasses 1 and 3. Clin. Exp. Immunol 1987, 67, 82–88. [Google Scholar]
- Drachman, D.B.; Angus, C.W.; Adams, R.N.; Michelson, J.D.; Hoffman, G.J. Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N. Engl. J. Med. 1978, 298, 1116–1122. [Google Scholar] [CrossRef]
- Fazekas, A.; Komoly, S.; Bózsik, B.; Szobor, A. Myasthenia gravis: Demonstration of membrane attack complex in muscle end-plates. Clin. Neuropathol. 1986, 5, 78–83. [Google Scholar]
- Engel, A.G.; Arahata, K. The membrane attack complex of complement at the endplate in myasthenia gravis. Ann. N. Y. Acad. Sci. 1987, 505, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Obaid, A.H.; Zografou, C.; Vadysirisack, D.D.; Munro-Sheldon, B.; Fichtner, M.L.; Roy, B.; Philbrick, W.M.; Bennett, J.L.; Nowak, R.J.; O’Connor, K.C. Heterogeneity of Acetylcholine Receptor Autoantibody-Mediated Complement Activity in Patients With Myasthenia Gravis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1169. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Motomura, M.; Utsugisawa, K.; Nagane, Y.; Nakata, R.; Tokuda, M.; Fukuda, T.; Yoshimura, T.; Tsujihata, M.; Kawakami, A. Antibodies against the main immunogenic region of the acetylcholine receptor correlate with disease severity in myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Tzartos, S.J.; Barkas, T.; Cung, M.T.; Kordossi, A.; Loutrari, H.; Marraud, M.; Papadouli, I.; Sakarellos, C.; Sophianos, D.; Tsikaris, V. The main immunogenic region of the acetylcholine receptor. Structure and role in myasthenia gravis. Autoimmunity 1991, 8, 259–270. [Google Scholar] [CrossRef]
- Strijbos, E.; Verschuuren, J.; Kuks, J.B.M. Serum Acetylcholine Receptor Antibodies Before the Clinical Onset of Myasthenia Gravis. J. Neuromuscul. Dis. 2018, 5, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Lazaridis, K.; Tzartos, S.J. Myasthenia Gravis: Autoantibody Specificities and Their Role in MG Management. Front. Neurol. 2020, 11, 596981. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Zisimopoulou, P.; Trakas, N.; Karagiorgou, K.; Stergiou, C.; Skeie, G.O.; Hao, H.J.; Gao, X.; Owe, J.F.; Zhang, X.; et al. Multiple antibody detection in ‘seronegative’ myasthenia gravis patients. Eur. J. Neurol. 2017, 24, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Mirian, A.; Nicolle, M.W.; Edmond, P.; Budhram, A. Comparison of fixed cell-based assay to radioimmunoprecipitation assay for acetylcholine receptor antibody detection in myasthenia gravis. J. Neurol. Sci. 2022, 432, 120084. [Google Scholar] [CrossRef]
- Chang, T.; Leite, M.I.; Senanayake, S.; Gunaratne, P.S.; Gamage, R.; Riffsy, M.T.; Jacobson, L.W.; Adhikari, M.; Perera, S.; Vincent, A. Clinical and serological study of myasthenia gravis using both radioimmunoprecipitation and cell-based assays in a South Asian population. J. Neurol. Sci. 2014, 343, 82–87. [Google Scholar] [CrossRef]
- Fichtner, M.L.; Hoarty, M.D.; Vadysirisack, D.D.; Munro-Sheldon, B.; Nowak, R.J.; O’Connor, K.C. Myasthenia gravis complement activity is independent of autoantibody titer and disease severity. PLoS ONE 2022, 17, e0264489. [Google Scholar] [CrossRef]
- Hoch, W.; McConville, J.; Helms, S.; Newsom-Davis, J.; Melms, A.; Vincent, A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat. Med. 2001, 7, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Rodolico, C.; Bonanno, C.; Toscano, A.; Vita, G. MuSK-Associated Myasthenia Gravis: Clinical Features and Management. Front. Neurol. 2020, 11, 660. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, D.M.; Stitt, T.N.; DiStefano, P.S.; Rojas, E.; Mattsson, K.; Compton, D.L.; Nuñez, L.; Park, J.S.; Stark, J.L.; Gies, D.R.; et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: Expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 1995, 15, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Koneczny, I.; Stevens, J.A.; De Rosa, A.; Huda, S.; Huijbers, M.G.; Saxena, A.; Maestri, M.; Lazaridis, K.; Zisimopoulou, P.; Tzartos, S.; et al. IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. J. Autoimmun. 2017, 77, 104–115. [Google Scholar] [CrossRef] [PubMed]
- König, N.; Stetefeld, H.R.; Dohmen, C.; Mergenthaler, P.; Kohler, S.; Schönenberger, S.; Bösel, J.; Lee, D.-H.; Gerner, S.T.; Huttner, H.B.; et al. MuSK-antibodies are associated with worse outcome in myasthenic crisis requiring mechanical ventilation. J. Neurol. 2021, 268, 4824–4833. [Google Scholar] [CrossRef]
- Meriggioli, M.N.; Sanders, D.B. Muscle autoantibodies in myasthenia gravis: Beyond diagnosis? Expert Rev. Clin. Immunol 2012, 8, 427–438. [Google Scholar] [CrossRef]
- Bartoccioni, E.; Scuderi, F.; Minicuci, G.M.; Marino, M.; Ciaraffa, F.; Evoli, A. Anti-MuSK antibodies: Correlation with myasthenia gravis severity. Neurology 2006, 67, 505–507. [Google Scholar] [CrossRef] [PubMed]
- Skriapa, L.; Zisimopoulou, P.; Trakas, N.; Grapsa, E.; Tzartos, S.J. Expression of extracellular domains of muscle specific kinase (MuSK) and use as immunoadsorbents for the development of an antigen-specific therapy. J. Neuroimmunol. 2014, 276, 150–158. [Google Scholar] [CrossRef]
- Kwon, Y.N.; Woodhall, M.; Sung, J.-J.; Kim, K.-K.; Lim, Y.-M.; Kim, H.; Kim, J.-E.; Baek, S.-H.; Kim, B.-J.; Park, J.-S.; et al. Clinical pitfalls and serological diagnostics of MuSK myasthenia gravis. J. Neurol. 2023, 270, 1478–1486. [Google Scholar] [CrossRef]
- Di Stefano, V.; Lupica, A.; Rispoli, M.G.; Di Muzio, A.; Brighina, F.; Rodolico, C. Rituximab in AChR subtype of myasthenia gravis: Systematic review. J. Neurol. Neurosurg. Psychiatry 2020, 91, 392–395. [Google Scholar] [CrossRef]
- Marino, M.; Basile, U.; Spagni, G.; Napodano, C.; Iorio, R.; Gulli, F.; Todi, L.; Provenzano, C.; Bartoccioni, E.; Evoli, A. Long-Lasting Rituximab-Induced Reduction of Specific-But Not Total-IgG4 in MuSK-Positive Myasthenia Gravis. Front. Immunol. 2020, 11, 613. [Google Scholar] [CrossRef]
- Shen, C.; Lu, Y.; Zhang, B.; Figueiredo, D.; Bean, J.; Jung, J.; Wu, H.; Barik, A.; Yin, D.M.; Xiong, W.C.; et al. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J. Clin. Investig. 2013, 123, 5190–5202. [Google Scholar] [CrossRef] [PubMed]
- Tzartos, J.S.; Zisimopoulou, P.; Rentzos, M.; Karandreas, N.; Zouvelou, V.; Evangelakou, P.; Tsonis, A.; Thomaidis, T.; Lauria, G.; Andreetta, F.; et al. LRP4 antibodies in serum and CSF from amyotrophic lateral sclerosis patients. Ann. Clin. Transl. Neurol. 2014, 1, 80–87. [Google Scholar] [CrossRef]
- Zisimopoulou, P.; Evangelakou, P.; Tzartos, J.; Lazaridis, K.; Zouvelou, V.; Mantegazza, R.; Antozzi, C.; Andreetta, F.; Evoli, A.; Deymeer, F.; et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J. Autoimmun. 2014, 52, 139–145. [Google Scholar] [CrossRef]
- Rivner, M.H.; Quarles, B.M.; Pan, J.X.; Yu, Z.; Howard, J.F., Jr.; Corse, A.; Dimachkie, M.M.; Jackson, C.; Vu, T.; Small, G.; et al. Clinical features of LRP4/agrin-antibody-positive myasthenia gravis: A multicenter study. Muscle Nerve 2020, 62, 333–343. [Google Scholar] [CrossRef]
- Rivner, M.H.; Liu, S.; Quarles, B.; Fleenor, B.; Shen, C.; Pan, J.; Mei, L. Agrin and low-density lipoprotein-related receptor protein 4 antibodies in amyotrophic lateral sclerosis patients. Muscle Nerve 2017, 55, 430–432. [Google Scholar] [CrossRef]
- Higuchi, O.; Hamuro, J.; Motomura, M.; Yamanashi, Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann. Neurol. 2011, 69, 418–422. [Google Scholar] [CrossRef]
- Li, M.; Han, J.; Zhang, Y.; Lv, J.; Zhang, J.; Zhao, X.; Ren, L.; Fang, H.; Yang, J.; Zhang, Y.; et al. Clinical analysis of Chinese anti-low-density-lipoprotein-receptor-associated protein 4 antibodies in patients with myasthenia gravis. Eur. J. Neurol. 2019, 26, 1296-e84. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, S.W.; Cho, J.; Chung, H.Y.; Shin, H.Y. Anti-titin antibody is associated with more frequent hospitalization to manage thymoma-associated myasthenia gravis. Front. Neurol 2022, 13, 978997. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.J.; Qiao, J.; Xiao, B.G.; Lu, C.Z. The significance of titin antibodies in myasthenia gravis--correlation with thymoma and severity of myasthenia gravis. J. Neurol. 2004, 251, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Szczudlik, P.; Szyluk, B.; Lipowska, M.; Ryniewicz, B.; Kubiszewska, J.; Dutkiewicz, M.; Gilhus, N.E.; Kostera-Pruszczyk, A. Antititin antibody in early- and late-onset myasthenia gravis. Acta Neurol. Scand. 2014, 130, 229–233. [Google Scholar] [CrossRef]
- Suzuki, S.; Satoh, T.; Yasuoka, H.; Hamaguchi, Y.; Tanaka, K.; Kawakami, Y.; Suzuki, N.; Kuwana, M. Novel autoantibodies to a voltage-gated potassium channel Kv1.4 in a severe form of myasthenia gravis. J. Neuroimmunol. 2005, 170, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Utsugisawa, K.; Yoshikawa, H.; Motomura, M.; Matsubara, S.; Yokoyama, K.; Nagane, Y.; Maruta, T.; Satoh, T.; Sato, H.; et al. Autoimmune targets of heart and skeletal muscles in myasthenia gravis. Arch. Neurol. 2009, 66, 1334–1338. [Google Scholar] [CrossRef]
- Losen, M.; Stassen, M.H.; Martínez-Martínez, P.; Machiels, B.M.; Duimel, H.; Frederik, P.; Veldman, H.; Wokke, J.H.; Spaans, F.; Vincent, A.; et al. Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. Brain 2005, 128, 2327–2337. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, E.; Martínez-Hernández, E.; Titulaer, M.J.; Huijbers, M.G.; Martínez, M.A.; Ramos, A.; Querol, L.; Díaz-Manera, J.; Rojas-García, R.; Hayworth, C.R.; et al. Cortactin autoantibodies in myasthenia gravis. Autoimmun. Rev. 2014, 13, 1003–1007. [Google Scholar] [CrossRef]
- Labrador-Horrillo, M.; Martínez, M.A.; Selva-O’Callaghan, A.; Trallero-Araguás, E.; Grau-Junyent, J.M.; Vilardell-Tarrés, M.; Juarez, C. Identification of a novel myositis-associated antibody directed against cortactin. Autoimmun. Rev. 2014, 13, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- Illa, I.; Cortés-Vicente, E.; Martínez, M.Á.; Gallardo, E. Diagnostic utility of cortactin antibodies in myasthenia gravis. Ann. N. Y. Acad. Sci. 2018, 1412, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Gasperi, C.; Melms, A.; Schoser, B.; Zhang, Y.; Meltoranta, J.; Risson, V.; Schaeffer, L.; Schalke, B.; Kröger, S. Anti-agrin autoantibodies in myasthenia gravis. Neurology 2014, 82, 1976–1983. [Google Scholar] [CrossRef]
- Wang, S.; Yang, H.; Guo, R.; Wang, L.; Zhang, Y.; Lv, J.; Zhao, X.; Zhang, J.; Fang, H.; Zhang, Q.; et al. Antibodies to Full-Length Agrin Protein in Chinese Patients With Myasthenia Gravis. Front. Immunol. 2021, 12, 753247. [Google Scholar] [CrossRef]
- Sabre, L.; Punga, T.; Punga, A.R. Circulating miRNAs as Potential Biomarkers in Myasthenia Gravis: Tools for Personalized Medicine. Front. Immunol 2020, 11, 213. [Google Scholar] [CrossRef]
- Ghirardello, A.; Zampieri, S.; Iaccarino, L.; Tarricone, E.; Bendo, R.; Gambari, P.F.; Doria, A. Anti-Mi-2 antibodies. Autoimmunity 2005, 38, 79–83. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, Y.M.; Chen, H.; Ye, L.F.; Li, S.S.; Lu, X.; Wang, G.C.; Peng, Q.L. Anti-Mi-2 antibodies characterize a distinct clinical subset of dermatomyositis with favourable prognosis. Eur. J. Derm. 2020. [Google Scholar] [CrossRef]
- Ogawa-Momohara, M.; Muro, Y.; Akiyama, M. Anti-Mi-2 antibody titers and cutaneous manifestations in dermatomyositis. J. Cutan. Immunol. Allergy 2019, 2, 49–52. [Google Scholar] [CrossRef]
- Lu, X.; Peng, Q.; Wang, G. Biomarkers of disease activity in dermatomyositis. Curr. Opin. Rheumatol. 2022, 34, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Satoh, M.; Tanaka, S.; Ceribelli, A.; Calise, S.J.; Chan, E.K. A Comprehensive Overview on Myositis-Specific Antibodies: New and Old Biomarkers in Idiopathic Inflammatory Myopathy. Clin. Rev. Allergy Immunol. 2017, 52, 1–19. [Google Scholar] [CrossRef] [PubMed]
- dos Passos Carvalho, M.I.C.; Shinjo, S.K. Frequency and clinical relevance of anti-Mi-2 autoantibody in adult Brazilian patients with dermatomyositis. Adv. Rheumatol. 2019, 59, 27. [Google Scholar] [CrossRef] [PubMed]
- Roux, S.; Seelig, H.P.; Meyer, O. Significance of Mi-2 autoantibodies in polymyositis and dermatomyositis. J. Rheumatol. 1998, 25, 395–396. [Google Scholar]
- Aggarwal, R.; Cassidy, E.; Fertig, N.; Koontz, D.C.; Lucas, M.; Ascherman, D.P.; Oddis, C.V. Patients with non-Jo-1 anti-tRNA-synthetase autoantibodies have worse survival than Jo-1 positive patients. Ann. Rheum. Dis. 2014, 73, 227–232. [Google Scholar] [CrossRef]
- Witt, L.J.; Curran, J.J.; Strek, M.E. The Diagnosis and Treatment of Antisynthetase Syndrome. Clin. Pulm. Med. 2016, 23, 218–226. [Google Scholar] [CrossRef]
- Love, L.A.; Leff, R.L.; Fraser, D.D.; Targoff, I.N.; Dalakas, M.; Plotz, P.H.; Miller, F.W. A new approach to the classification of idiopathic inflammatory myopathy: Myositis-specific autoantibodies define useful homogeneous patient groups. Medicine 1991, 70, 360–374. [Google Scholar] [CrossRef]
- Mecoli, C.A.; Albayda, J.; Tiniakou, E.; Paik, J.J.; Zahid, U.; Danoff, S.K.; Casciola-Rosen, L.; Casal-Dominguez, M.; Pak, K.; Pinal-Fernandez, I.; et al. Myositis Autoantibodies: A Comparison of Results From the Oklahoma Medical Research Foundation Myositis Panel to the Euroimmun Research Line Blot. Arthritis Rheumatol. 2020, 72, 192–194. [Google Scholar] [CrossRef]
- Shinoda, K.; Okumura, M.; Yamaguchi, S.; Matsui, A.; Tsuda, R.; Hounoki, H.; Suzuki, S.; Tobe, K. A Comparison of Line Blots, Enzyme-linked Immunosorbent, and RNA-immunoprecipitation Assays of Antisynthetase Antibodies in Serum Samples from 44 Patients. Intern. Med. 2022, 61, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Fredi, M.; Cavazzana, I.; Ceribelli, A.; Cavagna, L.; Barsotti, S.; Bartoloni, E.; Benucci, M.; De Stefano, L.; Doria, A.; Emmi, G.; et al. An Italian Multicenter Study on Anti-NXP2 Antibodies: Clinical and Serological Associations. Clin. Rev. Allergy Immunol 2022, 63, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.T.; Zhang, X.; Yang, H.H.; Sun, W.J.; Liu, L.; Du, Y.; Xue, J. Association of anti-NXP2 antibody with clinical characteristics and outcomes in adult dermatomyositis: Results from clinical applications based on a myositis-specific antibody. Clin. Rheumatol. 2021, 40, 3695–3702. [Google Scholar] [CrossRef]
- Ghirardello, A.; Bettio, S.; Bassi, N.; Gatto, M.; Beggio, M.; Lundberg, I.; Vattemi, G.; Iaccarino, L.; Punzi, L.; Doria, A. Autoantibody testing in patients with myositis: Clinical accuracy of a multiparametric line immunoassay. Clin. Exp. Rheumatol. 2017, 35, 176–177. [Google Scholar]
- Mahler, M.; Betteridge, Z.; Bentow, C.; Richards, M.; Seaman, A.; Chinoy, H.; McHugh, N. Comparison of Three Immunoassays for the Detection of Myositis Specific Antibodies. Front. Immunol. 2019, 10, 848. [Google Scholar] [CrossRef]
- Li, L.; Wang, Q.; Yang, F.; Wu, C.; Chen, S.; Wen, X.; Liu, C.; Li, Y. Anti-MDA5 antibody as a potential diagnostic and prognostic biomarker in patients with dermatomyositis. Oncotarget 2017, 8, 26552–26564. [Google Scholar] [CrossRef]
- Nombel, A.; Fabien, N.; Coutant, F. Dermatomyositis With Anti-MDA5 Antibodies: Bioclinical Features, Pathogenesis and Emerging Therapies. Front. Immunol. 2021, 12, 773352. [Google Scholar] [CrossRef]
- Ladislau, L.; Suárez-Calvet, X.; Toquet, S.; Landon-Cardinal, O.; Amelin, D.; Depp, M.; Rodero, M.P.; Hathazi, D.; Duffy, D.; Bondet, V.; et al. JAK inhibitor improves type I interferon induced damage: Proof of concept in dermatomyositis. Brain 2018, 141, 1609–1621. [Google Scholar] [CrossRef]
- Shimizu, K.; Kobayashi, T.; Kano, M.; Hamaguchi, Y.; Takehara, K.; Matsushita, T. Anti-transcriptional intermediary factor 1-γ antibody as a biomarker in patients with dermatomyositis. J. Derm. 2020, 47, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Targoff, I.N.; Mamyrova, G.; Trieu, E.P.; Perurena, O.; Koneru, B.; O’Hanlon, T.P.; Miller, F.W.; Rider, L.G. A novel autoantibody to a 155-kd protein is associated with dermatomyositis. Arthritis Rheum 2006, 54, 3682–3689. [Google Scholar] [CrossRef]
- Fujimoto, M.; Hamaguchi, Y.; Kaji, K.; Matsushita, T.; Ichimura, Y.; Kodera, M.; Ishiguro, N.; Ueda-Hayakawa, I.; Asano, Y.; Ogawa, F.; et al. Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis Rheum 2012, 64, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Selickaja, S.; Galindo-Feria, A.S.; Dani, L.; Mimori, T.; Rönnelid, J.; Holmqvist, M.; Lundberg, I.E.; Venalis, P. ELISA, protein immunoprecipitation and line blot assays for anti-TIF1-gamma autoantibody detection in cancer-associated dermatomyositis. Rheumatology 2022, 61, 4991–4996. [Google Scholar] [CrossRef]
- Muro, Y.; Sugiura, K.; Nara, M.; Sakamoto, I.; Suzuki, N.; Akiyama, M. High incidence of cancer in anti-small ubiquitin-like modifier activating enzyme antibody-positive dermatomyositis. Rheumatology 2015, 54, 1745–1747. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Lu, X.; Shu, X.; Peng, Q.; Wang, G. Clinical characteristics of anti-SAE antibodies in Chinese patients with dermatomyositis in comparison with different patient cohorts. Sci. Rep. 2017, 7, 188. [Google Scholar] [CrossRef]
- Tarricone, E.; Ghirardello, A.; Rampudda, M.; Bassi, N.; Punzi, L.; Doria, A. Anti-SAE antibodies in autoimmune myositis: Identification by unlabelled protein immunoprecipitation in an Italian patient cohort. J. Immunol. Methods 2012, 384, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Nishikawa, A.; Kuwana, M.; Nishimura, H.; Watanabe, Y.; Nakahara, J.; Hayashi, Y.K.; Suzuki, N.; Nishino, I. Inflammatory myopathy with anti-signal recognition particle antibodies: Case series of 100 patients. Orphanet J. Rare Dis. 2015, 10, 61. [Google Scholar] [CrossRef]
- Kassardjian, C.D.; Lennon, V.A.; Alfugham, N.B.; Mahler, M.; Milone, M. Clinical Features and Treatment Outcomes of Necrotizing Autoimmune Myopathy. JAMA Neurol. 2015, 72, 996–1003. [Google Scholar] [CrossRef]
- Ma, X.; Bu, B.T. Anti-SRP immune-mediated necrotizing myopathy: A critical review of current concepts. Front. Immunol. 2022, 13, 1019972. [Google Scholar] [CrossRef]
- Limaye, V.; Bundell, C.; Hollingsworth, P.; Rojana-Udomsart, A.; Mastaglia, F.; Blumbergs, P.; Lester, S. Clinical and genetic associations of autoantibodies to 3-hydroxy-3-methyl-glutaryl-coenzyme a reductase in patients with immune-mediated myositis and necrotizing myopathy. Muscle Nerve 2015, 52, 196–203. [Google Scholar] [CrossRef]
- Werner, J.L.; Christopher-Stine, L.; Ghazarian, S.R.; Pak, K.S.; Kus, J.E.; Daya, N.R.; Lloyd, T.E.; Mammen, A.L. Antibody levels correlate with creatine kinase levels and strength in anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Rheum 2012, 64, 4087–4093. [Google Scholar] [CrossRef]
- Musset, L.; Allenbach, Y.; Benveniste, O.; Boyer, O.; Bossuyt, X.; Bentow, C.; Phillips, J.; Mammen, A.; Van Damme, P.; Westhovens, R.; et al. Anti-HMGCR antibodies as a biomarker for immune-mediated necrotizing myopathies: A history of statins and experience from a large international multi-center study. Autoimmun. Rev. 2016, 15, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Peña, D.; Ocejo-Vinyals, J.G.; Mazariegos-Cano, J.; Pelayo-Negro, A.L.; Remuzgo-Martínez, S.; Genre, F.; García-Dorta, A.; Renuncio-García, M.; Martínez-Taboada, V.M.; García-Ibarbia, C.; et al. Epidemiological and genetic features of anti-3-hydroxy-3-methylglutaryl-CoA reductase necrotizing myopathy: Single-center experience and literature review. Eur. J. Intern. Med. 2022, 101, 86–92. [Google Scholar] [CrossRef]
- Kadoya, M.; Hida, A.; Hashimoto Maeda, M.; Taira, K.; Ikenaga, C.; Uchio, N.; Kubota, A.; Kaida, K.; Miwa, Y.; Kurasawa, K.; et al. Cancer association as a risk factor for anti-HMGCR antibody-positive myopathy. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e290. [Google Scholar] [CrossRef]
- Szczesny, P.; Barsotti, S.; Nennesmo, I.; Danielsson, O.; Dastmalchi, M. Screening for Anti-HMGCR Antibodies in a Large Single Myositis Center Reveals Infrequent Exposure to Statins and Diversiform Presentation of the Disease. Front. Immunol. 2022, 13, 866701. [Google Scholar] [CrossRef] [PubMed]
- Mohassel, P.; Mammen, A.L. Anti-HMGCR Myopathy. J. Neuromuscul. Dis. 2018, 5, 11–20. [Google Scholar] [CrossRef]
- Peng, Q.L.; Zhang, Y.L.; Shu, X.M.; Yang, H.B.; Zhang, L.; Chen, F.; Lu, X.; Wang, G.C. Elevated Serum Levels of Soluble CD163 in Polymyositis and Dermatomyositis: Associated with Macrophage Infiltration in Muscle Tissue. J. Rheumatol. 2015, 42, 979–987. [Google Scholar] [CrossRef]
- Enomoto, Y.; Suzuki, Y.; Hozumi, H.; Mori, K.; Kono, M.; Karayama, M.; Furuhashi, K.; Fujisawa, T.; Enomoto, N.; Nakamura, Y.; et al. Clinical significance of soluble CD163 in polymyositis-related or dermatomyositis-related interstitial lung disease. Arthritis Res. 2017, 19, 9. [Google Scholar] [CrossRef]
- Kawasumi, H.; Katsumata, Y.; Nishino, A.; Hirahara, S.; Kawaguchi, Y.; Kuwana, M.; Yamanaka, H. Association of Serum Soluble CD163 with Polymyositis and Dermatomyositis, Especially in Anti-MDA5 Antibody-positive Cases. J. Rheumatol. 2018, 45, 947–955. [Google Scholar] [CrossRef]
- Paul, P.; Liewluck, T.; Ernste, F.C.; Mandrekar, J.; Milone, M. Anti-cN1A antibodies do not correlate with specific clinical, electromyographic, or pathological findings in sporadic inclusion body myositis. Muscle Nerve 2021, 63, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Tawara, N.; Yamashita, S.; Zhang, X.; Korogi, M.; Zhang, Z.; Doki, T.; Matsuo, Y.; Nakane, S.; Maeda, Y.; Sugie, K.; et al. Pathomechanisms of anti-cytosolic 5’-nucleotidase 1A autoantibodies in sporadic inclusion body myositis. Ann. Neurol. 2017, 81, 512–525. [Google Scholar] [CrossRef]
- Amlani, A.; Choi, M.Y.; Tarnopolsky, M.; Brady, L.; Clarke, A.E.; Garcia-De La Torre, I.; Mahler, M.; Schmeling, H.; Barber, C.E.; Jung, M.; et al. Anti-NT5c1A Autoantibodies as Biomarkers in Inclusion Body Myositis. Front. Immunol. 2019, 10, 745. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.K.; Stammen-Vogelzangs, J.; Verbeek, M.M.; Rietveld, A.; Lundberg, I.E.; Chinoy, H.; Lamb, J.A.; Cooper, R.G.; Roberts, M.; Badrising, U.A.; et al. Disease specificity of autoantibodies to cytosolic 5′-nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Ann. Rheum. Dis. 2016, 75, 696–701. [Google Scholar] [CrossRef]
- Parkes, J.E.; Thoma, A.; Lightfoot, A.P.; Day, P.J.; Chinoy, H.; Lamb, J.A. MicroRNA and mRNA profiling in the idiopathic inflammatory myopathies. BMC Rheumatol. 2020, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, V.; Barbone, F.; Ferrante, C.; Telese, R.; Vitale, M.; Onofrj, M.; Di Muzio, A. Inflammatory polyradiculoneuropathies: Clinical and immunological aspects, current therapies, and future perspectives. Eur. J. Inflamm. 2020, 18, 2058739220942340. [Google Scholar] [CrossRef]
- Illes, Z.; Blaabjerg, M. Cerebrospinal fluid findings in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathies. Handb. Clin. Neurol. 2017, 146, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.H.; Umapathi, T.; Nishimoto, Y.; Wang, Y.Z.; Chan, Y.C.; Yuki, N. Cytoalbuminologic dissociation in Asian patients with Guillain-Barré and Miller Fisher syndromes. J. Peripher. Nerv. Syst. 2015, 20, 47–51. [Google Scholar] [CrossRef]
- Hegen, H.; Ladstätter, F.; Bsteh, G.; Auer, M.; Berek, K.; Di Pauli, F.; Walde, J.; Wanschitz, J.; Zinganell, A.; Deisenhammer, F. Cerebrospinal fluid protein in Guillain-Barré syndrome: Need for age-dependent interpretation. Eur. J. Neurol. 2021, 28, 965–973. [Google Scholar] [CrossRef]
- Fokke, C.; van den Berg, B.; Drenthen, J.; Walgaard, C.; van Doorn, P.A.; Jacobs, B.C. Diagnosis of Guillain-Barré syndrome and validation of Brighton criteria. Brain 2014, 137, 33–43. [Google Scholar] [CrossRef]
- Zhang, H.L.; Zhang, X.M.; Mao, X.J.; Deng, H.; Li, H.F.; Press, R.; Fredrikson, S.; Zhu, J. Altered cerebrospinal fluid index of prealbumin, fibrinogen, and haptoglobin in patients with Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. Acta Neurol. Scand. 2012, 125, 129–135. [Google Scholar] [CrossRef]
- Jin, T.; Hu, L.S.; Chang, M.; Wu, J.; Winblad, B.; Zhu, J. Proteomic identification of potential protein markers in cerebrospinal fluid of GBS patients. Eur. J. Neurol. 2007, 14, 563–568. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, B.; Walgaard, C.; Drenthen, J.; Fokke, C.; Jacobs, B.C.; van Doorn, P.A. Guillain-Barré syndrome: Pathogenesis, diagnosis, treatment and prognosis. Nat. Rev. Neurol. 2014, 10, 469–482. [Google Scholar] [CrossRef]
- Schnaar, R.L. Gangliosides of the Vertebrate Nervous System. J. Mol. Biol. 2016, 428, 3325–3336. [Google Scholar] [CrossRef]
- Yan, W.; Nguyen, T.; Yuki, N.; Ji, Q.; Yiannikas, C.; Pollard, J.D.; Mathey, E.K. Antibodies to neurofascin exacerbate adoptive transfer experimental autoimmune neuritis. J. Neuroimmunol. 2014, 277, 13–17. [Google Scholar] [CrossRef]
- Devaux, J.J. Antibodies to gliomedin cause peripheral demyelinating neuropathy and the dismantling of the nodes of Ranvier. Am. J. Pathol. 2012, 181, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Weingarten, M.D.; Lockwood, A.H.; Hwo, S.Y.; Kirschner, M.W. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA 1975, 72, 1858–1862. [Google Scholar] [CrossRef] [PubMed]
- Nakos, G.; Tziakou, E.; Maneta-Peyret, L.; Nassis, C.; Lekka, M.E. Anti-phospholipid antibodies in serum from patients with Guillain-Barré syndrome. Intensive Care Med. 2005, 31, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.N.; Englert, H.; Derve, G.; Hughes, G.R.; Gharavi, A. Antiphospholipid antibodies in acute Guillain-Barré syndrome. Lancet 1983, 2, 1361–1362. [Google Scholar] [CrossRef] [PubMed]
- Saida, T.; Saida, K.; Lisak, R.P.; Brown, M.J.; Silberberg, D.H.; Asbury, A.K. In vivo demyelinating activity of sera from patients with Guillain-Barré syndrome. Ann. Neurol. 1982, 11, 69–75. [Google Scholar] [CrossRef]
- Sawant-Mane, S.; Clark, M.B.; Koski, C.L. In vitro demyelination by serum antibody from patients with Guillain-Barré syndrome requires terminal complement complexes. Ann. Neurol. 1991, 29, 397–404. [Google Scholar] [CrossRef]
- Halstead, S.K.; Zitman, F.M.; Humphreys, P.D.; Greenshields, K.; Verschuuren, J.J.; Jacobs, B.C.; Rother, R.P.; Plomp, J.J.; Willison, H.J. Eculizumab prevents anti-ganglioside antibody-mediated neuropathy in a murine model. Brain 2008, 131, 1197–1208. [Google Scholar] [CrossRef]
- Sanders, M.E.; Koski, C.L.; Robbins, D.; Shin, M.L.; Frank, M.M.; Joiner, K.A. Activated terminal complement in cerebrospinal fluid in Guillain-Barré syndrome and multiple sclerosis. J. Immunol. 1986, 136, 4456–4459. [Google Scholar] [CrossRef] [PubMed]
- D’Aguanno, S.; Franciotta, D.; Lupisella, S.; Barassi, A.; Pieragostino, D.; Lugaresi, A.; Centonze, D.; D’Eril, G.M.; Bernardini, S.; Federici, G.; et al. Protein profiling of Guillain-Barrè syndrome cerebrospinal fluid by two-dimensional electrophoresis and mass spectrometry. Neurosci. Lett. 2010, 485, 49–54. [Google Scholar] [CrossRef]
- Liu, M.Q.; Wang, J.; Huang, C.N.; Qi, Y.; Zhang, L.J.; Yi, M.; Chang, S.H.; Sun, L.S.; Yang, L. Elevated cerebrospinal fluid levels of beta-2-microglobulin in patients with Guillain-Barré syndrome and their correlations with clinical features. Neurol. Sci. 2021, 42, 4249–4255. [Google Scholar] [CrossRef]
- Pritchard, J.; Hughes, R.A.; Rees, J.H.; Willison, H.J.; Nicoll, J.A. Apolipoprotein E genotypes and clinical outcome in Guillain-Barré syndrome. J. Neurol. Neurosurg. Psychiatry 2003, 74, 971–973. [Google Scholar] [CrossRef]
- Chiang, H.L.; Lyu, R.K.; Tseng, M.Y.; Chang, K.H.; Chang, H.S.; Hsu, W.C.; Kuo, H.C.; Chu, C.C.; Wu, Y.R.; Ro, L.S.; et al. Analyses of transthyretin concentration in the cerebrospinal fluid of patients with Guillain-Barré syndrome and other neurological disorders. Clin. Chim. Acta 2009, 405, 143–147. [Google Scholar] [CrossRef]
- Compston, D.A.; Vincent, A.; Newsom-Davis, J.; Batchelor, J.R. Clinical, pathological, HLA antigen and immunological evidence for disease heterogeneity in myasthenia gravis. Brain 1980, 103, 579–601. [Google Scholar] [CrossRef]
- Vincent, A.; Newsom-Davis, J. Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles. Clin. Exp. Immunol. 1982, 49, 257–265. [Google Scholar]
- Vincent, A.; Newsom-Davis, J. Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: Results in 153 validated cases and 2967 diagnostic assays. J. Neurol. Neurosurg. Psychiatry 1985, 48, 1246–1252. [Google Scholar] [CrossRef]
- Carr, A.S.; Cardwell, C.R.; McCarron, P.O.; McConville, J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010, 10, 46. [Google Scholar] [CrossRef]
- Batocchi, A.P.; Evoli, A.; Palmisani, M.T.; Lo Monaco, M.; Bartoccioni, M.; Tonali, P. Early-onset myasthenia gravis: Clinical characteristics and response to therapy. Eur J. Pediatr. 1990, 150, 66–68. [Google Scholar] [CrossRef]
- Aarli, J.A. Late-onset myasthenia gravis: A changing scene. Arch. Neurol. 1999, 56, 25–27. [Google Scholar] [CrossRef]
- Howard, J., Jr. F. Myasthenia gravis: The role of complement at the neuromuscular junction. Ann. N. Y. Acad. Sci. 2018, 1412, 113–128. [Google Scholar] [CrossRef]
- Eymard, B. Anticorps dans la myasthénie. Rev. Neurol. 2009, 165, 137–143. [Google Scholar] [CrossRef]
- Burden, S.J.; Yumoto, N.; Zhang, W. The role of MuSK in synapse formation and neuromuscular disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a009167. [Google Scholar] [CrossRef]
- Matthews, I.; Chen, S.; Hewer, R.; McGrath, V.; Furmaniak, J.; Rees Smith, B. Muscle-specific receptor tyrosine kinase autoantibodies--a new immunoprecipitation assay. Clin. Chim. Acta 2004, 348, 95–99. [Google Scholar] [CrossRef]
- Han, J.; Zhang, J.; Li, M.; Zhang, Y.; Lv, J.; Zhao, X.; Wang, S.; Wang, L.; Yang, H.; Han, S.; et al. A novel MuSK cell-based myasthenia gravis diagnostic assay. J. Neuroimmunol. 2019, 337, 577076. [Google Scholar] [CrossRef]
- Tsonis, A.I.; Zisimopoulou, P.; Lazaridis, K.; Tzartos, J.; Matsigkou, E.; Zouvelou, V.; Mantegazza, R.; Antozzi, C.; Andreetta, F.; Evoli, A.; et al. MuSK autoantibodies in myasthenia gravis detected by cell based assay--A multinational study. J. Neuroimmunol. 2015, 284, 10–17. [Google Scholar] [CrossRef]
- Buckley, C.; Newsom-Davis, J.; Willcox, N.; Vincent, A. Do titin and cytokine antibodies in MG patients predict thymoma or thymoma recurrence? Neurology 2001, 57, 1579–1582. [Google Scholar] [CrossRef]
- Yamamoto, A.M.; Gajdos, P.; Eymard, B.; Tranchant, C.; Warter, J.-M.; Gomez, L.; Bourquin, C.; Bach, J.-F.; Garchon, H.-J. Anti-Titin Antibodies in Myasthenia Gravis: Tight Association With Thymoma and Heterogeneity of Nonthymoma Patients. Arch. Neurol. 2001, 58, 885–890. [Google Scholar] [CrossRef]
- Gambino, C.M.; Agnello, L.; Lo Sasso, B.; Giglio, R.V.; Di Stefano, V.; Candore, G.; Pappalardo, E.M.; Ciaccio, A.M.; Brighina, F.; Vidali, M.; et al. The role of serum free light chain as biomarker of Myasthenia Gravis. Clin. Chim. Acta 2022, 528, 29–33. [Google Scholar] [CrossRef]
- Guptill, J.T.; Sanders, D.B.; Evoli, A. Anti-MuSK antibody myasthenia gravis: Clinical findings and response to treatment in two large cohorts. Muscle Nerve 2011, 44, 36–40. [Google Scholar] [CrossRef]
- Nelke, C.; Stascheit, F.; Eckert, C.; Pawlitzki, M.; Schroeter, C.B.; Huntemann, N.; Mergenthaler, P.; Arat, E.; Öztürk, M.; Foell, D.; et al. Independent risk factors for myasthenic crisis and disease exacerbation in a retrospective cohort of myasthenia gravis patients. J. Neuroinflamm. 2022, 19, 89. [Google Scholar] [CrossRef]
- Di Stefano, V.; Alonge, P.; Rini, N.; Militello, M.; Lupica, A.; Torrente, A.; Brighina, F. Efgartigimod beyond myasthenia gravis: The role of FcRn-targeting therapies in stiff-person syndrome. J. Neurol. 2023. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, C.; Chen, Z.; Zhao, H.; Chen, J.; Liu, X.; Kwan, Y.; Lin, H.; Ngai, S.M. Serum metabolomics for the diagnosis and classification of myasthenia gravis. Metabolomics 2011, 8, 704–713. [Google Scholar] [CrossRef]
- Ashida, S.; Ochi, H.; Hamatani, M.; Fujii, C.; Kimura, K.; Okada, Y.; Hashi, Y.; Kawamura, K.; Ueno, H.; Takahashi, R.; et al. Immune Skew of Circulating Follicular Helper T Cells Associates With Myasthenia Gravis Severity. Neurol.-Neuroimmunol. Neuroinflamm. 2021, 8, e945. [Google Scholar] [CrossRef]
- Stascheit, F.; Hotter, B.; Hoffmann, S.; Kohler, S.; Lehnerer, S.; Sputtek, A.; Meisel, A. Calprotectin as potential novel biomarker in myasthenia gravis. J. Transl. Autoimmun. 2021, 4, 100111. [Google Scholar] [CrossRef]
- Punga, A.R.; Punga, T. Circulating microRNAs as potential biomarkers in myasthenia gravis patients. Ann. N. Y. Acad. Sci. 2018, 1412, 33–40. [Google Scholar] [CrossRef]
- Leite, M.I.; Jacob, S.; Viegas, S.; Cossins, J.; Clover, L.; Morgan, B.P.; Beeson, D.; Willcox, N.; Vincent, A. IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis†. Brain 2008, 131, 1940–1952. [Google Scholar] [CrossRef]
- McConville, J.; Farrugia, M.E.; Beeson, D.; Kishore, U.; Metcalfe, R.; Newsom-Davis, J.; Vincent, A. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann. Neurol. 2004, 55, 580–584. [Google Scholar] [CrossRef]
- Vinciguerra, C.; Bevilacqua, L.; Lupica, A.; Ginanneschi, F.; Piscosquito, G.; Rini, N.; Rossi, A.; Barone, P.; Brighina, F.; Di Stefano, V. Diagnosis and Management of Seronegative Myasthenia Gravis: Lights and Shadows. Brain Sci. 2023, 13, 1286. [Google Scholar] [CrossRef]
- Vincent, A. Using AChR antibody titres to predict treatment responses in myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 2021, 92, 915. [Google Scholar] [CrossRef]
- Kojima, Y.; Uzawa, A.; Ozawa, Y.; Yasuda, M.; Onishi, Y.; Akamine, H.; Kawaguchi, N.; Himuro, K.; Noto, Y.I.; Mizuno, T.; et al. Rate of change in acetylcholine receptor antibody levels predicts myasthenia gravis outcome. J. Neurol. Neurosurg. Psychiatry 2021, 92, 963–968. [Google Scholar] [CrossRef]
- Rider, L.G.; Ruperto, N.; Pistorio, A.; Erman, B.; Bayat, N.; Lachenbruch, P.A.; Rockette, H.; Feldman, B.M.; Huber, A.M.; Hansen, P.; et al. 2016 ACR-EULAR adult dermatomyositis and polymyositis and juvenile dermatomyositis response criteria—Methodological aspects. Rheumatology 2017, 56, 1884–1893. [Google Scholar] [CrossRef]
- Lundberg, I.E.; Fujimoto, M.; Vencovsky, J.; Aggarwal, R.; Holmqvist, M.; Christopher-Stine, L.; Mammen, A.L.; Miller, F.W. Idiopathic inflammatory myopathies. Nat. Rev. Dis. Primers 2021, 7, 86. [Google Scholar] [CrossRef]
- Volochayev, R.; Csako, G.; Wesley, R.; Rider, L.G.; Miller, F.W. Laboratory Test Abnormalities are Common in Polymyositis and Dermatomyositis and Differ Among Clinical and Demographic Groups. Open Rheumatol. J. 2012, 6, 54–63. [Google Scholar] [CrossRef]
- Nakashima, R. Clinical significance of myositis-specific autoantibodies. Immunol. Med. 2018, 41, 103–112. [Google Scholar] [CrossRef]
- Srivastava, P.; Dwivedi, S.; Misra, R. Myositis-specific and myositis-associated autoantibodies in Indian patients with inflammatory myositis. Rheumatol. Int. 2016, 36, 935–943. [Google Scholar] [CrossRef]
- Van Horebeek, N.; Vulsteke, J.B.; Bossuyt, X.; Claeys, K.G.; Dillaerts, D.; Poesen, K.; Lenaerts, J.; Van Damme, P.; Blockmans, D.; De Haes, P.; et al. Detection of multiple myositis-specific autoantibodies in unique patients with idiopathic inflammatory myopathy: A single centre-experience and literature review: Systematic review. Semin. Arthritis Rheum. 2021, 51, 486–494. [Google Scholar] [CrossRef]
- Bonroy, C.; Piette, Y.; Allenbach, Y.; Bossuyt, X.; Damoiseaux, J. Positioning of myositis-specific and associated autoantibody (MSA/MAA) testing in disease criteria and routine diagnostic work-up. J. Transl. Autoimmun. 2022, 5, 100148. [Google Scholar] [CrossRef]
- Reed, A.M.; Crowson, C.S.; Hein, M.; de Padilla, C.L.; Olazagasti, J.M.; Aggarwal, R.; Ascherman, D.P.; Levesque, M.C.; Oddis, C.V. Biologic predictors of clinical improvement in rituximab-treated refractory myositis. BMC Musculoskelet Disord. 2015, 16, 257. [Google Scholar] [CrossRef]
- Fiorentino, D.F.; Chung, L.S.; Christopher-Stine, L.; Zaba, L.; Li, S.; Mammen, A.L.; Rosen, A.; Casciola-Rosen, L. Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1γ. Arthritis Rheum. 2013, 65, 2954–2962. [Google Scholar] [CrossRef]
- Bobirca, A.; Alexandru, C.; Musetescu, A.E.; Bobirca, F.; Florescu, A.T.; Constantin, M.; Tebeica, T.; Florescu, A.; Isac, S.; Bojinca, M.; et al. Anti-MDA5 Amyopathic Dermatomyositis-A Diagnostic and Therapeutic Challenge. Life 2022, 12, 1108. [Google Scholar] [CrossRef]
- Marco, J.L.; Collins, B.F. Clinical manifestations and treatment of antisynthetase syndrome. Best Pr. Res. Clin. Rheumatol. 2020, 34, 101503. [Google Scholar] [CrossRef]
- Christopher-Stine, L.; Casciola-Rosen, L.A.; Hong, G.; Chung, T.; Corse, A.M.; Mammen, A.L. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 2010, 62, 2757–2766. [Google Scholar] [CrossRef]
- Shen, Y.W.; Zhang, Y.M.; Huang, Z.G.; Wang, G.C.; Peng, Q.L. Increased Levels of Soluble CD206 Associated with Rapidly Progressive Interstitial Lung Disease in Patients with Dermatomyositis. Mediat. Inflamm. 2020, 2020, 7948095. [Google Scholar] [CrossRef]
- Peng, Q.-L.; Zhang, Y.-M.; Liang, L.; Liu, X.; Ye, L.-F.; Yang, H.-B.; Zhang, L.; Shu, X.-M.; Lu, X.; Wang, G.-C. A high level of serum neopterin is associated with rapidly progressive interstitial lung disease and reduced survival in dermatomyositis. Clin. Exp. Immunol. 2020, 199, 314–325. [Google Scholar] [CrossRef]
- Lilleker, J.; Murphy, S.; Cooper, R. Selected aspects of the current management of myositis. Adv. Musculoskelet Dis. 2016, 8, 136–144. [Google Scholar] [CrossRef]
- Leuzzi, G.; Meacci, E.; Cusumano, G.; Cesario, A.; Chiappetta, M.; Dall’armi, V.; Evoli, A.; Costa, R.; Lococo, F.; Primieri, P.; et al. Thymectomy in myasthenia gravis: Proposal for a predictive score of postoperative myasthenic crisis. Eur. J. Cardiothorac Surg. 2014, 45, e76–e88, discussion e88. [Google Scholar] [CrossRef]
- Wei, B.; Lu, G.; Zhang, Y. Predictive factors for postoperative myasthenic crisis in patients with myasthenia gravis. Interdiscip. Cardiovasc. Thorac. Surg. 2023, 36. [Google Scholar] [CrossRef]
- Di Stefano, V.; Tubiolo, C.; Gagliardo, A.; Presti, R.L.; Montana, M.; Todisco, M.; Lupica, A.; Caimi, G.; Tassorelli, C.; Fierro, B.; et al. Metalloproteinases and Tissue Inhibitors in Generalized Myasthenia Gravis. A Preliminary Study. Brain Sci. 2022, 12, 1439. [Google Scholar] [CrossRef]
Disease | Type of Biomarker | Biomarker | Detection Method | Correlation | Occurence | References | Limitations/Comment |
---|---|---|---|---|---|---|---|
GBS/CIDP | Diagnostic | Lipooligosaccharides (LOS) with A, B, C, E, F and H loci; Serotype and sequence type of Campylobacter jejuni | PCR screening, genes from published LOS loci and sequencing Serum and CSF | Identification of C. jejuni-associated GBS | GBS and Miller-Fisher syndrome (MFS) | [4,5] | |
Diagnostic | Antibodies against Campylobacter jejuni DNA-binding protein (C-Dps) | ELISA, Western Blot Serum | Detection of anti-C-Dps-IgG indicates C. jejuni related GBS | Campylobacter jejuni-related GBS | [6] | Also detected in patients with C. jejuni enteritis (rarely) | |
Diagnostic | Metallo-proteinases (MMPS) (MMP-9, TIMP-1) | ELISA Serum | No correlation | Described in CIDP | [7] | Not disease-specific | |
Diagnostic | Antibodies to peptides from myelin proteins P0, P214–25, PMP22 and connexin 32 | Antigen-specific proliferation assay, Immunoprecipitation, Western Blot Serum | No correlation | Described in GBS and CIDP | [8,9,10,11,12,13,14] | ||
Diagnostic Monitoring | Sphingomyelin (SM) | Fluorescence-based assay CSF | Correlation with disease activity, elevated in active CIDP. | Increased in GBS and CIDP | [15] | ||
Diagnostic | Cystatin C (cysteine protease inhibitor) | ELISA CSF | Decrease may be linked to higher cathepsin B activity (cathepsin B levels increased in CSF) | Significant decrease of cystatin c levels in GBS and CIDP patients | [16,17,18,19] | Decrease also observed in MS patients | |
Diagnostic | Protein 14-3-3 | Immunoblot assay CSF | Early detection (12 to 48 h after disease onset) in GBS | Elevated in CSF of GBS and CIDP patients | [20,21] | Not disease-specific | |
Diagnostic | IL-8 | Multiplex bead immunoassays CSF | Aid in differentiation between CIDP and GBS, including acute-onset CIDP. CSF IL-8 in GBS > CIDP Optimal IL-8 cutoff → 70 pg/mL | Should be measured initially during diagnostical process High specificity and positive predictive value | [22] | Not disease-specific | |
Predictive Prognostic | Autoantibodies to gangliosides (GM1, GA1, GD1a, GD1b, GalNAc-GD1a, 9-O-Acetyl GD1b, GD3, GM1, GT1a, GT1b, GT3, GQ1b, 0-Acetyl GT3, LM-1, GD1a/GD1b, GM1/GalNac-GD1a, GM1/PA, GM1/GD1a, GM1/GT1b, LM1/GA1) IgG and IgM | ELISA Serum | Correlation with clinical phenotypes and specific symptoms of GBS e.g., ophthalmoplegia and Anti-GQ1b IgG Anti-GM1 linked to Campylobacter jejuni, titers correlate with clinical recovery and therapy response GM1/GalNac-GD1a linked to respiratory infection | High prevalence in GBS of Anti-GM1 and Anti-GT1a | [23,24,25,26,27,28,29] | ||
Predictive Prognostic | Antibodies against nodal and paranodal proteins: Neurofascin (Nfasc155 and Nfasc140/186) Contactin-1 (CNTN1) Contactin- associated protein-1 (Caspr1) Caspr1/CNTN1 complex Gliomedin | ELISA, Immunoprecipitation, cell-based Assays Serum | Associated with specific clinical manifestation e.g., ataxia and tremor Poorer response to IVIg Anti-CNTN1 seem to benefit from corticosteroids | Nfasc155 in 4–18% of CIDP cases | [30,31,32,33,34,35,36,37,38] | ||
Predictive Prognostic | Neurofilaments Phosphorylated neurofilament heavy protein (pNFH) Neurofilament light chain (Nfl) | ELISA, Electrochemiluminescence (ECL) based immunoassay Serum and CSF | Indicator for neurodegeneration Positive correlation with clinical and electrophysiological presentation in GBS Association with disease progression and therapy outcome in CIDP | Elevated in both serum and CSF of GBS and CIDP patients | [25,39,40,41,42,43] | General indicators of axonal damage, also detectable in other patient groups with evidence of structural CNS damage | |
Predictive Prognostic | Tau-proteins | ELISA CSF | Correlation with clinical manifestation and poorer clinical outcome | Elevated in CSF of GBS and CIDP patients | [25,42,44,45] | Also detectable in other patient groups with evidence of structural CNS damage e.g., Alzheimer’s Disease | |
Prognostic | Autoantibodies against galactocerebroside (Gal-C) | ELISA Serum | Association with sensory deficits and autonomic disruption in GBS Association with Mycoplasma pneumoniae infection | GBS | [46,47] | ||
Prognostic | Neuron-specific enolase (NSE) | Enzyme immunoassay methods CSF | Higher levels correlate with a longer duration of disease | Elevated in CSF of GBS and CIDP patients | [48,49,50] | CSF-NSE is not GBS or CIDP specific; Elevation is also observed other conditions e.g., Creutzfeldt-Jakob disease [51] | |
Prognostic Predictive Monitoring | Cytokines Interferon gamma (IFN γ), Tumor necrosis factor α (TNF α), Transforming growth factor β1 (TGF β1), IL-1β, IL-4, IL-6, IL-10, IL-12, IL-16, IL-17, IL-18, IL-22, IL-23, IL-37 | ELISA based assays (multiplexed fluorescent bead-based immunoassay Serum and CSF | TNF α and IFN γ are elevated in GBS and correlate with clinical severity TGF β1 levels are decreased in the early course of GBS, downregulation correlates with clinical disability Serum levels are positively correlated with GBS disease severity and decreased after IVIg treatment (IL-17A, IL-37) CSF IL-17A levels were positively correlated with clinical manifestation of GBS Upregulation of IL-4 and IL-10 are linked to recovery phase in GBS CSF and serum levels of interleukins declined after IVIg treatment | Cytokine elevation is described in CIDP and GBS | [52,53,54,55,56,57,58,59,60,61,62,63,64,65] | Not disease-specific. | |
Prognostic Monitoring | Serum complement proteins C3, C3a, C5a, C5b-9 | Nephelometry Serum | Upregulation predicts poor prognosis High C3 correlates with complement activation with high C3a und C5a Correlation with disease activity | Increased in GBS and CIDP | [66,67,68] | Not disease-specific | |
Prognostic Monitoring | S100B protein (calcium-binding astroglial protein) | ELISA Serum and CSF | Elevated in CSF and serum Association with clinical severity and poor prognosis Decrease in stable disease course | Elevated in GBS and CIDP | [42,49,50] | Expression of S100B is not restricted to neural tissue; Serum levels can be increased after e.g., bone fractures or hepatic injury [69,70] | |
Prognostic Diagnostic | Stem cell factor (SCF) Hepatocyte growth factor (HGF) | Multiplex bead-based ELISA CSF | Increased | Elevated levels in CSF CIDP > GBS Correlation with chronicity | [71] | Value of this examination is still uncertain | |
Monitoring | Chemokines CCR2, CCL7,CCL3, CCL27, CCR1, CCR5, CXCL10, CXCR3, CXCL9, CXCL12, monocyte chemoattractant protein 1 (MCP-1) | Multiplex bead-based ELISA Serum and CSF | CCR2 and MCP-1 decreased in the recovery stage | Increased in GBS and CIDP | [25,72,73,74] | Not disease-specific | |
Monitoring | Intercellular adhesion molecule 1 (ICAM-1) Vascular cell adhesion molecule 1 (VCAM-1) Vascular Endothelial Growth Factor (VEGF) | Multiplex bead-based ELISA CSF | Decrease after therapy in studies Correlation with repair processes is currently being studied | Increased in GBS and CIDP | [71,75,76] | Not disease-specific | |
Monitoring | MicroRNAs has-miR4717-5p (GBS) has-miR-642b-5p (GBS) miR-31-5p (CIDP) | Microarray, droplet digital PCR Serum | High levels of miR-31-5p correlate with longer disease duration Potential in improving personalized patient care | Detectable in GBS and CIDP | [77,78,79,80] | ||
MG | Diagnostic Monitoring | Anti-AChRs (muscle nicotinic acetylcholine receptors) IgG subtype 1 and 3 | Radioimmunprecipitation assay (RIPA) with high specificity and sensitivity, fixed cell-based assays Serum | Monitoring in patients with immunosuppressive treatment Higher levels in ocular MG are associated with conversion to generalized MG Higher levels in late-onset MG | 85% in generalized MG, highly specific for MG | [81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99] | Lower titers in ocular MG Inconsistent studies regarding correlation with disease severity and treatment response |
Diagnostic Prognostic Predictive | Anti-MuSK (Muscle-specific kinase) IgG subtype 4 | Radioimmunoprecipitation assay (RIPA), ELISA, cell-based assay (CBA) Serum | Correlation with disease severity Affection of facial-bulbar muscles Early crises and challenging treatment Worse outcome Association with early onset MG and better response to rituximab | 5–8% of MG 30–50% of AChR-negative MG | [100,101,102,103,104,105,106,107,108,109,110] | More often in female patients Highest sensitivity in detection via CBA | |
Diagnostic | Anti-LRP4 (low-density lipoprotein receptor-related protein 4) IgG subtype 1 and 2 | Cell-based assay (CBA) Serum | Stronger clinical manifestation than in seronegative MG | 2% of MG; higher in non-AChR and non-MuSK cases | [111,112,113,114,115,116,117] | Higher prevalence in female patients Not specific for MG (e.g., found in ALS as well) | |
Diagnostic Prognostic | Anti-Titin | ELISA, Cell-based assay (CBA) Serum | Thymoma-associated MG More frequent hospitalization | 20–40% in Anti-AChR-positive MG | [95,118,119,120] | Screening for thymoma presence should follow positive testing | |
Diagnostic Prognostic | Anti-Kv1.4 (voltage gated potassium channel) | Cell-based assay (CBA), Radioimmunoprecipitation assay (RIPA) Serum | Association with myasthenic crises and thymoma Association with bulbar manifestation, myocarditis and QT-Time prolongation (Japanese population) | 11–18% (Japanese MG population) | [95,121,122] | More frequent in female patients Expensive detection | |
Diagnostic | Anti-Rapsyn | ELISA Serum | No correlations | 15% of MG | [95,123] | Not MG-specific | |
Diagnostic Prognostic | Anti-Cortactin | Western Blot, ELISA Serum | Mild symptoms | 10–25% of MG | [95,124,125,126] | Not MG specific | |
Diagnostic Prognostic Predictive | Anti-Agrin IgG subtype 1 and 3 | ELISA; CBA; serum | Correlation with limited therapeutic response and mild to severe clinical manifestation | 2–5% of MG, mainly seropositive MG | [95,127,128] | More frequent in male patients | |
Diagnostic Prognostic Predictive | Micro-RNAs miR-150-5p miR-21-5p miR-30e-5p let-7 miRNA family | Microarray, droplet digital PCR Serum | Correlation with treatment response High miR-30e-5p levels are associated with risk of generalization in ocular MG | Studied in AchR and MuSK-positive MG | [129] | ||
IIM | Diagnostic Predictive Prognostic | Anti-Mi-2 | ELISA, Immunoblot Serum | Classical DM, associated with beneficial prognosis, mild myositis, lower risk of ILD, better treatment response especially to rituximab Correlation with disease activity Association with HLA-DR7 | MSA 2–45% prevalence in DM | [130,131,132,133,134,135] | Positive sera may also be found by ELISA in PM patients [136] Prevalence can only be estimated (varying among different countries) |
Diagnostic Predictive Prognostic | Anti-ARS (aminoacyl-tRNA synthetases) Jo-1, PL-7, PL-12, EJ, OJ, KS, ZO, YRS | RNA-Immunoprecipitation, ELISA, Line Blots, Serum | Association with ASyS Higher mortality and interstitial lung disease (ILD) incidence in non-Anti-Jo-1-ARS (+) Higher treatment dosage required | MSA Anti-Jo-1 15–30% in DM/PM Others < 5% | [134,137,138,139,140,141] | Low prevalence of non-Anti-Jo-1-ARS RNA-Immunoprecipitation not widely available Rates of false-positive cases higher in Line Blots [140] | |
Diagnostic Predictive Prognostic | Anti-NXP2 (anti-nuclear matrix protein 2) | Immunoprecipitation, Western Blot Serum | Association with calcinosis and severe myositis, cancer development Correlation with disease activity | MSA Adult and juvenile DM 1–5% | [134,142,143,144,145] | Immunoassays have been released and are currently discussed | |
Diagnostic Predictive Prognostic Monitoring | Anti-MDA-5 (Melanin differentiation-associated protein-5)/CADM140 | Immunoprecipitation, Western Blot, ELISA Serum | Associated with clinically amyotrophic DM (CADM), ILD, poor prognosis, sever skin manifestation Titer levels linked to disease severity and outcome | MSA 15–20% in IIM, mainly CADM | [133,134,146,147] | Higher prevalence in Asia More frequent in women | |
Diagnostic Prognostic | Anti-TIF1γ/α (transcription factor 1 γ/α) | ELISA, Immunoprecipitation Serum | Malignancy-associated DM | MSA 10–15%, higher prevalence in cancer-associated DM, rare in PM | [134,148,149,150,151,152] | Cancer association is applied to adults [151] | |
Diagnostic Predictive Prognostic | Anti-SAE (small ubiquitin-like modifier activating enzyme) | Immunoprecipitation, Indirect Immunofluorescence test Serum | Cancer association Serum levels correlate with disease activity | MSA 1–5% in DM | [153,154,155] | ||
Diagnostic Prognostic | Anti-SRP (Anti-signal recognition particle) | RNA Immunoprecipitation, ELISA Serum | Associated with a rapidly progressive disease course with severe weakness Cancer-associated SRP-IMNM | MSA 20–25% in IMNM | [156,157,158] | More frequent in women Primarily in adults | |
Diagnostic Prognostic | Anti-HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A reductase) | Immunoprecipitation, ELISA Serum | Significant association with serum creatine kinase Higher serum muscle enzymes than in other IIM Correlation with disease activity Cancer association | MSA 6–12% in IIM | [158,159,160,161,162,163,164,165] | Cave: Statin therapy! | |
Predictive Prognostic | Serum soluble CD163 | ELISA Serum | Biomarker for macrophage activation Correlation with disease severity Association with Anti-MDA5 (+) cases | PM/DM | [166,167,168] | Not IIM-specific; supporting | |
Diagnostic | Anti-cN1A (cytosolic 5′-nucleotidase 1A) | Addressable laser bead immunoassay (ALBIA), ELISA Serum | No correlation with disease severity | Around 50% in IBM | [169,170] | Moderate sensitivity, high specificity in ALBIA [171] Not IBM-specific, found also in known autoimmune diseases e.g., SLE [172] | |
Diagnostic | Micro-RNAs miR-96-5p | RTqPCR Serum | No correlation described | Upregulation in PM, DM and Anti-Jo1 positive cases | [173] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oeztuerk, M.; Henes, A.; Schroeter, C.B.; Nelke, C.; Quint, P.; Theissen, L.; Meuth, S.G.; Ruck, T. Current Biomarker Strategies in Autoimmune Neuromuscular Diseases. Cells 2023, 12, 2456. https://doi.org/10.3390/cells12202456
Oeztuerk M, Henes A, Schroeter CB, Nelke C, Quint P, Theissen L, Meuth SG, Ruck T. Current Biomarker Strategies in Autoimmune Neuromuscular Diseases. Cells. 2023; 12(20):2456. https://doi.org/10.3390/cells12202456
Chicago/Turabian StyleOeztuerk, Menekse, Antonia Henes, Christina B. Schroeter, Christopher Nelke, Paula Quint, Lukas Theissen, Sven G. Meuth, and Tobias Ruck. 2023. "Current Biomarker Strategies in Autoimmune Neuromuscular Diseases" Cells 12, no. 20: 2456. https://doi.org/10.3390/cells12202456
APA StyleOeztuerk, M., Henes, A., Schroeter, C. B., Nelke, C., Quint, P., Theissen, L., Meuth, S. G., & Ruck, T. (2023). Current Biomarker Strategies in Autoimmune Neuromuscular Diseases. Cells, 12(20), 2456. https://doi.org/10.3390/cells12202456